UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing

Fall 2019

EXAM 1 SOLUTIONS

Tuesday, September 24, 2019

Problem 1 (20 points)

(a) $T=98$
(b)

$$
N=480\left(\frac{18000}{5000}\right)=1728
$$

(c)

$$
a_{k n}=e^{-j \frac{2 \pi k n}{N}}
$$

(d)

$$
S[k, t]=\max \left(0,\left(\frac{255}{60}\right) 20 \log _{10}\left(\frac{|X[k, t]|}{X_{M A X} / 1000}\right)\right)
$$

Problem 2 (5 points)

$$
X[k]=\frac{1}{2} W_{R}\left(\frac{2 \pi k}{N}-\omega_{0}\right)+\frac{1}{2} W_{R}\left(\frac{2 \pi k}{N}+\omega_{0}\right)
$$

Problem 3 (5 points)

$$
S_{x x}(\omega)=\frac{1}{1-\rho e^{-j \omega}}+\frac{1}{1-\rho e^{j \omega}}-1
$$

Problem 4 (5 points)

Any solution that is even-symmetric $(s[m]=s[M-m])$, and that includes all and only the samples of $x[n]$, is acceptable. For example, here are two possibilities:

$$
M=2 N \text { and } s[m]= \begin{cases}x[m] & m \in\{0,1, \ldots, N-1\} \\ 0 & m=N \\ x[M-m] & m \in\{N+1, \ldots, M-1\}\end{cases}
$$

\qquad
or

$$
M=2 N \text { and } s[m]= \begin{cases}x\left[m-\frac{1}{2}\right] & m \in\left\{\frac{1}{2}, \frac{3}{2}, \ldots, N-\frac{1}{2}\right\} \\ x\left[M-m-\frac{1}{2}\right] & m \in\left\{N+\frac{1}{2}, \ldots, M-\frac{1}{2}\right\}\end{cases}
$$

Problem 5 (15 points)
(a)

$$
Y^{T} Y=\left[\begin{array}{cccc}
\lambda_{0} & 0 & \ldots & 0 \\
0 & \lambda_{1} & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & \lambda_{D-1}
\end{array}\right]
$$

(b)

$$
\sum_{m=0}^{M-1}\left\|\vec{x}_{m}\right\|_{2}^{2}=\sum_{d=0}^{D-1} \lambda_{d}
$$

(c)

$$
\vec{v}_{i}^{T} X^{T} X \vec{v}_{j}= \begin{cases}\lambda_{i} & i=j \\ 0 & \text { otherwise }\end{cases}
$$

