UNIVERSITY OF ILLINOIS
 Department of Electrical and Computer Engineering
 ECE 417 Multimedia Signal Processing

Lecture 10 Sample Problems

Problem 10.1

Suppose that a particular covariance matrix, $\Sigma=V \Lambda V^{T}$, has a trace equal to $D \sigma^{2}$, and eigenvalues given by

$$
\lambda_{d}=D \sigma^{2}\left(\frac{1}{2}\right)^{n}, \quad 1 \leq d \leq D-1
$$

and $\lambda_{D}=\lambda_{D-1}$. Suppose that $D=512$ dimensions.
The principal components are defined as

$$
\vec{y}=\left[\vec{v}_{1}, \ldots, \vec{v}_{M}\right]^{T}(\vec{x}-\vec{\mu})
$$

where $M<D$ is the number of principal components retained. What is the smallest value of M that will result in $E\left[\|\vec{y}\|^{2}\right] \geq 0.95 D \sigma^{2}$?

Problem 10.2

What is the probability density function of the vector \vec{y} in problem 1 ?

Problem 10.3

Suppose that a particular covariance matrix, $\Sigma=V \Lambda V^{T}$, where $V=\left[\vec{v}_{1}, \ldots, \vec{v}_{D}\right]$, and the vectors \vec{v}_{d} are orthonormal. Suppose that the first M eigenvalues, $\lambda_{1}, \ldots, \lambda_{M}$ are all positive, but the remaining $D-M$ eigenvalues are all zero.

A matrix whose eigenvalues are all $\lambda_{d} \geq 0$ is called a "positive semi-definite matrix." If some eigenvalues are zero, there is no matrix Σ^{-1} such that $\Sigma^{-1} \Sigma=I$. It's possible, however, to define a pseudo-inverse Σ^{\dagger} that has some of the properties of an inverse, for example, $\Sigma^{\dagger} \Sigma=\sum_{m=1}^{M} \vec{v}_{m} \vec{v}_{m}^{T}$, and $\Sigma^{\dagger} \Sigma \Sigma^{\dagger}=\Sigma^{\dagger}$, and $\Sigma \Sigma^{\dagger} \Sigma=\Sigma$. With this definition, write the pseudo-inverse Σ^{\dagger} in terms of the nonzero eigenvalues λ_{d} and their corresponding eigenvectors \vec{v}_{d}.

Problem 10.4

Suppose you have a two-class classification problem, with D-dimensional observations given by

$$
\vec{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{D}
\end{array}\right]
$$

The prior probabilities are given by the known parameter π_{0} :

$$
p_{Y}(0)=\pi_{0}, \quad p_{Y}(1)=1-\pi_{0}
$$

Suppose that the actual underlying likelihood functions of the two classes have no spread at all. If vector \vec{x} is drawn from class $Y=0$, then it ALWAYS has a value of $\vec{x}=\vec{\mu}_{0}$; if it is drawn from class $Y=1$, then it ALWAYS has a value of $\vec{x}_{n}=\vec{\mu}_{1}$.

Define the global mean, covariance, and principal components to be

$$
\vec{\mu}=E[\vec{X}], \quad \Sigma=E\left[(\vec{X}-\vec{\mu})(\vec{X}-\vec{\mu})^{T}\right], \quad \Sigma=V \Lambda V^{T}, \quad V^{T} V=I, \quad \Lambda \text { diagonal }
$$

Find $\vec{\mu}, \Sigma, V$ and Λ in terms of the parameters $\pi_{0}, \vec{\mu}_{0}$, and $\vec{\mu}_{1}$.

