UNIVERSITY OF ILLINOIS

Department of Electrical and Computer Engineering ECE 417 MULTIMEDIA SIGNAL PROCESSING

Lecture 6 Sample Problems

Problem 6.1

Suppose that all of the low frequencies $(k < \frac{L}{2} - b \text{ and } k > \frac{L}{2} + b$, for some cutoff frequency $\omega = \pi - \frac{2\pi b}{L})$ are voiced, and all of the high frequencies $(\frac{L}{2} - b \le k \le \frac{L}{2} + b)$ are unvoiced. In particular, suppose that $U_f[k]$ are independent zero-mean Gaussian random variables with

$$E\left\{U_f[k]U_f^*[k]\right\} = \begin{cases} \sigma^2 & \frac{L}{2} - b \le k \le \frac{L}{2} + b\\ 0 & \text{else} \end{cases}$$

Express the statistical autocorrelation $R_{uu}[n] = E\{u_f[m]u_f[m-n]\}$ in terms of the dsinc function $\mathrm{dsinc}(\theta,L) = \frac{\sin(\theta L/2)}{L\sin(\theta/2)}$. Be careful, here: $E\{|U_f[k]|^2\}$ is not the DFT of the statistical autocorrelation, so you'll need to take the inverse DFT of $U_f[k]$ and $U_f^*[k]$ separately, to find $u_f[m]$ and $u_f[-(n-m)]$ separately, and then compute its expected value. Hint: make use of the identity $e^{-j\frac{2\pi n}{L}\left(\frac{L}{2}+\ell\right)} = (-1)^n e^{-j\frac{2\pi \ell n}{L}}$.

Problem 6.2

Overlap-add synthesis can be defined, in general, as

$$u[n] = \sum_{f = -\infty}^{\infty} u_f[n - fK]w[n - fK]$$
(6.2-1)

Find a window, w[n], such that Eq. (6.2-1) gives the same result as the following linear interpolation formula, for $g = \lfloor \frac{n}{K} \rfloor$:

$$u[n] = \left(\frac{n}{K} - g\right) u_g [n - gK] + \left(1 + g - \frac{n}{K}\right) u_{g-1} [n - (g-1)K]$$

Problem 6.3

Consider the problem of synthesizing voiced speech in continuous time, using the formula

$$v(t) = \sum_{m} A_m(t) \cos (\theta_m(t)),$$

where $\theta_m(t)$ is defined as

$$\theta_m(t) = \int_0^t m\Omega_0(\tau)d\tau$$

and where the amplitude and fundamental frequency change linearly from one frame to the next, as

$$A_m(t) = a_m + tb_m$$

$$\Omega_0(t) = \alpha + t\beta$$

Simplify the formula for v(t) so it is a function of only the constant parameters a_m , b_m , α and β .