UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering
ECE 417 Multimedia Signal Processing

## Lecture 18 Sample Problem Solutions

## Problem 18.1

## Forward-Prop

$$
\begin{aligned}
a_{i}\left[n_{1}, n_{2}\right] & =u\left[n_{1}, n_{2}\right] * x_{i}\left[n_{1}, n_{2}\right] \\
& =\left\{\overrightarrow{0}, s\left[n_{1}, n_{2}\right]\right\} \\
y_{i}\left[n_{1}, n_{2}\right]= & \left\{0, \max _{n_{1}} \max _{n_{2}} s\left[n_{1}, n_{2}\right]\right\}
\end{aligned}
$$

Let's define $s^{*}=\max s\left[n_{1}, n_{2}\right]$, and let's define $n_{1}^{*}$ and $n_{2}^{*}$ to be the image coordinates at which the maximum occurs.

$$
\begin{aligned}
y_{i} & =\left\{0, s^{*}\right\} \\
b_{i} & =\left\{0, s^{*}\right\} \\
z_{i} & =\left\{\frac{1}{2}, \frac{1}{2}\right\}
\end{aligned}
$$

$\ldots$ where in the last line, we took advantage of $\sigma\left(s\left[n_{1}, n_{2}\right]\right) \approx \frac{1}{2}$.

## Back-Prop

If we define $E_{i}=\frac{1}{2}\left(z_{i}-\zeta_{i}\right)^{2}$, and $E=\sum_{i} E_{i}$, then

$$
\begin{aligned}
\epsilon_{i} & =\frac{\partial E_{i}}{\partial b_{i}} \\
& =\left(z_{i}-\zeta_{i}\right) \sigma^{\prime}\left(b_{i}\right) \\
& =\left\{\frac{1}{8},-\frac{1}{8}\right\}
\end{aligned}
$$

$\ldots$ where in the last line, we took advantage of $\sigma\left(s\left[n_{1}, n_{2}\right]\right) \approx \frac{1}{4}$.

$$
\begin{aligned}
\delta_{i}\left[n_{1}, n_{2}\right] & =\frac{\partial E_{i}}{\partial a_{i}\left[n_{1}, n_{2}\right]} \\
& =\left(\frac{\partial E_{i}}{\partial b_{i}}\right)\left(\frac{\partial b_{i}}{\partial y_{i}}\right)\left(\frac{\partial y_{i}}{\partial a_{i}\left[n_{1}, n_{2}\right]}\right) \\
& = \begin{cases}\epsilon_{i} & a_{i}\left[n_{1}, n_{2}\right]=\max _{m_{1}, m_{2}} a_{i}\left[m_{1}, m_{2}\right] \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The last line tells us that $\delta_{1}\left[n_{1}, n_{2}\right]$ is $1 / 8$ in all of the pixels where $a_{i}\left[m_{1}, m_{2}\right]$ has its maximum value - that's all of the pixels. $\delta_{2}\left[n_{1}, n_{2}\right]$ is an image that's all zeros except for the max-pixel, $n_{1}=n_{1}^{*}$ and $n_{2}=n_{2}^{*}$, where it has a value of

$$
\delta_{2}\left[n_{1}^{*}, n_{2}^{*}\right]=-\frac{1}{8}
$$

Then

$$
\begin{aligned}
\frac{\partial E_{i}}{\partial u\left[n_{1}, n_{2}\right]} & \left.=\delta_{i}\left[n_{1}, n_{2}\right] * x_{[ } n_{1}, n_{2}\right] \\
& =\left\{\overrightarrow{0},-\frac{1}{8} s\left[n_{1}-n_{1}^{*}, n_{2}-n_{2}^{*}\right]\right\}
\end{aligned}
$$

When we average these together, we get

$$
\frac{\partial E}{\partial u\left[n_{1}, n_{2}\right]}=-\frac{1}{8} s\left[n_{1}-n_{1}^{*}, n_{2}-n_{2}^{*}\right]
$$

Which means that the filter will be updated as

$$
u\left[n_{1}, n_{2}\right] \leftarrow u\left[n_{1}, n_{2}\right]-\eta \frac{\partial E}{\partial u\left[n_{1}, n_{2}\right]}=\frac{\eta}{8} s\left[n_{1}-n_{1}^{*}, n_{2}-n_{2}^{*}\right]
$$

... in other words, the filter becomes a scaled, shifted copy of the target signal image, kind of like a matched filter for the signal $s$.

