UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
 Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing
Fall 2019

PRACTICE EXAM 2 SOLUTIONS

Tuesday, October 22, 2019

Problem 1 (30 points)

Suppose you have an RGB image $i\left[n_{1}, n_{2}, n_{3}\right]$ with $0 \leq n_{1}<N_{1}$ rows, $0 \leq n_{2}<N_{2}$ columns, and $0 \leq n_{3}<3$ color planes. The matched filter in part (d) of this problem is of size $M_{1} \times M_{2}$. Use big- \mathcal{O} notation, in terms of the variables N_{1}, N_{2}, M_{1} and M_{2}, to express the complexity of each of the following operations:
(a) Coverting from RGB to YPbPr color space.

Solution:

Big-O notation is defined as: an operation is $\mathcal{O}\left\{f\left(N_{1}, N_{2}, M_{1}, M_{2}\right)\right\}$ if and only if there exist some positive constants, $G, N_{1}^{*}, N_{2}^{*}, M_{1}^{*}, M_{2}^{*}$, such that the number of operations is $\leq G f\left(N_{1}, N_{2}, M_{1}, M_{2}\right)$ for all $N_{1} \geq N_{1}^{*}, N_{2} \geq N_{2}^{*}, M_{1} \geq M_{1}^{*}$, and $M_{2} \geq M_{2}^{*}$.
The conversion from RGB to YPBPr involves a 3×3 matrix multiplication per pixel:

$$
\left[\begin{array}{c}
Y \\
P_{b} \\
P_{r}
\end{array}\right]\left[n_{1}, n_{2}\right]=\left[\begin{array}{ccc}
0.299 & 0.587 & 0.114 \\
-0.168736 & -0.331264 & 0.5 \\
0.5 & -0.418688 & -0.081312
\end{array}\right]\left[\begin{array}{c}
R \\
G \\
B
\end{array}\right]\left[n_{1}, n_{2}\right],
$$

which is 9 scalar multiply-add operations per pixel. Since there are $N_{1} \times N_{2}$ pixels, the total number of multiplications required is $9 N_{1} N_{2}$, which is $\mathcal{O}\left\{N_{1} N_{2}\right\}$
(b) Computing the horizontal and vertical gradients of each color plane using a Sobel mask. Solution:

Sobel mask is a convolution, as

$$
G_{x}\left[n_{1}, n_{2}\right]=\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{array}\right] * * I\left[n_{1}, n_{2}\right], \quad G_{y}\left[n_{1}, n_{2}\right]=\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{array}\right] * * I\left[n_{1}, n_{2}\right]
$$

there are 6 nonzero coefficients in each filter (12 total), so we have a total of 12 additions per output pixel. The \# output pixels is $\left(N_{1}+2\right)\left(N_{2}+2\right)$, or $N_{1} N_{2}$, or $\left(N_{1}-2\right)\left(N_{2}-2\right)$, depending on whether we're doing full, same, or valid convolution - but in any case, all of these are $\mathcal{O}\left\{N_{1} N_{2}\right\}$. Total computation is therefore $12 N_{1} N_{2}$, which is $\mathcal{O}\left\{N_{1} N_{2}\right\}$.
(c) Lowpass filtering (after zero-padding, so that the output is of the same size, $N_{1} \times N_{2} \times 3$, as the input) with a separable ideal anti-aliasing filter whose frequency response is

$$
H\left(\omega_{1}, \omega_{2}\right)= \begin{cases}1 & \left|\omega_{1}\right|<\frac{\pi}{3}, \\ 0 & \text { otherwise }\end{cases}
$$

\qquad

Solution:

The filter is separable, so we can filter each row first, then each column.
Filtering each row requires implementing the following equation once per output pixel:

$$
y\left[n_{1}, n_{2}\right]=h_{2}\left[n_{2}\right] * x\left[n_{1}, n_{2}\right]=\sum_{m_{2}=0}^{N_{2}-1} x\left[n_{1}, m_{2}\right] h_{2}\left[n_{2}-m_{2}\right]
$$

which requires N_{2} multiply-add operations per output pixel. Since there are $N_{1} \times N_{2}$ output pixels, the total computation is $N_{1} N_{2}^{2}$.
Filtering each column requires implementing the following equation once per output pixel:

$$
h_{1}\left[n_{1}\right] * y\left[n_{1}, n_{2}\right]=\sum_{m_{1}=0}^{N_{1}-1} y\left[m_{1}, n_{2}\right] h_{1}\left[n_{1}-m_{1}\right]
$$

which requires N_{1} multiply-add operations per output pixel. Since there are $N_{1} \times N_{2}$ output pixels, the total computation is $N_{1}^{2} N_{2}$.
So the total computation requires $N_{1} N_{2}\left(N_{1}+N_{2}\right)$ multiply-accumalate operations.
The function $N_{1} N_{2}\left(N_{1}+N_{2}\right)$ can't be simplified by stripping off any constants or any loworder terms: for example, $N_{1} N_{2}\left(N_{1}+N_{2}\right) \neq \mathcal{O}\left\{N_{1}^{2} N_{2}\right\}$, because, regardless of how large we choose the constant G, there will be large values of N_{2} for which $N_{1} N_{2}\left(N_{1}+N_{2}\right) \nless$ $G N_{1}^{2} N_{2}$. Since we can't simplify the polynomial while still keeping it as a strict upper bound on the computation, we need to keep the whole polynomial:

$$
N_{1} N_{2}\left(N_{1}+N_{2}\right)=\mathcal{O}\left\{N_{1} N_{2}\left(N_{1}+N_{2}\right)\right\}
$$

(d) Filtering with a matched filter of size M_{1} rows, M_{2} columns.

Solution:

Matched filtering is computed as

$$
z\left[n_{1}, n_{2}\right]=\sum_{m_{1}=0}^{M_{1}-1} \sum_{m_{1}=0}^{M_{2}-1} h\left[m_{1}, m_{2}\right] x\left[n_{1}-m_{1}, n_{2}-m_{2}\right]
$$

The double sum here can't be simplified, because the filter is not separable. Therefore, each output pixel requires computing a double-sum with $M_{1} M_{2}$ terms in it.
There are $N_{1} N_{2}$ output pixels, so in total, we need $N_{1} N_{2} M_{1} M_{2}$ multiply-accumulate operations, which is $\mathcal{O}\left\{N_{1} N_{2} M_{1} M_{2}\right\}$.
(e) Calculating the integral image $i i\left[n_{1}, n_{2}\right]=\sum_{m_{1}=0}^{n_{1}} \sum_{m_{2}=0}^{n_{2}} i\left[m_{1}, m_{2}, 0\right]$ for all $0 \leq n_{1}<N_{1}$ and $0 \leq n_{2}<N_{2}$.

Solution:

Each pixel of the integral image requires just four additions:

$$
i i\left[n_{1}, n_{2}\right]=i\left[n_{1}, n_{2}\right]+i i\left[n_{1}-1, n_{2}\right]+i i\left[n_{1}, n_{2}-1\right]-i i\left[n_{1}-1, n_{2}-1\right]
$$

\qquad

There are $N_{1} N_{2}$ pixels in the integral image, so the total complexity is $4 N_{1} N_{2}$. If we choose the constants $G=4, N_{1}^{*}=0, N_{2}^{*}=0$, we find that the total computation is less than or equal to $G N_{1} N_{2}$ for all $N_{1} \geq N_{1}^{*}$ and $N_{2} \geq N_{2}^{*}$, therefore the computational complexity is $\mathcal{O}\left\{N_{1} N_{2}\right\}$.
(f) Given the integral image, find the box-summation $f\left[b_{1}, b_{2}, e_{1}, e_{2}\right]$ defined as

$$
f\left[b_{1}, b_{2}, e_{1}, e_{2}\right]=\sum_{n_{1}=b_{1}}^{e_{1}} \sum_{n_{2}=b_{2}}^{e_{2}} i\left[n_{1}, n_{2}, 0\right]
$$

for all values $0 \leq b_{1} \leq N_{1}-1,0 \leq e_{1} \leq N_{1}-1,0 \leq b_{2} \leq N_{2}-1,0 \leq e_{2} \leq N_{2}-1$.

Solution:

We can find the feature, for any given $\left(b_{1}, b_{2}, e_{1}, e_{2}\right)$, using just four additions:

$$
f\left[b_{1}, b_{2}, e_{1}, e_{2}\right]=i i\left[e_{1}, e_{2}\right]-i i\left[b_{1}, e_{2}\right]-i i\left[e_{1}, b_{2}\right]+i i\left[b_{1}, b_{2}\right]
$$

There are a total of $N_{1}^{2} N_{2}^{2}$ different combinations of $\left(b_{1}, b_{2}, e_{1}, e_{2}\right)$ to consider, so the total computation is $4 N_{1}^{2} N_{2}^{2}$, which is $\mathcal{O}\left\{N_{1}^{2} N_{2}^{2}\right\}$.

Problem 2 (10 points)

Suppose you have an input image with 8 -bit integer pixel values, $0 \leq i\left[n_{1}, n_{2}, n_{3}\right] \leq 255$, where n_{1} is the row index, n_{2} is the column index, and n_{3} is the color plane. What are the minimum and maximum pixel values that result as the outputs of the following operations:
(a) Convert to a YPbPr color space. What are the minimum and maximum possible values of Y, P_{b}, and P_{r} ?
Solution:

$$
\left[\begin{array}{c}
Y \\
P_{b} \\
P_{r}
\end{array}\right]\left[n_{1}, n_{2}\right]=\left[\begin{array}{ccc}
0.299 & 0.587 & 0.114 \\
-0.168736 & -0.331264 & 0.5 \\
0.5 & -0.418688 & -0.081312
\end{array}\right]\left[\begin{array}{c}
R \\
G \\
B
\end{array}\right]\left[n_{1}, n_{2}\right],
$$

The top row adds up to one, and all coefficients are positive, so $0 \leq Y \leq 255$. The second and third rows each have negative coefficients that total 0.5 , and a positive coefficient of 0.5 , so $-255 / 2 \leq P_{b} \leq 255 / 2$ and $-255 / 2 \leq P_{r} \leq 255 / 2$.
(b) Compute the horizontal and vertical gradients using a Sobel mask. What are the minimum and maximum possible values of each of the two gradient images?

Solution:

The usual definition of the Sobel mask is:

$$
G_{x}\left[n_{1}, n_{2}\right]=\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{array}\right] * * I\left[n_{1}, n_{2}\right], \quad G_{y}\left[n_{1}, n_{2}\right]=\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{array}\right] * * I\left[n_{1}, n_{2}\right]
$$

$$
\text { so }-4 \times 255 \leq G_{x}\left[n_{1}, n_{2}\right] \leq 4 \times 255 \text { and }-4 \times 255 \leq G_{y}\left[n_{1}, n_{2}\right] \leq 4 \times 255
$$

\qquad

Problem 3 (5 points)

Consider the infinite-sized image $i\left[n_{1}, n_{2}\right]=\delta\left[n_{1}-5\right]$, i.e.,

$$
i\left[n_{1}, n_{2}\right]= \begin{cases}1 & n_{1}=5 \\ 0 & \text { otherwise }\end{cases}
$$

Use a Sobel mask to find the resulting images $G_{x}\left[n_{1}, n_{2}\right]$ and $G_{y}\left[n_{1}, n_{2}\right]$.

Solution:

To figure out this answer, it's useful to write the separable form of the Sobel mask, which would be

$$
G_{x}\left[n_{1}, n_{2}\right]=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] *\left([1,0,-1] * \delta\left[n_{1}-5\right]\right)=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] * 0=0
$$

Where the second equality comes from subtracting $1-1$ for each pixel of the fifth row, and $0-0$ for every other pixel in the image. On the other hand,

$$
G_{y}\left[n_{1}, n_{2}\right]=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] *\left([1,2,1] * \delta\left[n_{1}-5\right]\right)=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] *\left(4 \delta\left[n_{1}-5\right]\right)= \begin{cases}4 & n_{1}=5 \\
-4 & n_{1}=7 \\
0 & \text { otherwise }\end{cases}
$$

Problem 4 (5 points)

Suppose you want to find the horizon line in a grayscale image $i\left[n_{1}, n_{2}\right]$. Suppose the horizon line is defined to be the row index n_{1} that maximizes the brightness difference $B D\left[n_{1}\right]$, defined as

$$
B D\left[n_{1}\right]=\sum_{m_{2}=0}^{N_{2}-1}\left(\left(\frac{1}{n_{1}} \sum_{m_{1}=0}^{n_{1}-1} i\left[m_{1}, m_{2}\right]\right)-\left(\frac{1}{N_{1}-n_{1}} \sum_{m_{1}=n_{1}}^{N_{1}-1} i\left[m_{1}, m_{2}\right]\right)\right)
$$

You are given the integral image $i i\left[n_{1}, n_{2}\right]=\sum_{m_{1}=0}^{n_{1}} \sum_{m_{2}=0}^{n_{2}} i\left[m_{1}, m_{2}, 0\right]$. Devise a formula that uses $i i\left[n_{1}, n_{2}\right]$ to compute $B D\left[n_{1}\right]$ with a small constant number of operations per candidate horizon line.
Solution:
Let's start out by re-arranging the order of summation, so that the m_{1} and m_{2} sums are in the same order as the definition of the integral image:

$$
B D\left[n_{1}\right]=\frac{1}{n_{1}}\left(\sum_{m_{1}=0}^{n_{1}-1} \sum_{m_{2}=0}^{N_{2}-1} i\left[m_{1}, m_{2}\right]\right)-\frac{1}{N_{1}-n_{1}}\left(\sum_{m_{1}=n_{1}}^{N_{1}-1} \sum_{m_{2}=0}^{N_{2}-1} i\left[m_{1}, m_{2}\right]\right)
$$

The first term is already an integral image. The second term can be split up into two integral-image-like terms:

$$
B D\left[n_{1}\right]=\frac{1}{n_{1}}\left(\sum_{m_{1}=0}^{n_{1}-1} \sum_{m_{2}=0}^{N_{2}-1} i\left[m_{1}, m_{2}\right]\right)-\frac{1}{N_{1}-n_{1}}\left(\sum_{m_{1}=0}^{N_{1}-1} \sum_{m_{2}=0}^{N_{2}-1} i\left[m_{1}, m_{2}\right]-\sum_{m_{1}=0}^{n_{1}-1} \sum_{m_{2}=0}^{N_{2}-1} i\left[m_{1}, m_{2}\right]\right)
$$

...and now, we just substitute the symbol in place of its definition:

$$
B D\left[n_{1}\right]=\frac{1}{n_{1}}\left(i i\left[n_{1}-1, N_{2}-1\right]\right)-\frac{1}{N_{1}-n_{1}}\left(i i\left[N_{1}-1, N_{2}-1\right]-i i\left[n_{1}-1, N_{2}-1\right]\right)
$$

Problem 5 (5 points)

Consider the problem of upsampling, by a factor of 2 , the infinite-sized image

$$
x\left[n_{1}, n_{2}\right]=\delta\left[n_{1}-5\right]= \begin{cases}1 & n_{1}=5 \\ 0 & \text { otherwise }\end{cases}
$$

Suppose that the image is upsampled, then filtered, as

$$
y\left[n_{1}, n_{2}\right]=\left\{\begin{array}{ll}
x\left[n_{1} / 2, n_{2} / 2\right] & n_{1} / 2 \text { and } n_{2} / 2 \text { both integers } \\
0 & \text { otherwise }
\end{array} \quad z\left[n_{1}, n_{2}\right]=y\left[n_{1}, n_{2}\right] * * h\left[n_{1}, n_{2}\right]\right.
$$

Let $h\left[n_{1}, n_{2}\right]$ be the ideal anti-aliasing filter with frequency response

$$
H\left(\omega_{1}, \omega_{2}\right)= \begin{cases}1 & \left|\omega_{1}\right|<\frac{\pi}{2}, \quad\left|\omega_{2}\right|<\frac{\pi}{2} \\ 0 & \text { otherwise }\end{cases}
$$

Find $z\left[n_{1}, n_{2}\right]$.
Solution:

$$
\begin{gathered}
h\left[n_{1}, n_{2}\right]=h_{1}\left[n_{1}\right] h_{2}\left[n_{2}\right]=\left(\frac{1}{2}\right) \operatorname{sinc}\left(\frac{\pi n_{1}}{2}\right)\left(\frac{1}{2}\right) \operatorname{sinc}\left(\frac{\pi n_{2}}{2}\right) \\
y\left[n_{1}, n_{2}\right]=\left\{\begin{array} { l l }
{ 1 } & { n _ { 1 } = 1 0 \text { and } n _ { 2 } \text { a multiple of } 2 } \\
{ 0 } & { \text { otherwise } }
\end{array} \left\{\begin{array}{ll}
\left(\sum_{p=-\infty}^{\infty} \delta\left[n_{2}-2 p\right]\right) & n_{1}=10 \\
0 & \text { otherwise }
\end{array}\right.\right.
\end{gathered}
$$

Convolving along each row gives $h_{2}\left[n_{2}\right] * y\left[n_{1}, n_{2}\right]$, which is zero, except on the $n_{1}=10$ row. On that row, $y\left[n_{1}, n_{2}\right]$ is equal to one on the even-numbered samples, and equal to zero on the odd-numbered samples. The correct answer is the obvious one: the low-pass filter computes a perfect average between 0 and 1 , so each pixel winds up with a value of $1 / 2$. If you want to do a more careful analysis, you could notice that this row is an impulse train with a period of $P=2$, and therefore it has a DTFT which has impulses of area $2 \pi / P=\pi$ at $\omega=0$ and $\omega=\pi$. The LPF keeps only the $\omega=0$ impulse, thus:

$$
\begin{aligned}
h_{2}\left[n_{2}\right] * y\left[n_{1}, n_{2}\right] & = \begin{cases}\left(\sum_{p=-\infty}^{\infty} \delta\left[n_{2}-2 p\right]\right) *\left(\frac{1}{2} \operatorname{sinc}\left(\frac{\pi n_{2}}{2}\right)\right) & n_{1}=10 \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}\mathcal{F}^{-1}\left\{\left(\frac{2 \pi}{2} \sum_{k=0}^{1} \delta\left(\omega-\frac{2 \pi k}{2}\right)\right)\left(\left\{\begin{array}{ll}
1 & \left|\omega_{2}\right|<\frac{\pi}{2} \\
0 & \text { otherwise }
\end{array}\right)\right\}\right. & n_{1}=10 \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}\mathcal{F}^{-1}\{\pi \delta(\omega)\} & n_{1}=10 \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}\frac{1}{2} & n_{1}=10 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

\qquad

Convolving along each column, then, gives

$$
z\left[n_{1}, n_{2}\right]=h_{1}\left[n_{1}\right] * h_{2}\left[n_{2}\right] * y\left[n_{1}, n_{2}\right]=\left(\frac{1}{4}\right) \operatorname{sinc}\left(\frac{\pi\left(n_{1}-10\right)}{2}\right)
$$

Problem 6 (5 points)

The stochastic autocorrelation of a periodic signal is periodic, $R_{x x}[P]=R_{x x}[0]$. How about the signal autocorrelation? Suppose that the frame length is an integer multiple of the number of periods, $L=k P$, so that

$$
x[n]= \begin{cases}\text { periodic with period } P & 0 \leq n \leq k P-1 \\ 0 & \text { otherwise }\end{cases}
$$

Find $r_{x x}[P]$ in terms of $r_{x x}[0]$.

Solution:

$$
r_{x x}[n]=\sum_{m=-\infty}^{\infty} x[m] x[m-n]=\sum_{m=0}^{L-|n|-1} x[m] x[m-n],
$$

where the second equality is true because there are only $L-1$ nonzero samples in a frame. Since $x[n]=x[n+P]=x[n+2 P]=\ldots$,

$$
r_{x x}[0]=\sum_{m=0}^{L-1} x^{2}[m]=k \sum_{m=0}^{P-1} x^{2}[m]
$$

Likewise,

$$
r_{x x}[P]=\sum_{m=0}^{L-P-1} x[m] x[m-P]=\sum_{m=0}^{L-P-1} x^{2}[m]=(k-1) \sum_{m=0}^{P-1} x^{2}[m]
$$

So

$$
r_{x x}[P]=\left(\frac{k-1}{k}\right) r_{x x}[0]
$$

Problem 7 (10 points)

Consider the signal $x[n]=\beta^{n} u[n]$, where $u[n]$ is the unit step function.
(a) Find the LPC coefficient, α, that minimizes ε, where

$$
\varepsilon=\sum_{n=-\infty}^{\infty} e^{2}[n], \quad e[n]=x[n]-\alpha x[n-1]
$$

$$
\begin{align*}
\varepsilon & =\sum_{n=-\infty}^{\infty}(x[n]-\alpha x[n-1])^{2} \tag{1}\\
& =1+\sum_{n=1}^{\infty}\left(\beta^{n}-\alpha \beta^{n-1}\right)^{2} \tag{2}
\end{align*}
$$

Differentiating w.r.t. α gives

$$
\frac{\partial \varepsilon}{\partial \alpha}=-2 \sum_{n=1}^{\infty} \beta\left(\beta^{n}-\alpha \beta^{n-1}\right)
$$

which is zero iff $\alpha=\beta$.
(b) Find the signal $e[n]$ that results from your choice of α in part (a).

Solution:

$$
e[n]=\beta^{n} u[n]-\alpha \beta^{n-1} u[n-1]=\beta^{n}(u[n]-u[n-1])=\delta[n]
$$

Problem 8 (10 points)

Consider the LPC synthesis filter $s[n]=e[n]+\alpha s[n-1]$.
(a) Under what condition on α is the synthesis filter stable?

Solution:

The roots of the polynomial $1-\alpha z^{-1}$ must be inside the unit circle. That's a first-order polynomial, its only root is $z^{-1}=\alpha$, so we just need $|\alpha|<1$.
(b) Assume that the synthesis filter is stable. Suppose that $e[n]$ is the pulse train $e[n]=$ $\sum_{p=-\infty}^{\infty} \delta[n-p P]$. As a function of α, P, and ω, what is the DTFT $S\left(e^{j \omega}\right)$? You need not simplify, but your answer should contain no integrals or infinite sums.

Solution:

The DTFT of the pulse train is a pulse train,

$$
E\left(e^{j \omega}\right)=\left(\frac{2 \pi}{P}\right) \sum_{k=0}^{P-1} \delta\left(\omega-\frac{2 \pi k}{P}\right)
$$

The DTFT of the synthesized signal is

$$
S\left(e^{j \omega}\right)=H\left(e^{j \omega}\right) E\left(e^{j \omega}\right)=\frac{E\left(e^{j \omega}\right)}{1-\alpha e^{-j \omega}}
$$

So

$$
S\left(e^{j \omega}\right)=\frac{1}{1-\alpha e^{-j \omega}}\left(\frac{2 \pi}{P}\right) \sum_{k=0}^{P-1} \delta\left(\omega-\frac{2 \pi k}{P}\right)
$$

