UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing

Fall 2018

EXAM 1 SOLUTIONS

Thursday, October 18, 2018

Problem 1 (16 points)

A particular random signal $u[n]$ has the following DTFT:

$$
U\left(e^{j \omega}\right)=a e^{j \theta} \delta(\omega-0.2 \pi)+a e^{-j \theta} \delta(\omega+02 . \pi)
$$

where

- a is a real-valued Gaussian random variable with mean 0 and variance σ^{2}
- θ is a real-valued random variable uniformly distributed between 0 and 2π.

Find the random signal $u[n]$, and its statistical autocorrelation $R_{u u}[m]$, in terms of a, σ^{2}, θ, n, and/or m.

Solution

$$
\begin{aligned}
u[n] & =\frac{a}{2 \pi} e^{j \theta} e^{j 0.2 \pi n}+\frac{a}{2 \pi} e^{-j \theta} e^{-j 0.2 \pi n} \\
& =\frac{a}{\pi} \cos (\theta+0.2 \pi n)
\end{aligned}
$$

$$
\begin{aligned}
R_{u u}[m] & =E[u[n] u[n-m]] \\
& =E\left[\left(\frac{a}{\pi}\right)^{2} \cos (\theta+0.2 \pi n) \cos (\theta+0.2 \pi(n-m))\right] \\
& =E\left[\frac{a^{2}}{2 \pi^{2}} \cos (2 \theta+0.2 \pi(2 n-m))\right]+E\left[\frac{a^{2}}{2 \pi^{2}} \cos (0.2 \pi m)\right] \\
& =0+\frac{\sigma^{2}}{2 \pi^{2}} \cos (0.2 \pi m)
\end{aligned}
$$

Problem 2 (17 points)

A particular voiced speech signal has pitch period P, and vocal tract transfer function $H\left(e^{j \omega}\right)$. The signal is windowed by a window function $w[n]$ of length N, producing the windowed signal

$$
s[n]= \begin{cases}w[n] \sum_{\ell=-\infty}^{\infty} h[n-\ell P] & 0 \leq n \leq N-1 \\ 0 & \text { otherwise }\end{cases}
$$

Find $S[k]$, the N-point DFT of $s[n]$, in terms of $k, P, N, H\left(e^{j \omega}\right)$, and $W\left(e^{j \omega}\right)$.
\qquad

Solution

$s[n]=w[n](e[n] * h[n])$, where

$$
\begin{gathered}
e[n]=\sum_{\ell=-\infty}^{\infty} \delta[n-\ell P] \leftrightarrow E\left(e^{j \omega}\right)=\left(\frac{2 \pi}{P}\right) \sum_{m=0}^{P-1} \delta\left(\omega-\frac{2 \pi m}{P}\right) \\
S\left(e^{j \omega}\right)=\frac{1}{2 \pi} W\left(e^{j \omega}\right) \circledast\left(H\left(e^{j \omega}\right) E\left(e^{j \omega}\right)\right) \\
=\frac{1}{2 \pi} W\left(e^{j \omega}\right) \circledast\left(\frac{2 \pi}{P} \sum_{m=0}^{P-1} H\left(e^{j \frac{2 \pi m}{P}}\right) \delta\left(\omega-\frac{2 \pi m}{P}\right)\right) \\
=\frac{1}{P} \sum_{m=0}^{P-1} H\left(e^{j \frac{2 \pi m}{P}}\right) W\left(e^{j\left(\omega-\frac{2 \pi m}{P}\right)}\right) \\
\quad S[k]=\frac{1}{P} \sum_{m=0}^{P-1} H\left(e^{j \frac{2 \pi m}{P}}\right) W\left(e^{j\left(\frac{2 \pi k}{N}-\frac{2 \pi m}{P}\right)}\right)
\end{gathered}
$$

Problem 3 (17 points)

Your goal is to find a positive real number, a, so that $a x[n]$ is as similar as possible to $y[n]$ in the sense that it minimizes the following error:

$$
\epsilon=\int_{-\pi}^{\pi}\left(\left|Y\left(e^{j \omega}\right)\right|-a\left|X\left(e^{j \omega}\right)\right|\right)^{2} d \omega
$$

Find the value of a that mininimizes ϵ, in terms of $\left|X\left(e^{j \omega}\right)\right|$ and $\left|Y\left(e^{j \omega}\right)\right|$.

Solution:

$$
\frac{\partial \epsilon}{\partial a}=2 \int_{-\pi}^{\pi}\left(a\left|X\left(e^{j \omega}\right)\right|-\left|Y\left(e^{j \omega}\right)\right|\right)\left|X\left(e^{j \omega}\right)\right| d \omega
$$

which equals 0 at:

$$
a=\frac{\int_{-\pi}^{\pi}\left|X\left(e^{j \omega}\right)\right|\left|Y\left(e^{j \omega}\right)\right| d \omega}{\int_{-\pi}^{\pi}\left|X\left(e^{j \omega}\right)\right|^{2} d \omega}
$$

Problem 4 (17 points)

A 2-dimensional Gaussian random vector has mean $\vec{\mu}$ and covariance Σ given by

$$
\vec{\mu}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \Sigma=\left[\begin{array}{cc}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}
\end{array}\right]\left[\begin{array}{ll}
8 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}
\end{array}\right]
$$

Draw a curve of some kind, on a two-dimensional Cartesian plane, showing the set of points $\left\{\vec{x}: p_{X}(\vec{x})=\frac{1}{8 \pi} e^{-\frac{1}{2}}\right\}$.
\qquad

Solution:

$|\Sigma|=|\Lambda|=16$, so

$$
p_{X}(\vec{x})=\frac{1}{8 \pi} e^{-\frac{1}{2} d_{\Sigma}^{2}(\vec{x}, \vec{\mu})}
$$

so the solution is the set $\left\{\vec{x}: d_{\Sigma}^{2}(\vec{x}, \vec{\mu})=1\right\}$.

$$
\begin{aligned}
& d_{\Sigma}^{2}(\vec{x}, \vec{\mu})=\vec{y}^{T} \Lambda^{-1} \vec{y}=\frac{y_{1}^{2}}{8}+\frac{y_{2}^{2}}{2} \\
& \vec{y}=\frac{\sqrt{2}}{2}\left[\begin{array}{l}
\left(x_{1}-1\right)+\left(x_{2}-1\right) \\
\left(x_{1}-1\right)-\left(x_{2}-1\right)
\end{array}\right]
\end{aligned}
$$

So the solution is the set

$$
\left\{\vec{x}: \frac{\left(x_{1}+x_{2}-2\right)^{2}}{16}+\frac{\left(x_{1}-x_{2}\right)^{2}}{4}=1\right\}
$$

\ldots which is an ellipse, centered at $(1,1)$, with a radius of $2 \sqrt{2}$ along the $(1,1)$ direction, and a radius of $\sqrt{2}$ along the $(1,-1)$ direction.

Problem 5 (16 points)

In terms of $\alpha_{t}(i), \beta_{t}(i), a_{i j}, \pi_{i}$ and $b_{i}\left(\vec{x}_{t}\right)$, find

$$
p\left(q_{6}=i, q_{7}=j \mid \vec{x}_{1}, \ldots, \vec{x}_{20}\right)
$$

Solution:

$$
\begin{aligned}
p\left(q_{6}=i, q_{7}=j, \vec{x}_{1}, \ldots, \vec{x}_{20}\right) & =p\left(\vec{x}_{1}, \ldots, \vec{x}_{6}, q_{6}=i\right) p\left(q_{7}=j \mid q_{6}=i\right) p\left(\vec{x}_{7} \mid q_{7}=j\right) p\left(\vec{x}_{8}, \ldots, \vec{x}_{20} \mid q_{7}=j\right) \\
& =\alpha_{6}(i) a_{i j} b_{j}\left(\vec{x}_{7}\right) \beta_{7}(j) \\
p\left(q_{6}=i, q_{7}\right. & \left.=j \mid \vec{x}_{1}, \ldots, \vec{x}_{20}\right)=\frac{\alpha_{6}(i) a_{i j} b_{j}\left(\vec{x}_{7}\right) \beta_{7}(j)}{\sum_{k=1}^{N} \sum_{\ell=1}^{N} \alpha_{6}(k) a_{k \ell} b_{\ell}\left(\vec{x}_{7}\right) \beta_{7}(\ell)}
\end{aligned}
$$

Problem 6 (17 points)

A particular HMM-based speech recognizer only knows two words: word w_{0}, and word w_{1}. Word w_{0} has a higher a priori probability: $p_{Y}\left(w_{0}\right)=0.7$, while $p_{Y}\left(w_{1}\right)=0.3$. Each of the two words is modeled by a four-state Gaussian HMM $(N=4)$ with three-dimensional observations $(D=3)$. All states, in both HMMs, have identity covariance $\left(\Sigma_{i}=I\right)$. Both HMMs have exactly the same transition probabilities and state-dependent means, given by:

Both Words: $A=\left[\begin{array}{llll}0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25\end{array}\right], \vec{\mu}_{1}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right], \vec{\mu}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \vec{\mu}_{3}=\left[\begin{array}{c}1 \\ -1 \\ -1\end{array}\right], \vec{\mu}_{4}=\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]$
\qquad

But the initial residence probabilities are different:

$$
\text { Word 0: } \pi_{i}=\left\{\begin{array}{ll}
1 & i=1 \\
0 & \text { otherwise }
\end{array} \quad \text { Word 1: } \pi_{i}= \begin{cases}1 & i=4 \\
0 & \text { otherwise }\end{cases}\right.
$$

Suppose that you have a two-frame observation, $X=\left[\vec{x}_{1}, \vec{x}_{2}\right]$, where $\vec{x}_{t}=\left[x_{1 t}, x_{2 t}, x_{3 t}^{T}\right]$. The MAP decision rule, in this case, can be written as a linear classifier,

$$
\hat{y}=\left\{\begin{array}{cc}
w_{1} & \vec{w}_{1}^{T} \vec{x}_{1}+\vec{w}_{2}^{T} \vec{x}_{2}+b>0 \\
w_{0} & \text { otherwise }
\end{array}\right.
$$

Find \vec{w}_{1}, \vec{w}_{2}, and b.

Solution:

The Bayesian classifier chooses w_{1} if

$$
\begin{aligned}
p\left(w_{0}\right) p\left(X \mid w_{0}\right) & <p\left(w_{1}\right) p\left(X \mid w_{1}\right) \\
0.7 \mathcal{N}\left(\vec{x}_{1} \mid \vec{\mu}_{1}\right) \sum_{j} a_{1 j} \mathcal{N}\left(\vec{x}_{2} \mid \vec{\mu}_{j}\right) & <0.3 \mathcal{N}\left(\vec{x}_{4} \mid \vec{\mu}_{4}\right) \sum_{j} a_{4 j} \mathcal{N}\left(\vec{x}_{2} \mid \vec{\mu}_{j}\right) \\
0.7 \mathcal{N}\left(\vec{x}_{1} \mid \vec{\mu}_{1}\right) & <0.3 \mathcal{N}\left(\vec{x}_{1} \mid \vec{\mu}_{4}\right) \\
\ln (0.7)-\frac{1}{2}\left(\vec{x}_{1}-\vec{\mu}_{1}\right)^{T}\left(\vec{x}_{1}-\vec{\mu}_{1}\right) & <\ln (0.3)-\frac{1}{2}\left(\vec{x}_{1}-\vec{\mu}_{4}\right)^{T}\left(\vec{x}_{1}-\vec{\mu}_{4}\right) \\
\ln (0.7)-\frac{1}{2}\left\|\vec{x}_{1}\right\|^{2} & <\ln (0.3)-\frac{1}{2}\left\|\vec{x}_{1}\right\|^{2}+\vec{\mu}_{4}^{T} \vec{x}_{1}-\frac{1}{2}\left\|\vec{\mu}_{4}\right\|^{2}
\end{aligned}
$$

Which is satisfied if

$$
\vec{\mu}_{4}^{T} \vec{x}_{1}+\ln \left(\frac{3}{7}\right)-\frac{3}{2}>0
$$

So

$$
\vec{w}_{1}=\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right], \quad \vec{w}_{2}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad b=\ln \left(\frac{3}{7}\right)-\frac{3}{2}
$$

