UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing

Fall 2018

PRACTICE EXAM 2 SOLUTIONS

Wednesday, December 12, 2018

Problem 1 (16 points)

$$
\begin{aligned}
\delta_{\ell} & =\left(\left(y_{\ell}-y_{\ell}^{*}\right)+\sum_{k=\ell+1}^{L} \delta_{k} w_{k l}\right) \sigma^{\prime}\left(a_{\ell}\right) \\
& =\left(\left(y_{\ell}-y_{\ell}^{*}\right)+\sum_{k=\ell+1}^{L} \delta_{k} w_{k l}\right) y_{\ell}\left(1-y_{\ell}\right)
\end{aligned}
$$

Problem 2 (17 points)

$$
\delta\left[m_{1}, m_{2}\right]=\sum_{n_{1}} \sum_{n_{2}} \epsilon\left[n_{1}, n_{2}\right] u\left[m_{1}-n_{1}, m_{2}-n_{2}\right]
$$

Problem 3 (16 points)

Use

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]
$$

Define $\overrightarrow{d u_{3}}=\vec{u}_{3}-\vec{u}_{1}, \overrightarrow{d u} \vec{u}_{4}=\vec{u}_{4}-\vec{u}_{2}, \overrightarrow{d x} \vec{x}_{3}=\vec{x}_{3}-\vec{x}_{1}=A \overrightarrow{d u_{3}}, \overrightarrow{d x_{4}}=\vec{x}_{4}-\vec{x}_{2}=A \overrightarrow{d u_{4}}$. Then

$$
\overrightarrow{d x}_{3}=\left[\begin{array}{c}
a \alpha \cos \theta+b \alpha \sin \theta \\
d \alpha \cos \theta+e \alpha \sin \theta \\
0
\end{array}\right], \quad \overrightarrow{d x} 4=\left[\begin{array}{c}
a \beta \cos \theta+b \beta \sin \theta \\
d \beta \cos \theta+e \beta \sin \theta \\
0
\end{array}\right]
$$

Then the slopes are given by

$$
\begin{aligned}
& \text { slope }\left(x_{1} x_{3}\right)=\frac{d \alpha \cos \theta+e \alpha \sin \theta}{a \alpha \cos \theta+b \alpha \sin \theta}=\frac{d \cos \theta+e \sin \theta}{a \cos \theta+b \sin \theta} \\
& \text { slope }\left(x_{2} x_{4}\right)=\frac{d \beta \cos \theta+e \beta \sin \theta}{a \beta \cos \theta+b \beta \sin \theta}=\frac{d \cos \theta+e \sin \theta}{a \cos \theta+b \sin \theta}
\end{aligned}
$$

\qquad

There are many, many acceptable solutions. Most are forms of E with two terms: the first term is reduced as $y_{i k}$ gets more accurate, the second term is reduced as $z_{i \ell}$ gets more inaccurate. For example,

$$
E=-\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{q} y_{i k}^{*} \ln y_{i k}+\frac{1}{n} \sum_{i=1}^{n} \sum_{\ell=1}^{r} z_{i \ell}^{*} \ln z_{i \ell}
$$

Problem 5 (17 points)

$$
\begin{aligned}
x_{3} & =\alpha x_{1}+\beta x_{2} \\
\exists \alpha, \beta \text { s.t. } y_{3} & =\alpha y_{1}+\beta y_{2} \\
1 & =\alpha+\beta
\end{aligned}
$$

Problem 6 (17 points)

Define $\delta_{j k}=\left\{\begin{array}{ll}1 & j=k \\ 0 & \text { else }\end{array}\right.$. Define $\tilde{c}_{j}[n]$ to be the $j^{\text {th }}$ element of $g\left(B_{c} \vec{x}[n]+A_{c} \vec{c}[n-1]\right)$, and

$$
\frac{\partial c_{j}[n]}{\partial c_{k}[n-1]}=\frac{\partial c_{j}[n]}{\partial f_{j}[n]} \frac{\partial f_{j}[n]}{\partial c_{k}[n-1]}+f_{j}[n] \delta_{j k}+\frac{\partial c_{j}[n]}{\partial i_{j}[n]} \frac{\partial i_{j}[n]}{\partial c_{k}[n-1]}+i_{j}[n] \frac{\partial \tilde{c}_{j}[n]}{\partial c_{k}[n-1]}
$$

Now define $\tilde{c}_{j}^{\prime}[n]$ to be the $j^{\text {th }}$ element of $g^{\prime}\left(B_{c} \vec{x}[n]+A_{c} \vec{c}[n-1]\right)$. We could also define $i_{j}^{\prime}[n]$ to be the $j^{\text {th }}$ element of $\sigma^{\prime}\left(B_{i} \vec{x}[n]+A_{i} \vec{c}[n-1]\right)$, but actually we don't need to, since the derivative of the logistic function is just $i_{j}[n]\left(1-i_{j}[n]\right)$. Define $a_{m n}^{o}$ to be the $(m, n)^{\text {th }}$ element of the matrix A_{o}, and so on. Then

$$
\frac{\partial c_{j}[n]}{\partial c_{k}[n-1]}=c_{j}[n-1] f_{j}[n]\left(1-f_{j}[n]\right) a_{j k}^{f}+f_{j}[n] \delta_{j k}+\tilde{c}_{j}[n] i_{j}[n]\left(1-i_{j}[n]\right) a_{j k}^{i}+i_{j}[n] \tilde{c}_{j}^{\prime}[n] a_{j k}^{c}
$$

