UNIVERSITY OF ILLINOIS
 Department of Electrical and Computer Engineering
 ECE 417 Multimedia Signal Processing

Lecture 7 Sample Problems

Problem 7.1

Linear Regression: Suppose you have two vectors, $\vec{y}=\left[y_{0}, \ldots, y_{N-1}\right]^{T}$ and $\vec{x}=\left[x_{0}, \ldots, x_{N-1}\right]^{T}$. For now, suppose that \vec{x} and \vec{y} are both real; problem 2 will address complex scalars. Your goal is to find a coefficient, a, that minimizes

$$
\varepsilon=\sum_{k=0}^{N-1}\left(y_{k}-a x_{k}\right)^{2}
$$

Differentiate ε, and set $d \varepsilon / d a=0$, in order to find the value of a that minimizes ε.

Problem 7.2

Suppose that x, y, and a are all complex scalars, i.e., $x=x_{R}+j x_{I}, y=y_{R}+j y_{I}$, and $a=a_{R}+j a_{I}$. Suppose $\varepsilon(a)=\frac{1}{2}|y-a x|^{2}$. The function $\varepsilon(a)$ is actually not complex-differentiable in the normal sense $(d \varepsilon / d a$ is undefined, in the normal sense), but there is a useful special kind of derivative called the $\mathbb{C} \mathbb{R}$-derivative that gives us the following very useful definitions:

$$
\frac{\partial \varepsilon}{\partial a}=\frac{1}{2}\left(\frac{\partial \varepsilon}{\partial a_{R}}-j \frac{\partial \varepsilon}{\partial a_{I}}\right), \quad \frac{\partial \varepsilon}{\partial a^{*}}=\frac{1}{2}\left(\frac{\partial \varepsilon}{\partial a_{R}}+j \frac{\partial \varepsilon}{\partial a_{I}}\right)
$$

Using the definitions above, find $\frac{\partial \varepsilon}{\partial a^{*}}$, and set it to zero in order to find the value of a that minimizes ε (since y and x are scalars, it is possible to achieve $\varepsilon=0$).

Problem 7.3

Suppose you have a family of real-valued vectors, $\vec{x}(P)=\left[x_{0}(P), \ldots, x_{N-1}(P)\right]^{T}$ (for example, P might be the pitch period). For each one, you find

$$
\varepsilon(P)=\min _{a} \sum_{k=0}^{N-1}\left(y_{k}-a x_{k}(P)\right)^{2}
$$

where y_{k} and a are also real-valued. Now suppose you want to find the pitch period that minimizes $\varepsilon(P)$,

$$
\hat{P}=\arg \min \varepsilon(P)
$$

Show that \hat{P} can also be written as

$$
\hat{P}=\arg \max \frac{\left(\sum_{k=0}^{N-1} y_{k} x_{k}(P)\right)^{2}}{\sum_{k=0}^{N-1} x_{k}^{2}(P)}
$$

