
UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing

Lecture 17 Sample Problems

Problem 17.1

Suppose you’re given a training database of 200 examples. Each example includes a two-dimensional
real-valued feature vector ~xi and a two-dimensional one-hot label vector ~ζi. As it turns out, though, all
examples from class ~ζ = [1, 0] have the same ~x, and all examples from class ~ζ = [0, 1] have the same class:

(
~xi, ~ζi

)
=



([
2
−2

]
,

[
1
0

])
1 ≤ i ≤ 100

([
−2
2

]
,

[
0
1

])
101 ≤ i ≤ 200

You want to train a one-layer neural net using a softmax output:

yki =
eaki∑
m eami

, ~ai = U~xi

Since both ~y and ~x are 2D vectors, U is a 2× 2 matrix. Its coefficients are trained to minimize cross-entropy

ukj ← ukj − η
∂E

∂ukj
, E = − 1

200

200∑
i=1

2∑
k=1

ζki ln yki

With initial values ukj = 0. Find ukj after one round of gradient-descent training, assuming η = 1. Notice
that after one round of training, the training corpus is classified with 100% accuracy! Notice also that the
second row of U is -1 times the first row—that will always be true for a two-class softmax. Why?

Problem 17.2

Suppose you’re given a training database of just 4 training examples. Each example includes a two-
dimensional real-valued feature vector ~xi and a two-dimensional one-hot label vector ~ζi:

(
~xi, ~ζi

)
=



([
1
1

]
,

[
1
0

])
i = 1

([
−1
−1

]
,

[
1
0

])
i = 2

([
1
−1

]
,

[
0
1

])
i = 3

([
−1
1

]
,

[
0
1

])
i = 4

You want to train a two-layer neural net using a softmax output and logistic hidden units:

z`i =
eb`i∑
m ebmi

, ~bi = V ~yi

1



yki = σ(aki), ~ai = U~xi

Suppose that U and V are initialized as all-zero matrices. Use forward propagation to compute ~yi and ~zi for
each training token, then use back-propagation to compute ~εi and ~δi for each training token, then use the
outer products to find

V (1) = V (0) − 1

n

n∑
i=1

~εi~y
T
i , U (1) = U (0) − 1

n

n∑
i=1

~δi~x
T
i

Notice that, because of the symmetry of this problem, starting from an all-zero initialization will result in
a neural net that never trains. In order to train this neural net, you would have to break the symmetry by
starting with small random initial values in U and V .

2


