UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Department of Electrical and Computer Engineering

ECE 417 MULTIMEDIA SIGNAL PROCESSING Fall 2018

EXAM 1 SOLUTIONS

Thursday, October 18, 2018

Problem 1 (16 points)

A particular random signal u[n] has the following DTFT:

$$U(e^{j\omega}) = ae^{j\theta}\delta(\omega - 0.2\pi) + ae^{-j\theta}\delta(\omega + 02.\pi)$$

where

- a is a real-valued Gaussian random variable with mean 0 and variance σ^2
- θ is a real-valued random variable uniformly distributed between 0 and 2π .

Find the random signal u[n], and its statistical autocorrelation $R_{uu}[m]$, in terms of a, σ^2, θ, n , and/or m.

Solution

$$u[n] = \frac{a}{2\pi} e^{j\theta} e^{j0.2\pi n} + \frac{a}{2\pi} e^{-j\theta} e^{-j0.2\pi n}$$
$$= \frac{a}{\pi} \cos(\theta + 0.2\pi n)$$

$$R_{uu}[m] = E [u[n]u[n - m]]$$

= $E \left[\left(\frac{a}{\pi} \right)^2 \cos \left(\theta + 0.2\pi n \right) \cos \left(\theta + 0.2\pi (n - m) \right) \right]$
= $E \left[\frac{a^2}{2\pi^2} \cos(2\theta + 0.2\pi (2n - m)) \right] + E \left[\frac{a^2}{2\pi^2} \cos(0.2\pi m) \right]$
= $0 + \frac{\sigma^2}{2\pi^2} \cos(0.2\pi m)$

Problem 2 (17 points)

A particular voiced speech signal has pitch period P, and vocal tract transfer function $H(e^{j\omega})$. The signal is windowed by a window function w[n] of length N, producing the windowed signal

$$s[n] = \begin{cases} w[n] \sum_{\ell=-\infty}^{\infty} h[n-\ell P] & 0 \le n \le N-1 \\ 0 & \text{otherwise} \end{cases}$$

Find S[k], the N-point DFT of s[n], in terms of $k, P, N, H(e^{j\omega})$, and $W(e^{j\omega})$.

Solution

s[n] = w[n] (e[n] * h[n]), where

$$e[n] = \sum_{\ell=-\infty}^{\infty} \delta[n-\ell P] \leftrightarrow E(e^{j\omega}) = \left(\frac{2\pi}{P}\right) \sum_{m=0}^{P-1} \delta\left(\omega - \frac{2\pi m}{P}\right)$$

$$\begin{split} S(e^{j\omega}) &= \frac{1}{2\pi} W(e^{j\omega}) \circledast \left(H(e^{j\omega}) E(e^{j\omega}) \right) \\ &= \frac{1}{2\pi} W(e^{j\omega}) \circledast \left(\frac{2\pi}{P} \sum_{m=0}^{P-1} H(e^{j\frac{2\pi m}{P}}) \delta \left(\omega - \frac{2\pi m}{P} \right) \right) \\ &= \frac{1}{P} \sum_{m=0}^{P-1} H(e^{j\frac{2\pi m}{P}}) W \left(e^{j\left(\omega - \frac{2\pi m}{P} \right)} \right) \\ S[k] &= \frac{1}{P} \sum_{m=0}^{P-1} H(e^{j\frac{2\pi m}{P}}) W \left(e^{j\left(\frac{2\pi k}{N} - \frac{2\pi m}{P} \right)} \right) \end{split}$$

Problem 3 (17 points)

Your goal is to find a positive real number, a, so that ax[n] is as similar as possible to y[n] in the sense that it minimizes the following error:

$$\epsilon = \int_{-\pi}^{\pi} \left(|Y(e^{j\omega})| - a |X(e^{j\omega})| \right)^2 d\omega$$

Find the value of a that minimizes ϵ , in terms of $|X(e^{j\omega})|$ and $|Y(e^{j\omega})|$.

Solution:

$$\frac{\partial \epsilon}{\partial a} = 2 \int_{-\pi}^{\pi} \left(a |X(e^{j\omega})| - |Y(e^{j\omega})| \right) |X(e^{j\omega})| d\omega$$

which equals 0 at:

$$a = \frac{\int_{-\pi}^{\pi} |X(e^{j\omega})| |Y(e^{j\omega})| d\omega}{\int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega}$$

Problem 4 (17 points)

A 2-dimensional Gaussian random vector has mean $\vec{\mu}$ and covariance Σ given by

$$\vec{\mu} = \begin{bmatrix} 1\\1 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 8 & 0\\0 & 2 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix}$$

Draw a curve of some kind, on a two-dimensional Cartesian plane, showing the set of points $\left\{\vec{x}: p_X(\vec{x}) = \frac{1}{8\pi}e^{-\frac{1}{2}}\right\}$.

Page 2

Solution:

 $|\Sigma| = |\Lambda| = 16$, so

$$p_X(\vec{x}) = \frac{1}{8\pi} e^{-\frac{1}{2}d_{\Sigma}^2(\vec{x},\vec{\mu})}$$

so the solution is the set $\{\vec{x}: d_{\Sigma}^2(\vec{x}, \vec{\mu}) = 1\}.$

$$d_{\Sigma}^{2}(\vec{x},\vec{\mu}) = \vec{y}^{T}\Lambda^{-1}\vec{y} = \frac{y_{1}^{2}}{8} + \frac{y_{2}^{2}}{2}$$
$$\vec{y} = \frac{\sqrt{2}}{2} \begin{bmatrix} (x_{1}-1) + (x_{2}-1) \\ (x_{1}-1) - (x_{2}-1) \end{bmatrix}$$

So the solution is the set

$$\left\{ \vec{x} : \frac{(x_1 + x_2 - 2)^2}{16} + \frac{(x_1 - x_2)^2}{4} = 1 \right\}$$

... which is an ellipse, centered at (1,1), with a radius of $2\sqrt{2}$ along the (1,1) direction, and a radius of $\sqrt{2}$ along the (1,-1) direction.

Problem 5 (16 points)

In terms of $\alpha_t(i)$, $\beta_t(i)$, a_{ij} , π_i and $b_i(\vec{x}_t)$, find

$$p(q_6 = i, q_7 = j | \vec{x}_1, \dots, \vec{x}_{20})$$

Solution:

$$p(q_6 = i, q_7 = j, \vec{x}_1, \dots, \vec{x}_{20}) = p(\vec{x}_1, \dots, \vec{x}_6, q_6 = i)p(q_7 = j|q_6 = i)p(\vec{x}_7|q_7 = j)p(\vec{x}_8, \dots, \vec{x}_{20}|q_7 = j)$$
$$= \alpha_6(i)a_{ij}b_j(\vec{x}_7)\beta_7(j)$$
$$p(q_6 = i, q_7 = j|\vec{x}_1, \dots, \vec{x}_{20}) = \frac{\alpha_6(i)a_{ij}b_j(\vec{x}_7)\beta_7(j)}{\sum_{k=1}^N \sum_{\ell=1}^N \alpha_6(k)a_{k\ell}b_\ell(\vec{x}_7)\beta_7(\ell)}$$

Problem 6 (17 points)

_

A particular HMM-based speech recognizer only knows two words: word w_0 , and word w_1 . Word w_0 has a higher *a priori* probability: $p_Y(w_0) = 0.7$, while $p_Y(w_1) = 0.3$. Each of the two words is modeled by a four-state Gaussian HMM (N = 4) with three-dimensional observations (D = 3). All states, in both HMMs, have identity covariance ($\Sigma_i = I$). Both HMMs have *exactly* the same transition probabilities and state-dependent means, given by:

Both Words:
$$A = \begin{bmatrix} 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \end{bmatrix}, \quad \vec{\mu}_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad \vec{\mu}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \vec{\mu}_3 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ -1 \end{bmatrix}, \quad \vec{\mu}_4 = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$

Page 3

But the initial residence probabilities are different:

Word 0:
$$\pi_i = \begin{cases} 1 & i = 1 \\ 0 & \text{otherwise} \end{cases}$$
 Word 1: $\pi_i = \begin{cases} 1 & i = 4 \\ 0 & \text{otherwise} \end{cases}$

Suppose that you have a two-frame observation, $X = [\vec{x}_1, \vec{x}_2]$, where $\vec{x}_t = [x_{1t}, x_{2t}, x_{3t}^T]$. The MAP decision rule, in this case, can be written as a linear classifier,

$$\hat{y} = \begin{cases} w_1 & \vec{w}_1^T \vec{x}_1 + \vec{w}_2^T \vec{x}_2 + b > 0\\ w_0 & \text{otherwise} \end{cases}$$

Find \vec{w}_1 , \vec{w}_2 , and b.

Solution:

The Bayesian classifier chooses w_1 if

$$p(w_0)p(X|w_0) < p(w_1)p(X|w_1)$$

$$0.7\mathcal{N}(\vec{x}_1|\vec{\mu}_1) \sum_j a_{1j}\mathcal{N}(\vec{x}_2|\vec{\mu}_j) < 0.3\mathcal{N}(\vec{x}_4|\vec{\mu}_4) \sum_j a_{4j}\mathcal{N}(\vec{x}_2|\vec{\mu}_j)$$

$$0.7\mathcal{N}(\vec{x}_1|\vec{\mu}_1) < 0.3\mathcal{N}(\vec{x}_1|\vec{\mu}_4)$$

$$\ln(0.7) - \frac{1}{2}(\vec{x}_1 - \vec{\mu}_1)^T(\vec{x}_1 - \vec{\mu}_1) < \ln(0.3) - \frac{1}{2}(\vec{x}_1 - \vec{\mu}_4)^T(\vec{x}_1 - \vec{\mu}_4)$$

$$\ln(0.7) - \frac{1}{2}\|\vec{x}_1\|^2 < \ln(0.3) - \frac{1}{2}\|\vec{x}_1\|^2 + \vec{\mu}_4^T\vec{x}_1 - \frac{1}{2}\|\vec{\mu}_4\|^2$$

Which is satisfied if

$$\vec{\mu}_4^T \vec{x}_1 + \ln\left(\frac{3}{7}\right) - \frac{3}{2} > 0$$

 So

$$\vec{w}_1 = \begin{bmatrix} -1\\ -1\\ 1 \end{bmatrix}, \quad \vec{w}_2 = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}, \quad b = \ln\left(\frac{3}{7}\right) - \frac{3}{2}$$