UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering
ECE 417 Multimedia Signal Processing

Lecture 11 Sample Problems

Problem 11.1

Suppose you're given two spectra, $X[k]$ and $Y[k]$, each of which is the 1024 -point FFT of a frame of speech with a sampling frequency of $F_{s}=16000 \mathrm{~Hz}$. You want to find out how similar these two spectra are.

In order to do that, you will compute filterbank coefficients,

$$
C_{x}[m]=\ln \sum_{k=0}^{1023} H_{m}[k]|X[k]|, \quad C_{y}[m]=\ln \sum_{k=0}^{1023} H_{m}[k]|Y[k]|
$$

where the filters, $H_{m}[k]$, are given by

$$
H_{m}[k]= \begin{cases}\frac{k-k_{m-1}}{k_{m}-k_{m-1}} & k_{m} \geq k \geq k_{m-1} \\ \frac{k_{m+1}-k}{k_{m+1}-k} & k_{m+1} \geq k \geq k_{m} \\ 0 & \text { otherwise }\end{cases}
$$

The band edges, k_{m}, should be uniformly spaced on a mel-scale, meaning that $m\left(k_{m} F_{s} / N\right)-m\left(k_{m-1} F_{s} / N\right)=$ Δ should be constant for all m, where the linear-to-mel transform is given by

$$
m(f)=2595 \log _{10}\left(1+\frac{f}{700}\right)
$$

Suppose that there are 32 filters, which means that there are 33 band edges, ranging from $k_{0}=0$ to $k_{33}=8000 \mathrm{~Hz}$. Find a formula for k_{m} as a function of m.

Problem 11.2

Suppose you're liftering a linear-frequency spectrum. The low-pass liftered spectrum is constructed from the low-pass liftered cepstrum as

$$
C_{L P}[k]=2 \sum_{q=1}^{\frac{N}{2}-1} c_{L P}[q] \cos \left(\frac{2 \pi k q}{N}\right)
$$

The low-pass liftered cepstrum is computed from the input cepstrum as

$$
c_{L P}[q]= \begin{cases}c[q] & 1 \leq q \leq 12 \tag{11.2-1}\\ 0 & \text { otherwise }\end{cases}
$$

The input cepstrum is computed from the input spectrum as

$$
c[q]=\frac{2}{N} \sum_{k=1}^{\frac{N}{2}-1} \ln |X[k]| \cos \left(\frac{2 \pi k q}{N}\right)
$$

and the input spectrum, $X[k]$, is the 1024 -point FFT of a signal sampled at $F_{s}=16000 \mathrm{~Hz}$.
Assume that $c[0]=0$. Under that assumption, the liftering operation, Eq. 11.2-1, is equivalent to smoothing $\ln |X[k]|$ by convolution with a digital-sinc function. What is the bandwidth, in Hertz, of the smoothing function (measure "bandwidth" as the frequency of the first null)?

Problem 11.3

Computing the MFCC involves the following steps:

1. Take the magnitude DFT, $|X[k]|$, of one frame of audio, $x[n]$.
2. Compute the weighted summation of $|X[k]|$ within each mel-frequency band.
3. Take the logarithm.
4. Compute the DCT.

In these days of neural networks, it is stylish to represent every operation as a sequence of matrix multiplications followed by scalar nonlinearities. For example, suppose that $x[n]$ is a time-domain sample of the original audio signal, and consider the following sequence of operations:

$$
\begin{aligned}
& \vec{a}=\left[\begin{array}{c}
x[1] \\
\vdots \\
x[N]
\end{array}\right] \\
& \vec{b}=W \vec{a} \\
& \vec{c}=\left[\begin{array}{c}
|b[1]| \\
\vdots \\
|b[M]|
\end{array}\right] \\
& \vec{d}=V \vec{c} \\
& \vec{e}=\left[\begin{array}{c}
\ln (d[1]) \\
\vdots \\
\ln (d[L])
\end{array}\right] \\
& \vec{f}=U \vec{e}
\end{aligned}
$$

\ldots where W is an $M \times N$ matrix whose $(m, n)^{\text {th }}$ element is $w_{m n}, V$ is an $L \times M$ matrix whose $(l, m)^{\text {th }}$ element is $v_{l m}$, and U is a $K \times L$ matrix whose $(k, l)^{\text {th }}$ element is $u_{k l}$.

Find formulas for $u_{k l}, v_{l m}$, and $w_{m n}$, as functions of k, l, m, n, so that the vector \vec{f} contains the MFCC.

