UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing

Fall 2019

EXAM 2

Tuesday, October 22, 2019

- This is a CLOSED BOOK exam. You may use one sheet (front and back) of handwritten notes.
- No calculators are permitted. You need not simplify explicit numerical expressions.
- There are a total of 50 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
5	
6	
7	
Total	

Name: \qquad
netid: \qquad
\qquad

Possibly Useful Formulas

YPbPr and Sobel Mask

$$
\begin{aligned}
& {\left[\begin{array}{c}
Y \\
P_{b} \\
P_{r}
\end{array}\right]=\left[\begin{array}{ccc}
0.299 & 0.587 & 0.114 \\
-0.168736 & -0.331264 & 0.5 \\
0.5 & -0.418688 & -0.081312
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right] } \\
& G_{x}\left[n_{1}, n_{2}\right]=\left[\begin{array}{lll}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{array}\right] * * I\left[n_{1}, n_{2}\right], \quad G_{y}\left[n_{1}, n_{2}\right]=\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{array}\right] * * I\left[n_{1}, n_{2}\right]
\end{aligned}
$$

Integral Image and Lowpass Filter

$$
\begin{gathered}
i i\left[n_{1}, n_{2}\right]=\sum_{m_{1}=0}^{n_{1}} \sum_{m_{2}=0}^{n_{2}} i\left[m_{1}, m_{2}\right] \\
H\left(\omega_{1}, \omega_{2}\right)=\left\{\begin{array}{lll}
1 & \left|\omega_{1}\right|<\phi_{1}, & \left|\omega_{2}\right|<\phi_{2} \\
0 & \text { otherwise } & h\left[n_{1}, n_{2}\right]=\left(\frac{\phi_{1}}{\pi}\right)\left(\frac{\phi_{2}}{\pi}\right) \operatorname{sinc}\left(\phi_{1} n_{1}\right) \operatorname{sinc}\left(\phi_{2} n_{2}\right)
\end{array}\right.
\end{gathered}
$$

Orthogonality Principle and LPC

$$
\begin{gathered}
\varepsilon=E\left[\left(x[n]-\sum_{m=1}^{p} \alpha_{m} x[n-m]\right)^{2}\right], \quad \frac{\partial \varepsilon}{\partial \alpha_{k}}=-2 E\left[x[n-k]\left(x[n]-\sum_{m=1}^{12} \alpha_{m} x[n-m]\right)\right] \\
R_{x x}[k]=\sum_{m=1}^{12} \alpha_{m} R_{x x}[k-m]
\end{gathered}
$$

Fourier Series

$$
x[n]=\sum_{k=0}^{P-1} X_{k} e^{j 2 \pi k n / P} \quad X_{k}=\frac{1}{P} \sum_{n=0}^{P-1} x[n] e^{-j 2 \pi k n / P}
$$

Autocorrelation and Power Spectrum

$$
\begin{aligned}
& R_{x x}[n]=E\{x[m] x[m-n]\} \leftrightarrow S_{x x}(\omega)=\sum_{n=-\infty}^{\infty} R_{x x}[n] e^{-j \omega n} \\
& r_{x x}[n]=\sum_{m=-\infty}^{\infty} x[m] x[m-n] \leftrightarrow s_{x x}(\omega)=\sum_{n=-\infty}^{\infty} r_{x x}[n] e^{-j \omega n}
\end{aligned}
$$

\qquad

Problem 1 (10 points)

Consider an unvoiced zero-mean Gaussian random signal, $x[n] \sim \mathcal{N}(0,1)$, with the following autocorrelation:

$$
R_{x x}[n]=e^{-\beta|n|}
$$

Suppose $e[n]=x[n]-\alpha x[n-1]$.
(a) Find α to minimize $E\left[e^{2}[n]\right]$.
(b) Find the value of $E\left[e^{2}[n]\right]$ that results from the α you chose in part (a).

Problem 2 (5 points)

Consider the synthesis filter $s[n]=e[n]+b s[n-1]-\left(\frac{b}{2}\right)^{2} s[n-2]$. For what values of b is the synthesis filter stable?

Problem 3 (5 points)

Suppose $e[n] \sim \mathcal{N}(0,1)$ is Gaussian white noise, $R_{e e}[n]=\delta[n]$. Consider the synthesis filter, $s[n]=e[n]+\alpha s[n-1]$. Find the power spectrum of the synthesized signal, $S_{s s}(\omega)$, in terms of ω and α. You need not simplify, but your answer should contain no integrals or infinite sums.

Problem 4 (5 points)

You are given the integral image $i i\left[n_{1}, n_{2}\right]$, defined in terms of the image $i\left[n_{1}, n_{2}\right]$ as

$$
i i\left[n_{1}, n_{2}\right]=\sum_{m_{1}=0}^{n_{1}} \sum_{m_{2}=0}^{n_{2}} i\left[m_{1}, m_{2}\right]
$$

Write an equation that computes the complementary integral image, $c\left[n_{1}, n_{2}\right]$, in a small constant number of operations per output pixel, where

$$
c\left[n_{1}, n_{2}\right]=\sum_{m_{1}=n_{1}}^{N_{1}-1} \sum_{m_{2}=n_{2}}^{N_{2}-1} i\left[m_{1}, m_{2}\right]
$$

\qquad

Problem 5 (5 points)

Suppose you have a 200×200-pixel image that is just one white dot at pixel $(45,25)$, and all the other pixels are black:

$$
x\left[n_{1}, n_{2}\right]= \begin{cases}255 & n_{1}=45, n_{2}=25 \\ 0 & \text { otherwise, } 0 \leq n_{1}<199,0 \leq n_{2}<199\end{cases}
$$

This image is upsampled to size 400×400, then filtered, as

$$
y\left[n_{1}, n_{2}\right]=\left\{\begin{array}{ll}
x\left[n_{1} / 2, n_{2} / 2\right] & n_{1} / 2 \text { and } n_{2} / 2 \text { both integers } \\
0 & \text { otherwise }
\end{array} \quad z\left[n_{1}, n_{2}\right]=y\left[n_{1}, n_{2}\right] * * h\left[n_{1}, n_{2}\right]\right.
$$

where $h\left[n_{1}, n_{2}\right]$ is the ideal anti-aliasing filter whose frequency response is

$$
H\left(\omega_{1}, \omega_{2}\right)= \begin{cases}1 & \left|\omega_{1}\right|<\frac{\pi}{2},\left|\omega_{2}\right|<\frac{\pi}{2} \\ 0 & \text { otherwise }\end{cases}
$$

Find $z\left[n_{1}, n_{2}\right]$.

Problem 6 (10 points)

Consider an infinite-sized RGB image containing a single diagonal white line on a black background, specifically

$$
R\left[n_{1}, n_{2}\right]=G\left[n_{1}, n_{2}\right]=B\left[n_{1}, n_{2}\right]= \begin{cases}255 & n_{1}-n_{2}=5 \\ 0 & \text { otherwise }\end{cases}
$$

where $-\infty<n_{1}<\infty,-\infty<n_{2}<\infty$, and the signals R, G, and B are the red, green, and blue channels, respectively.
(a) Find the luminance $Y\left[n_{1}, n_{2}\right]$.
(b) Find the blue-shift $P_{b}\left[n_{1}, n_{2}\right]$.
\qquad

Problem 7 (10 points)

Consider an infinite-sized grayscale image of a diagonal gray line:

$$
x\left[n_{1}, n_{2}\right]=\left\{\begin{array}{ll}
105 & n_{1}-n_{2}=5 \\
0 & \text { otherwise }
\end{array}, \quad-\infty<n_{1}<\infty, \quad-\infty<n_{2}<\infty\right.
$$

NOTE: EACH part of this problem is a 1D ROW CONVOLUTION of the ORIGINAL IMAGE with a DIFFERENT row filter. Although these filters are related to the Sobel mask, NEITHER PART OF THIS PROBLEM IMPLEMENTS A COMPLETE SOBEL MASK.
(a) Suppose we convolve each row with a differencing filter:

$$
y\left[n_{1}, n_{2}\right]=x\left[n_{1}, n_{2}\right] * d_{2}\left[n_{2}\right], \quad d_{2}\left[n_{2}\right]= \begin{cases}1 & n_{2}=0 \\ -1 & n_{2}=2 \\ 0 & \text { otherwise }\end{cases}
$$

Find $y\left[n_{1}, n_{2}\right]$.
(b) Suppose, INSTEAD, that we convolve each row with an averaging filter

$$
z\left[n_{1}, n_{2}\right]=x\left[n_{1}, n_{2}\right] * a_{2}\left[n_{2}\right], \quad a_{2}\left[n_{2}\right]= \begin{cases}1 & n_{2} \in\{0,2\} \\ 2 & n_{2}=1 \\ 0 & \text { otherwise }\end{cases}
$$

Find $z\left[n_{1}, n_{2}\right]$.

