UNIVERSITY OF ILLINOIS

Department of Electrical and Computer Engineering ECE 417 MULTIMEDIA SIGNAL PROCESSING

Lecture 11 Sample Problems

Problem 11.1

Suppose you're given two spectra, X[k] and Y[k], each of which is the 1024-point FFT of a frame of speech with a sampling frequency of $F_s = 16000$ Hz. You want to find out how similar these two spectra are. In order to do that, you will compute filterbank coefficients,

$$C_x[m] = \ln \sum_{k=0}^{1023} H_m[k]|X[k]|, \quad C_y[m] = \ln \sum_{k=0}^{1023} H_m[k]|Y[k]|$$

where the filters, $H_m[k]$, are given by

$$H_m[k] = \begin{cases} \frac{k - k_{m-1}}{k_m - k_{m-1}} & k_m \ge k \ge k_{m-1} \\ \frac{k_{m+1} - k}{k_{m+1} - k} & k_{m+1} \ge k \ge k_m \\ 0 & \text{otherwise} \end{cases}$$

The band edges, k_m , should be uniformly spaced on a mel-scale, meaning that $m(k_m F_s/N) - m(k_{m-1} F_s/N) = \Delta$ should be constant for all m, where the linear-to-mel transform is given by

$$m(f) = 2595 \log_{10} \left(1 + \frac{f}{700} \right)$$

Suppose that there are 32 filters, which means that there are 33 band edges, ranging from $k_0 = 0$ to $k_{33} = 8000$ Hz. Find a formula for k_m as a function of m.

Problem 11.2

Suppose you're liftering a linear-frequency spectrum. The low-pass liftered spectrum is constructed from the low-pass liftered cepstrum as

$$C_{LP}[k] = 2 \sum_{q=1}^{\frac{N}{2}-1} c_{LP}[q] \cos\left(\frac{2\pi kq}{N}\right)$$

The low-pass liftered cepstrum is computed from the input cepstrum as

$$c_{LP}[q] = \begin{cases} c[q] & 1 \le q \le 12\\ 0 & \text{otherwise} \end{cases}$$
 (11.2-1)

The input cepstrum is computed from the input spectrum as

$$c[q] = \frac{2}{N} \sum_{k=1}^{\frac{N}{2}-1} \ln|X[k]| \cos\left(\frac{2\pi kq}{N}\right)$$

and the input spectrum, X[k], is the 1024-point FFT of a signal sampled at $F_s = 16000$ Hz.

Assume that c[0] = 0. Under that assumption, the liftering operation, Eq. 11.2-1, is equivalent to smoothing $\ln |X[k]|$ by convolution with a digital-sinc function. What is the bandwidth, in Hertz, of the smoothing function (measure "bandwidth" as the frequency of the first null)?

Problem 11.3

Computing the MFCC involves the following steps:

- 1. Take the magnitude DFT, |X[k]|, of one frame of audio, x[n].
- 2. Compute the weighted summation of |X[k]| within each mel-frequency band.
- 3. Take the logarithm.
- 4. Compute the DCT.

In these days of neural networks, it is stylish to represent every operation as a sequence of matrix multiplications followed by scalar nonlinearities. For example, suppose that x[n] is a time-domain sample of the original audio signal, and consider the following sequence of operations:

$$\vec{a} = \begin{bmatrix} x[1] \\ \vdots \\ x[N] \end{bmatrix}$$

$$\vec{b} = W\vec{a}$$

$$\vec{c} = \begin{bmatrix} |b[1]| \\ \vdots \\ |b[M]| \end{bmatrix}$$

$$\vec{d} = V\vec{c}$$

$$\vec{e} = \begin{bmatrix} \ln(d[1]) \\ \vdots \\ \ln(d[L]) \end{bmatrix}$$

$$\vec{f} = U\vec{e}$$

... where W is an $M \times N$ matrix whose $(m, n)^{\text{th}}$ element is w_{mn} , V is an $L \times M$ matrix whose $(l, m)^{\text{th}}$ element is v_{lm} , and U is a $K \times L$ matrix whose $(k, l)^{\text{th}}$ element is u_{kl} .

Find formulas for u_{kl} , v_{lm} , and w_{mn} , as functions of k, l, m, n, so that the vector \vec{f} contains the MFCC.