UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing Fall 2018

PRACTICE EXAM 2

Tuesday, December 11, 2018

- This is a PRACTICE exam. In the real exam, you will be permitted to use one sheet (front and back) of handwritten notes.
- In the real exam, no calculators will be permitted. You need not simplify explicit numerical expressions.
- There will be a total of 100 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
5	
6	
Total	

Name: _____

Possibly Useful Formulas

Neural Nets

$$a_{k} = u_{k0} + \sum_{j} w_{kj} x_{j}$$
$$y_{k} = g(a_{k})$$
$$\frac{\partial E}{\partial x_{j}} = \sum_{k} w_{kj} g'(a_{k}) \frac{\partial E}{\partial y_{k}}$$

Logistic Function

$$\sigma(x) = \frac{1}{1 + e^{-x}}, \quad \sigma'(x) = \sigma(x) \left(1 - \sigma(x)\right)$$

Loss Functions

$$E_{MSE} = \frac{1}{n} \sum_{i=1}^{n} \|\vec{z}_{i} - \vec{\zeta}_{i}\|^{2}$$

$$E_{CE} = -\frac{1}{n} \sum_{i=1}^{n} \sum_{\ell=1}^{r} \zeta_{i\ell} \ln z_{i\ell}$$

$$E_{CE} = -\frac{1}{n} \sum_{i=1}^{n} (\zeta_{i} \ln z_{i} + (1 - \zeta_{i}) \ln(1 - z_{i}))$$

Affine Transform

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$

Barycentric Coordinates

x_0		$\begin{bmatrix} x_1 \end{bmatrix}$	x_2	x_3	$\left[\begin{array}{c} \lambda_1 \end{array} \right]$
$\frac{y_0}{1}$	=	$egin{array}{c} y_1 \ 1 \end{array}$	$\frac{y_2}{1}$	$\frac{y_3}{1}$	$\left[\begin{array}{c}\lambda_2\\\lambda_3\end{array}\right]$

LSTM

$$\vec{i}[n] = \text{input gate} = \sigma(B_i \vec{x}[n] + A_i \vec{c}[n-1])$$

$$\vec{o}[n] = \text{output gate} = \sigma(B_o \vec{x}[n] + A_o \vec{c}[n-1])$$

$$\vec{f}[n] = \text{forget gate} = \sigma(B_f \vec{x}[n] + A_f \vec{c}[n-1])$$

$$\vec{c}[n] = \vec{f}[n] \odot c[n-1] + \vec{i}[n] \odot g (B_c \vec{x}[n] + A_c \vec{c}[n-1])$$

$$\vec{y}[n] = \vec{o}[n] \odot \vec{c}[n]$$

Topics Covered in This Exam

- (a) Neural Nets: logistic, softmax. MSE, Cross-entropy. Back-prop
- (b) ConvNets. Back-prop through convolution, max pooling, and ReLU
- (c) (Not Covered: SGD, Batch, Mini-Batch, Data Augmentation)
- (d) Affine Transforms
- (e) (Not Covered: Image interpolation, PWC, PWL, and sinc)
- (f) Adversarial examples, adversarial training. (Not covered: autoencoder, VAE, GAN)
- (g) Barycentric coordinates
- (h) RNN, GRU, LSTM

Problem 1 (16 points)

In class, we have been working with nodes in layers, but a neural net can also be defined as a fully-connected graph, with every node connected to every other node. For example, suppose there is a scalar input x, and

$$y_0 = x$$

$$a_\ell = \sum_{k=0}^{\ell-1} w_{\ell k} y_k, \quad 1 \le \ell \le L$$

$$y_\ell = \sigma(a_\ell), \quad 1 \le \ell \le L$$

$$E = \frac{1}{2} \sum_{\ell=1}^{L} (y_\ell - y_\ell^*)^2$$

Define the back-propagation error to be $\delta_{\ell} = \frac{dE}{da_{\ell}}$. Find an algorithm that computes δ_{ℓ} for all $1 \leq \ell \leq L$.

Problem 2 (17 points)

A convolutional layer leads to convolutional back-propagation. In the neural net literature, however, convolution is sometimes replaced (without comment!) by correlation, resulting in something like the following, where $x[m_1, m_2]$ is the input and $u[m_1, m_2]$ are the network weights:

$$a[n_1, n_2] = \sum_{m_1} \sum_{m_2} u[m_1 - n_1, m_2 - n_2] x[m_1, m_2]$$

Suppose the error, E, is some function whose partial derivatives $\epsilon[n_1, n_2] = \frac{\partial E}{\partial a[n_1, n_2]}$ are known. Define $\delta[m_1, m_2] = \frac{\partial E}{\partial x[m_1, m_2]}$. Find $\delta[m_1, m_2]$ in terms of $\epsilon[n_1, n_2]$.

Problem 3 (16 points)

Consider four points, $\vec{u}_1 = [u_1, v_1, 1]^T$, $\vec{u}_2 = [u_2, v_2, 1]^T$, $\vec{u}_3 = [u_1 + \alpha \cos \theta, v_1 + \alpha \sin \theta, 1]^T$, and $\vec{u}_4 = [u_2 + \beta \cos \theta, v_2 + \beta \sin \theta, 1]^T$. Notice that the slope of the line segment connecting \vec{u}_1 to \vec{u}_3 is $\frac{a \sin \theta}{a \cos \theta} = \tan \theta$, while the slope of the line segment connecting \vec{u}_2 to \vec{u}_4 is also $\frac{b \sin \theta}{b \cos \theta} = \tan \theta$. Suppose that there is an affine transform A such that $\vec{x}_1 = A\vec{u}_1$, $\vec{x}_2 = A\vec{u}_2$, $\vec{x}_3 = A\vec{u}_3$, and $\vec{x}_4 = A\vec{u}_4$. Prove that, for any affine transform matrix A, the line segment connecting \vec{x}_1 to \vec{x}_3 is parallel to (has the same slope as) the line segment that connects \vec{x}_2 to \vec{x}_4 .

Problem 4 (17 points)

Suppose you have a dataset containing audio waveforms, \vec{x}_i , each matched with two different one-hot label vectors. The label vector $\vec{y}_i^* = [y_{i1}^*, \ldots, y_{iq}^*]^T$, where $y_{ij}^* \in \{0, 1\}$, is approximated by the network output $\vec{y}_i = [y_{i1}, \ldots, y_{iq}]^T$, where $y_{ij} \in (0, 1)$. The label vector $\vec{z}_i^* = [z_{i1}^*, \ldots, z_{ir}^*]^T$, where $z_{ij}^* \in \{0, 1\}$, is approximated by the network output $\vec{z}_i = [z_{i1}, \ldots, z_{ir}]^T$,

where $z_{ij} \in (0, 1)$. Both $\vec{y_i}$ and $\vec{z_i}$ are functions of a hidden nodes vector $\vec{h_i}$ as

$$\begin{split} \vec{h}_i &= g\left(W\vec{x}_i\right)\\ \vec{y}_i &= \operatorname{softmax}\left(U\vec{h}_i\right)\\ \vec{z}_i &= \operatorname{softmax}\left(V\vec{h}_i\right) \end{split}$$

where U, V and W are trainable weight matrices, and $g(\cdot)$ is some scalar nonlinearity. Find an error metric E such that, by minimizing E, you can:

- maximize the accuracy of \vec{y}_i as an estimate of \vec{y}_i^*
- **minimize** the accuracy of $\vec{z_i}$ as an estimate of $\vec{z_i^*}$

Problem 5 (17 points)

The Barycentric coordinates of point $\vec{x}_0 = [x_0, y_0, 1]^T$, as defined by the triangle $\vec{x}_1 = [x_1, y_1, 1]^T$, $\vec{x}_2 = [x_2, y_2, 1]^T$, $\vec{x}_3 = [x_3, y_3, 1]^T$, are the coordinates $\lambda_1, \lambda_2, \lambda_3$ such that

$\begin{bmatrix} x_0 \end{bmatrix}$		x_1	x_2	x_3	$ \begin{bmatrix} \lambda_1 \end{bmatrix}$
y_0	=	y_1	y_2	y_3	λ_2
1		1	1	1	$\lfloor \lambda_3 \rfloor$

Provide an equation in terms of the six scalars $x_1, x_2, x_3, y_1, y_2, y_3$ specifying the conditions under which the matrix $\begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ 1 & 1 & 1 \end{bmatrix}$ is singular.

Problem 6 (17 points)

Consider an LSTM defined by

$$\vec{i}[n] = \text{input gate} = \sigma(B_i \vec{x}[n] + A_i \vec{c}[n-1])$$

$$\vec{o}[n] = \text{output gate} = \sigma(B_o \vec{x}[n] + A_o \vec{c}[n-1])$$

$$\vec{f}[n] = \text{forget gate} = \sigma(B_f \vec{x}[n] + A_f \vec{c}[n-1])$$

$$\vec{c}[n] = \vec{f}[n] \odot c[n-1] + \vec{i}[n] \odot g(B_c \vec{x}[n] + A_c \vec{c}[n-1])$$

$$\vec{y}[n] = \vec{o}[n] \odot \vec{c}[n]$$

where the vector cell is $\vec{c}[n] = [c_1[n], \ldots, c_p[n]]^T$, and where \odot denotes the Kronecker (array) product, e.g., $\vec{o}[n] \odot \vec{c}[n] = [o_1[n]c_1[n], \ldots, o_p[n]c_p[n]]^T$. Find the derivative $\frac{\partial c_j[n]}{\partial c_k[n-1]}$.