UNIVERSITY OF ILLINOIS

Department of Electrical and Computer Engineering ECE 417 MULTIMEDIA SIGNAL PROCESSING

Lecture 2 Sample Problems

Problem 2.1

Suppose $x[n] = \sin\left(\frac{\pi n}{10}\right)$ and h[n] is the local averaging filter,

$$h[n] = \begin{cases} \frac{1}{N} & -\left(\frac{N-1}{2}\right) \le n \le \left(\frac{N-1}{2}\right) \\ 0 & \text{else} \end{cases}$$

y[n] = h[n] * x[n] turns out to be $A \sin\left(\frac{n\pi}{10}\right)$ for some real constant A. Find the numerical value of A for averaging lengths of N = 1, 3, 5, 7, 9, 11. Usually in this course, an explicit numerical formula like $\sin(4\pi/5)$ is considered equivalent to an actual number, but for this problem ONLY, please plug the formulas into your calculator to find out what the actual numbers are.

Problem 2.2

Suppose the signal $x[n] = \cos(n/3)$ is windowed with a 256-sample rectangular window, then a 256-sample DFT is computed. Find X[k]. Express your answer in terms of the "digital sinc" function, which is defined as

$$\operatorname{dsinc}(\theta, N) = \frac{\sin(\theta N/2)}{N\sin(\theta/2)}$$

Problem 2.3

Consider a local averaging system, as in problem 1, but suppose it computes a weighted local average instead of an unweighted average:

$$y[n] = \sum_{-\left(\frac{N-1}{2}\right)}^{\left(\frac{N-1}{2}\right)} \cos\left(\frac{\pi m}{N}\right) x[n-m]$$

Express $H(e^{j\omega})$ in terms of the dsinc function, $\operatorname{dsinc}(\theta, N) = \frac{\sin(\theta N/2)}{N\sin(\theta/2)}$.

Problem 2.4

If you want a zero-phase filter, one way to do it is to filter your signal first with g[n], then with g[-n], thus:

$$y[n] = g[n] * x[n] = \sum_{m = -\infty}^{\infty} g[m]x[n - m] = \sum_{m = -\infty}^{\infty} x[m]g[n - m]$$

$$z[n] = g[-n] * y[n] = \sum_{m=-\infty}^{\infty} g[-m]y[n-m] = \sum_{m=-\infty}^{\infty} y[m]g[m-n]$$

Define $H(e^{j\omega}) = Z(e^{j\omega})/X(e^{j\omega})$. Find $H(e^{j\omega})$ in terms of $G(e^{j\omega})$, and show that, for real-valued g[n], $H(e^{j\omega})$ is real-valued, even if $G(e^{j\omega})$ isn't.