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Problem 1 (30 points)

Suppose you have an RGB image i[n1, n2, n3] with 0 ≤ n1 < N1 rows, 0 ≤ n2 < N2 columns,
and 0 ≤ n3 < 3 color planes. The matched filter in part (d) of this problem is of size M1×M2.
Use big-O notation, in terms of the variables N1, N2,M1 and M2, to express the complexity of
each of the following operations:

(a) Coverting from RGB to YPbPr color space.
Solution:

Big-O notation is defined as: an operation is O{f(N1, N2,M1,M2)} if and only if there
exist some positive constants, G,N∗1 , N

∗
2 ,M

∗
1 ,M

∗
2 , such that the number of operations is

≤ Gf(N1, N2,M1,M2) for all N1 ≥ N∗1 , N2 ≥ N∗2 , M1 ≥M∗1 , and M2 ≥M∗2 .

The conversion from RGB to YPBPr involves a 3× 3 matrix multiplication per pixel: Y
Pb
Pr

 [n1, n2] =

 0.299 0.587 0.114
−0.168736 −0.331264 0.5

0.5 −0.418688 −0.081312

 R
G
B

 [n1, n2],

which is 9 scalar multiply-add operations per pixel. Since there are N1 × N2 pixels, the
total number of multiplications required is 9N1N2, which is O{N1N2}

(b) Computing the horizontal and vertical gradients of each color plane using a Sobel mask.
Solution:

Sobel mask is a convolution, as

Gx[n1, n2] =

 1 0 −1
2 0 −2
1 0 −1

 ∗ ∗I[n1, n2], Gy[n1, n2] =

 1 2 1
0 0 0
−1 −2 −1

 ∗ ∗I[n1, n2]

there are 6 nonzero coefficients in each filter (12 total), so we have a total of 12 additions
per output pixel. The # output pixels is (N1 + 2)(N2 + 2), or N1N2, or (N1− 2)(N2− 2),
depending on whether we’re doing full, same, or valid convolution – but in any case, all
of these are O{N1N2}. Total computation is therefore 12N1N2, which is O{N1N2}.

(c) Lowpass filtering (after zero-padding, so that the output is of the same size, N1×N2× 3,
as the input) with a separable ideal anti-aliasing filter whose frequency response is

H(ω1, ω2) =

{
1 |ω1| < π

3 , |ω2| < π
3

0 otherwise
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Solution:

The filter is separable, so we can filter each row first, then each column.

Filtering each row requires implementing the following equation once per output pixel:

y[n1, n2] = h2[n2] ∗ x[n1, n2] =

N2−1∑
m2=0

x[n1,m2]h2[n2 −m2]

which requires N2 multiply-add operations per output pixel. Since there are N1 × N2

output pixels, the total computation is N1N
2
2 .

Filtering each column requires implementing the following equation once per output pixel:

h1[n1] ∗ y[n1, n2] =

N1−1∑
m1=0

y[m1, n2]h1[n1 −m1]

which requires N1 multiply-add operations per output pixel. Since there are N1 × N2

output pixels, the total computation is N2
1N2.

So the total computation requires N1N2(N1 +N2) multiply-accumalate operations.

The function N1N2(N1+N2) can’t be simplified by stripping off any constants or any low-
order terms: for example, N1N2(N1 +N2) 6= O

{
N2

1N2

}
, because, regardless of how large

we choose the constant G, there will be large values of N2 for which N1N2(N1 + N2) ≮
GN2

1N2. Since we can’t simplify the polynomial while still keeping it as a strict upper
bound on the computation, we need to keep the whole polynomial:

N1N2(N1 +N2) = O{N1N2(N1 +N2)}

(d) Filtering with a matched filter of size M1 rows, M2 columns.
Solution:

Matched filtering is computed as

z[n1, n2] =

M1−1∑
m1=0

M2−1∑
m1=0

h[m1,m2]x[n1 −m1, n2 −m2]

The double sum here can’t be simplified, because the filter is not separable. Therefore,
each output pixel requires computing a double-sum with M1M2 terms in it.

There are N1N2 output pixels, so in total, we need N1N2M1M2 multiply-accumulate
operations, which is O{N1N2M1M2}.

(e) Calculating the integral image ii[n1, n2] =
∑n1

m1=0

∑n2
m2=0 i[m1,m2, 0] for all 0 ≤ n1 < N1

and 0 ≤ n2 < N2.
Solution:

Each pixel of the integral image requires just four additions:

ii[n1, n2] = i[n1, n2] + ii[n1 − 1, n2] + ii[n1, n2 − 1]− ii[n1 − 1, n2 − 1]
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There are N1N2 pixels in the integral image, so the total complexity is 4N1N2. If we
choose the constants G = 4, N∗1 = 0, N∗2 = 0, we find that the total computation is less
than or equal to GN1N2 for all N1 ≥ N∗1 and N2 ≥ N∗2 , therefore the computational
complexity is O{N1N2}.

(f) Given the integral image, find the box-summation f [b1, b2, e1, e2] defined as

f [b1, b2, e1, e2] =

e1∑
n1=b1

e2∑
n2=b2

i[n1, n2, 0]

for all values 0 ≤ b1 ≤ N1 − 1, 0 ≤ e1 ≤ N1 − 1, 0 ≤ b2 ≤ N2 − 1, 0 ≤ e2 ≤ N2 − 1.
Solution:

We can find the feature, for any given (b1, b2, e1, e2), using just four additions:

f [b1, b2, e1, e2] = ii[e1, e2]− ii[b1, e2]− ii[e1, b2] + ii[b1, b2]

There are a total of N2
1N

2
2 different combinations of (b1, b2, e1, e2) to consider, so the total

computation is 4N2
1N

2
2 , which is O

{
N2

1N
2
2

}
.

Problem 2 (10 points)

Suppose you have an input image with 8-bit integer pixel values, 0 ≤ i[n1, n2, n3] ≤ 255,
where n1 is the row index, n2 is the column index, and n3 is the color plane. What are the
minimum and maximum pixel values that result as the outputs of the following operations:

(a) Convert to a YPbPr color space. What are the minimum and maximum possible values
of Y , Pb, and Pr?
Solution:

 Y
Pb
Pr

 [n1, n2] =

 0.299 0.587 0.114
−0.168736 −0.331264 0.5

0.5 −0.418688 −0.081312

 R
G
B

 [n1, n2],

The top row adds up to one, and all coefficients are positive, so 0 ≤ Y ≤ 255. The second
and third rows each have negative coefficients that total 0.5, and a positive coefficient of
0.5, so −255/2 ≤ Pb ≤ 255/2 and −255/2 ≤ Pr ≤ 255/2.

(b) Compute the horizontal and vertical gradients using a Sobel mask. What are the minimum
and maximum possible values of each of the two gradient images?
Solution:

The usual definition of the Sobel mask is:

Gx[n1, n2] =

 1 0 −1
2 0 −2
1 0 −1

 ∗ ∗I[n1, n2], Gy[n1, n2] =

 1 2 1
0 0 0
−1 −2 −1

 ∗ ∗I[n1, n2]

so −4× 255 ≤ Gx[n1, n2] ≤ 4× 255 and −4× 255 ≤ Gy[n1, n2] ≤ 4× 255.
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Problem 3 (5 points)

Consider the infinite-sized image i[n1, n2] = δ[n1 − 5], i.e.,

i[n1, n2] =

{
1 n1 = 5
0 otherwise

Use a Sobel mask to find the resulting images Gx[n1, n2] and Gy[n1, n2].
Solution:

To figure out this answer, it’s useful to write the separable form of the Sobel mask, which
would be

Gx[n1, n2] =

 1
2
1

 ∗ ([1, 0,−1] ∗ δ[n1 − 5]) =

 1
2
1

 ∗ 0 = 0

Where the second equality comes from subtracting 1 − 1 for each pixel of the fifth row, and
0− 0 for every other pixel in the image. On the other hand,

Gy[n1, n2] =

 1
0
−1

 ∗ ([1, 2, 1] ∗ δ[n1 − 5]) =

 1
0
−1

 ∗ (4δ[n1 − 5]) =


4 n1 = 5
−4 n1 = 7
0 otherwise

Problem 4 (5 points)

Suppose you want to find the horizon line in a grayscale image i[n1, n2]. Suppose the horizon
line is defined to be the row index n1 that maximizes the brightness difference BD[n1], defined
as

BD[n1] =

N2−1∑
m2=0

((
1

n1

n1−1∑
m1=0

i[m1,m2]

)
−

(
1

N1 − n1

N1−1∑
m1=n1

i[m1,m2]

))
You are given the integral image ii[n1, n2] =

∑n1
m1=0

∑n2
m2=0 i[m1,m2, 0]. Devise a formula that

uses ii[n1, n2] to compute BD[n1] with a small constant number of operations per candidate
horizon line.
Solution:

Let’s start out by re-arranging the order of summation, so that the m1 and m2 sums are in
the same order as the definition of the integral image:

BD[n1] =
1

n1

(
n1−1∑
m1=0

N2−1∑
m2=0

i[m1,m2]

)
− 1

N1 − n1

(
N1−1∑
m1=n1

N2−1∑
m2=0

i[m1,m2]

)

The first term is already an integral image. The second term can be split up into two integral-
image-like terms:

BD[n1] =
1

n1

(
n1−1∑
m1=0

N2−1∑
m2=0

i[m1,m2]

)
− 1

N1 − n1

(
N1−1∑
m1=0

N2−1∑
m2=0

i[m1,m2]−
n1−1∑
m1=0

N2−1∑
m2=0

i[m1,m2]

)
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...and now, we just substitute the symbol in place of its definition:

BD[n1] =
1

n1
(ii[n1 − 1, N2 − 1])− 1

N1 − n1
(ii[N1 − 1, N2 − 1]− ii[n1 − 1, N2 − 1])

Problem 5 (5 points)

Consider the problem of upsampling, by a factor of 2, the infinite-sized image

x[n1, n2] = δ[n1 − 5] =

{
1 n1 = 5
0 otherwise

Suppose that the image is upsampled, then filtered, as

y[n1, n2] =

{
x[n1/2, n2/2] n1/2 and n2/2 both integers
0 otherwise

z[n1, n2] = y[n1, n2] ∗ ∗h[n1, n2]

Let h[n1, n2] be the ideal anti-aliasing filter with frequency response

H(ω1, ω2) =

{
1 |ω1| < π

2 , |ω2| < π
2

0 otherwise

Find z[n1, n2].
Solution:

h[n1, n2] = h1[n1]h2[n2] =

(
1

2

)
sinc

(πn1
2

)(1

2

)
sinc

(πn2
2

)
y[n1, n2] =

{
1 n1 = 10 and n2 a multiple of 2
0 otherwise

=

{ (∑∞
p=−∞ δ[n2 − 2p]

)
n1 = 10

0 otherwise

Convolving along each row gives h2[n2] ∗ y[n1, n2], which is zero, except on the n1 = 10 row.
On that row, y[n1, n2] is equal to one on the even-numbered samples, and equal to zero on the
odd-numbered samples. The correct answer is the obvious one: the low-pass filter computes a
perfect average between 0 and 1, so each pixel winds up with a value of 1/2. If you want to
do a more careful analysis, you could notice that this row is an impulse train with a period of
P = 2, and therefore it has a DTFT which has impulses of area 2π/P = π at ω = 0 and ω = π.
The LPF keeps only the ω = 0 impulse, thus:

h2[n2] ∗ y[n1, n2] =

{ (∑∞
p=−∞ δ[n2 − 2p]

)
∗
(
1
2sinc

(
πn2
2

))
n1 = 10

0 otherwise

=

 F−1
{(

2π
2

∑1
k=0 δ

(
ω − 2πk

2

))({ 1 |ω2| < π
2

0 otherwise

)}
n1 = 10

0 otherwise

=

{
F−1 {πδ(ω)} n1 = 10
0 otherwise

=

{
1
2 n1 = 10
0 otherwise
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Convolving along each column, then, gives

z[n1, n2] = h1[n1] ∗ h2[n2] ∗ y[n1, n2] =

(
1

4

)
sinc

(
π(n1 − 10)

2

)

Problem 6 (5 points)

The stochastic autocorrelation of a periodic signal is periodic, Rxx[P ] = Rxx[0]. How about
the signal autocorrelation? Suppose that the frame length is an integer multiple of the number
of periods, L = kP , so that

x[n] =

{
periodic with period P 0 ≤ n ≤ kP − 1
0 otherwise

Find rxx[P ] in terms of rxx[0].
Solution:

rxx[n] =

∞∑
m=−∞

x[m]x[m− n] =

L−|n|−1∑
m=0

x[m]x[m− n],

where the second equality is true because there are only L − 1 nonzero samples in a frame.
Since x[n] = x[n+ P ] = x[n+ 2P ] = . . .,

rxx[0] =
L−1∑
m=0

x2[m] = k
P−1∑
m=0

x2[m]

Likewise,

rxx[P ] =

L−P−1∑
m=0

x[m]x[m− P ] =

L−P−1∑
m=0

x2[m] = (k − 1)

P−1∑
m=0

x2[m]

So

rxx[P ] =

(
k − 1

k

)
rxx[0]

Problem 7 (10 points)

Consider the signal x[n] = βnu[n], where u[n] is the unit step function.

(a) Find the LPC coefficient, α, that minimizes ε, where

ε =
∞∑

n=−∞
e2[n], e[n] = x[n]− αx[n− 1]

Solution:
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ε =

∞∑
n=−∞

(x[n]− αx[n− 1])2 (1)

= 1 +
∞∑
n=1

(
βn − αβn−1

)2
(2)

Differentiating w.r.t. α gives

∂ε

∂α
= −2

∞∑
n=1

β
(
βn − αβn−1

)
which is zero iff α = β.

(b) Find the signal e[n] that results from your choice of α in part (a).
Solution:

e[n] = βnu[n]− αβn−1u[n− 1] = βn (u[n]− u[n− 1]) = δ[n]

Problem 8 (10 points)

Consider the LPC synthesis filter s[n] = e[n] + αs[n− 1].

(a) Under what condition on α is the synthesis filter stable?
Solution:

The roots of the polynomial 1− αz−1 must be inside the unit circle. That’s a first-order
polynomial, its only root is z−1 = α, so we just need |α| < 1.

(b) Assume that the synthesis filter is stable. Suppose that e[n] is the pulse train e[n] =∑∞
p=−∞ δ[n − pP ]. As a function of α, P , and ω, what is the DTFT S(ejω)? You need

not simplify, but your answer should contain no integrals or infinite sums.
Solution:

The DTFT of the pulse train is a pulse train,

E(ejω) =

(
2π

P

) P−1∑
k=0

δ

(
ω − 2πk

P

)
The DTFT of the synthesized signal is

S(ejω) = H(ejω)E(ejω) =
E(ejω)

1− αe−jω

So

S(ejω) =
1

1− αe−jω

(
2π

P

) P−1∑
k=0

δ

(
ω − 2πk

P

)


