UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing

Fall 2019

EXAM 1

Tuesday, September 24, 2018

- This is a CLOSED BOOK exam. You may use one sheet (front and back) of handwritten notes.
- No calculators are permitted. You need not simplify explicit numerical expressions.
- There are a total of 50 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
5	
Total	

Name: \qquad
\qquad

Possibly Useful Formulas

Fourier Transforms

$$
\begin{gathered}
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \leftrightarrow x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega \\
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}} \leftrightarrow x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[j] e^{j \frac{2 \pi k n}{N}} \\
x[n]=e^{j \omega_{0} n} \leftrightarrow X\left(e^{j \omega}\right)=2 \pi \delta\left(\omega-\omega_{0}\right) \\
w_{R}[n]=\left\{\begin{array}{ll}
1 & 0 \leq n \leq N-1 \\
0 & \text { otherwise }
\end{array} \leftrightarrow W_{R}(\omega)=\frac{\sin (\omega N / 2)}{\sin (\omega / 2)} e^{-j \omega\left(\frac{N-1}{2}\right)}\right.
\end{gathered}
$$

Autocorrelation and Power Spectrum

$$
\begin{aligned}
& R_{x x}[n]=E\{x[m] x[m-n]\} \leftrightarrow S_{x x}(\omega)=\sum_{n=-\infty}^{\infty} R_{x x}[n] e^{-j \omega n} \\
& r_{x x}[n]=\sum_{m=-\infty}^{\infty} x[m] x[m-n] \leftrightarrow s_{x x}(\omega)=\sum_{n=-\infty}^{\infty} r_{x x}[n] e^{-j \omega n}
\end{aligned}
$$

Gaussians, Mahalanobis, and PCA

$$
\begin{gathered}
\mathcal{N}(\vec{x} ; \vec{\mu}, \Sigma)=\frac{1}{(2 \pi)^{D / 2}|R|^{1 / 2}} e^{-\frac{1}{2} d_{R}^{2}(\vec{x}, \vec{\mu})} \\
R=V \Lambda V^{T}, \quad V^{T} V=V V^{T}=I, \quad|R|=|\Lambda| \\
d_{R}^{2}(\vec{x}, \vec{\mu})=(\vec{x}-\vec{\mu})^{T} R^{-1}(\vec{x}-\vec{\mu})=\vec{y}^{T} \Lambda^{-1} \vec{y}, \quad \vec{y}=V^{T}(\vec{x}-\vec{\mu})
\end{gathered}
$$

Problem 1 (20 points)

A particular signal, $x[n]$, is sampled at $F_{s}=18,000$ samples/second. There are a total of 10,000 samples, numbered $x[0]$ through $x[9999]$. These samples are divided into T frames, \vec{x}_{t}, with a framelength of 250 samples and a frame skip of 100 samples, i.e.,

$$
\vec{x}_{t}=\left[\begin{array}{c}
x[100 t] \\
\vdots \\
x[100 t+249]
\end{array}\right]
$$

Your goal is to create two different $480 \times T$ matrices: $X=\left[\vec{X}_{0}, \ldots, \vec{X}_{T-1}\right]$ is the STFT (shorttime Fourier transform) of $x[n]$, and $S=\left[\vec{S}_{0}, \ldots, \vec{S}_{T-1}\right]$ is the spectrogram of $x[n]$. The final image matrix S should show the spectral level (in decibels) of $x[n]$, as a function of time and frequency, in the frequency range from 0 Hz to 5000 Hz .
(a) Find T, the number of frames. This should be set so that (1) every sample of $x[n]$ appears in at least one frame, and (2) there is at most one frame with zero-padding. Your answer should be a number, or an explicit numerical expression.
(b) Each STFT vector, \vec{X}_{t}, is the length- N DFT of one frame \vec{x}_{t}. Find N. Your answer should be a number, or an explicit numerical expression.
(c) The STFT is given by $\vec{X}_{t}=A \vec{x}_{t}$ for some matrix, A, whose $(k, n)^{\text {th }}$ element is $a_{k n}$. Give an expression for $a_{k n}$ in terms of k, n, and N.
(d) Suppose that $X_{\max }=\max _{k} \max _{t}|X[k, t]|$. The spectrogram $S[k, t]$ is the level of $X[k, t]$, in decibels, scaled so that $0 \leq S[k, t] \leq 255$, and so that $S[k, t]=0$ if and only if $|X[k, t]| \leq X_{\max } / 1000$. Give an equation specifying $S[k, t]$ as a function of $X[k, t]$.

Problem 2 (5 points)

The signal $x[n]$ is given by

$$
x[n]= \begin{cases}\cos \left(\omega_{0} n\right) & 0 \leq n \leq N-1 \\ 0 & \text { otherwise }\end{cases}
$$

$X[k]$ is the length $-N$ DFT of $x[n]$. Find $X[k]$, in terms of N and ω_{0}. You may find it useful to write your answer in terms of the transform of a rectangular window, $W_{R}(\omega)$, which is

$$
w_{R}[n]=\left\{\begin{array}{ll}
1 & 0 \leq n \leq N-1 \\
0 & \text { otherwise }
\end{array} \leftrightarrow W_{R}(\omega)=\frac{\sin (\omega N / 2)}{\sin (\omega / 2)} e^{-j \omega\left(\frac{N-1}{2}\right)}\right.
$$

Problem 3 (5 points)

A random signal $x[n]$ has the autocorrelation function $R_{x x}[n]=\rho^{|n|}$, for some real constant $0<\rho<1$. Find its power spectrum $S_{x x}(\omega)$, in terms of ω and ρ. Your answer should contain no infinite-length summations.

Problem 4 (5 points)

$x[n]$ is a signal with N samples, numbered $x[0]$ through $x[N-1]$. Find M and $s[m]$ so that
(a) every sample of $s[m]$ is either $s[m]=0$ or $s[m]=x[n]$ for some n,
(b) every sample of $x[n]$ is used at least once,
(c) $S[k]$, the M-point DFT of $s[n]$, is real-valued.

You may define the sample times m to be non-integers, if you wish, though correct answers with integer-valued sample times also exist.

Problem 5 (15 points)

Suppose you have an $M \times D$ matrix, $X=\left[\vec{x}_{0}, \ldots, \vec{x}_{M-1}\right]^{T}$, where $\sum_{m=0}^{M-1} \vec{x}_{m}=\overrightarrow{0}$. The eigenvalues of $X^{T} X$ are λ_{0} through λ_{D-1}, its eigenvectors are \vec{v}_{0} through \vec{v}_{D-1}, and its principal components are $Y=X V$.
(a) Write $Y^{T} Y$ in terms of the eigenvalues, λ_{0} through λ_{D-1}.
(b) Write $\sum_{m=0}^{M-1}\left\|\vec{x}_{m}\right\|_{2}^{2}$ in terms of the eigenvalues, λ_{0} through λ_{D-1}.
\qquad
(c) Write $\vec{v}_{i}^{T} X^{T} X \vec{v}_{j}$ in terms of the eigenvalues, λ_{0} through λ_{D-1}, for $0 \leq i \leq j \leq D-1$.

