UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing Fall 2019

EXAM 1

Tuesday, September 24, 2018

- This is a CLOSED BOOK exam. You may use one sheet (front and back) of hand-written notes.
- No calculators are permitted. You need not simplify explicit numerical expressions.
- There are a total of 50 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
5	
Total	

Name: _____

Possibly Useful Formulas

Fourier Transforms

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \leftrightarrow x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega$$
$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi kn}{N}} \leftrightarrow x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[j]e^{j\frac{2\pi kn}{N}}$$
$$x[n] = e^{j\omega_0 n} \leftrightarrow X(e^{j\omega}) = 2\pi\delta(\omega - \omega_0)$$
$$w_R[n] = \begin{cases} 1 & 0 \le n \le N-1 \\ 0 & \text{otherwise} \end{cases} \leftrightarrow W_R(\omega) = \frac{\sin(\omega N/2)}{\sin(\omega/2)}e^{-j\omega(\frac{N-1}{2})}$$

Autocorrelation and Power Spectrum

$$R_{xx}[n] = E \{x[m]x[m-n]\} \leftrightarrow S_{xx}(\omega) = \sum_{n=-\infty}^{\infty} R_{xx}[n]e^{-j\omega n}$$
$$r_{xx}[n] = \sum_{m=-\infty}^{\infty} x[m]x[m-n] \leftrightarrow s_{xx}(\omega) = \sum_{n=-\infty}^{\infty} r_{xx}[n]e^{-j\omega n}$$

Gaussians, Mahalanobis, and PCA

$$\begin{split} \mathcal{N}\left(\vec{x};\vec{\mu},\Sigma\right) &= \frac{1}{(2\pi)^{D/2}|R|^{1/2}} e^{-\frac{1}{2}d_R^2(\vec{x},\vec{\mu})} \\ R &= V\Lambda V^T, \quad V^T V = VV^T = I, \quad |R| = |\Lambda| \\ d_R^2(\vec{x},\vec{\mu}) &= (\vec{x}-\vec{\mu})^T R^{-1}(\vec{x}-\vec{\mu}) = \vec{y}^T \Lambda^{-1} \vec{y}, \quad \vec{y} = V^T (\vec{x}-\vec{\mu}) \end{split}$$

Problem 1 (20 points)

A particular signal, x[n], is sampled at $F_s = 18,000$ samples/second. There are a total of 10,000 samples, numbered x[0] through x[9999]. These samples are divided into T frames, \vec{x}_t , with a framelength of 250 samples and a frame skip of 100 samples, i.e.,

$$\vec{x}_t = \left[\begin{array}{c} x[100t] \\ \vdots \\ x[100t+249] \end{array} \right]$$

Your goal is to create two different $480 \times T$ matrices: $X = [\vec{X}_0, \ldots, \vec{X}_{T-1}]$ is the STFT (shorttime Fourier transform) of x[n], and $S = [\vec{S}_0, \ldots, \vec{S}_{T-1}]$ is the spectrogram of x[n]. The final image matrix S should show the spectral level (in decibels) of x[n], as a function of time and frequency, in the frequency range from 0Hz to 5000Hz.

(a) Find T, the number of frames. This should be set so that (1) every sample of x[n] appears in at least one frame, and (2) there is at most one frame with zero-padding. Your answer should be a number, or an explicit numerical expression.

(b) Each STFT vector, \vec{X}_t , is the length-*N* DFT of one frame \vec{x}_t . Find *N*. Your answer should be a number, or an explicit numerical expression.

(c) The STFT is given by $\vec{X}_t = A\vec{x}_t$ for some matrix, A, whose $(k, n)^{\text{th}}$ element is a_{kn} . Give an expression for a_{kn} in terms of k, n, and N.

(d) Suppose that $X_{max} = \max_k \max_t |X[k,t]|$. The spectrogram S[k,t] is the level of X[k,t], in decibels, scaled so that $0 \leq S[k,t] \leq 255$, and so that S[k,t] = 0 if and only if $|X[k,t]| \leq X_{max}/1000$. Give an equation specifying S[k,t] as a function of X[k,t].

Page 5

Problem 2 (5 points)

The signal x[n] is given by

$$x[n] = \begin{cases} \cos(\omega_0 n) & 0 \le n \le N-1\\ 0 & \text{otherwise} \end{cases}$$

X[k] is the length-N DFT of x[n]. Find X[k], in terms of N and ω_0 . You may find it useful to write your answer in terms of the transform of a rectangular window, $W_R(\omega)$, which is

$$w_R[n] = \begin{cases} 1 & 0 \le n \le N-1 \\ 0 & \text{otherwise} \end{cases} \iff W_R(\omega) = \frac{\sin(\omega N/2)}{\sin(\omega/2)} e^{-j\omega(\frac{N-1}{2})}$$

Problem 3 (5 points)

A random signal x[n] has the autocorrelation function $R_{xx}[n] = \rho^{|n|}$, for some real constant $0 < \rho < 1$. Find its power spectrum $S_{xx}(\omega)$, in terms of ω and ρ . Your answer should contain no infinite-length summations.

Problem 4 (5 points)

 $\boldsymbol{x}[n]$ is a signal with N samples, numbered $\boldsymbol{x}[0]$ through $\boldsymbol{x}[N-1].$ Find M and $\boldsymbol{s}[m]$ so that

- (a) every sample of s[m] is either s[m] = 0 or s[m] = x[n] for some n,
- (b) every sample of x[n] is used at least once,
- (c) S[k], the *M*-point DFT of s[n], is real-valued.

You may define the sample times m to be non-integers, if you wish, though correct answers with integer-valued sample times also exist.

NAME:_____

Exam 1 Page 8

Problem 5 (15 points)

Suppose you have an $M \times D$ matrix, $X = [\vec{x}_0, \dots, \vec{x}_{M-1}]^T$, where $\sum_{m=0}^{M-1} \vec{x}_m = \vec{0}$. The eigenvalues of $X^T X$ are λ_0 through λ_{D-1} , its eigenvectors are \vec{v}_0 through \vec{v}_{D-1} , and its principal components are Y = XV.

(a) Write $Y^T Y$ in terms of the eigenvalues, λ_0 through λ_{D-1} .

(b) Write $\sum_{m=0}^{M-1} \|\vec{x}_m\|_2^2$ in terms of the eigenvalues, λ_0 through λ_{D-1} .

NAME:	Exam 1	Page 9
-------	--------	--------

(c) Write $\vec{v}_i^T X^T X \vec{v}_j$ in terms of the eigenvalues, λ_0 through λ_{D-1} , for $0 \le i \le j \le D-1$.