UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
 Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing

Fall 2019

EXAM 3

Tuesday, December 17, 2019, 1:30-4:30pm

Problem 1 (15 points)

The Maesters of the Citadel need to determine when winter starts. The temperature on day t is x_{t}. The state of day t is either $q_{t}=0$ (Autumn) or $q_{t}=1$ (Winter). Nobody really knows how cold this winter will be or how long it will last, but the Maesters have created an initial model $\Lambda=\left\{a_{i j}, b_{j}(x)\right\}$ where $a_{i j} \equiv p\left(q_{t}=j \mid q_{t-1}=i\right)$ and $b_{j}(x) \equiv p\left(x_{t}=x \mid q_{t}=j\right)$.
(a) Suppose we have a particular three day sequence of measurements, x_{1}, x_{2}, and x_{3}. Given that the preceding day was still autumn $\left(q_{0}=0\right)$, we want to determine the joint probability that it continued to be autumn for days 1,2 , and 3 , and that the three observed temperatures were measured. In other words, we want an estimate of

$$
G_{1}=p\left(q_{1}=0, x_{1}, q_{2}=0, x_{2}, q_{3}=0, x_{3} \mid q_{0}=0, \Lambda\right)
$$

Find G_{1} in terms of $a_{i j}$ and $b_{j}\left(x_{t}\right)$, for whatever particular values of i, j, and t are most useful to you.

Solution:

$$
G_{1}=a_{00}^{3} b_{0}\left(x_{1}\right) b_{0}\left(x_{2}\right) b_{0}\left(x_{3}\right)
$$

(b) Suppose it is known that the preceding day was still autumn $\left(q_{0}=0\right)$. Now, on day 1 , the Maesters have determined that the temperature is x_{1}. Find the conditional probability, given this measurement, that it is still autumn, i.e., find

$$
G_{2}=p\left(q_{1}=0 \mid x_{1}, q_{0}=0, \Lambda\right)
$$

Find G_{2} in terms of $a_{i j}$ and $b_{j}\left(x_{t}\right)$, for whatever particular values of i, j, and t are most useful to you.

Solution:

$$
G_{2}=\frac{p\left(q_{1}=0, x_{1} \mid q_{0}=0, \Lambda\right)}{\sum_{i} p\left(q_{1}=i, x_{1} \mid q_{0}=0, \Lambda\right)}=\frac{a_{00} b_{0}\left(x_{1}\right)}{a_{00} b_{0}\left(x_{1}\right)+a_{01} b_{1}\left(x_{1}\right)}
$$

(c) The Maesters have collected a long series of measurements, $\left\{x_{1}, \ldots, x_{T}\right\}$ for T consecutive days. From these measurements, the Maesters have applied the forward-backward algorithm in order to calculate the following two quantities:

$$
\alpha_{t}(i) \equiv p\left(x_{1}, \ldots, x_{t}, q_{t}=i \mid \Lambda\right), \quad \beta_{t}(i) \equiv p\left(x_{t+1}, \ldots, x_{T} \mid q_{t}=i, \Lambda\right)
$$

\qquad Exam 3 Solutions

Using these quantities, the Maesters wish to calculate the probability that Winter started on a particular day, $t=w$. That is, they wish to find

$$
G_{3}=p\left(q_{w-1}=0, q_{w}=1 \mid x_{1}, \ldots, x_{T}, \Lambda\right)
$$

Find G_{3} in terms of $\alpha_{t}(i), \beta_{t}(i), a_{i j}$ and $b_{j}\left(x_{t}\right)$, for whatever particular values of i, j, and t are most useful to you.
Solution:

$$
G_{3}=\frac{p\left(q_{w-1}=0, q_{w}=1, x_{1}, \ldots, x_{T} \mid \Lambda\right)}{\sum_{i} \sum_{j} p\left(q_{w-1}=i, q_{w}=j, x_{1}, \ldots, x_{T} \mid \Lambda\right)}=\frac{\alpha_{w-1}(0) a_{01} b_{1}\left(x_{w}\right) \beta_{w}(1)}{\sum_{i} \sum_{j} \alpha_{w-1}(i) a_{i j} b_{j}\left(x_{w}\right) \beta_{w}(j)}
$$

Problem 2 (15 points)

Suppose you have a picture of a white square on a black field, $A[y, x]$, where x is the column index, y is the row index. You wish to perform an affine transform that will turn your square into a picture of a diamond, $B[\psi, \xi]$, in which ξ is the column index, and ψ is the row index:

$$
\begin{gather*}
A[y, x]=\left\{\begin{array}{lll}
255 & x=0 \text { or } x=10, & 0 \leq y \leq 10 \\
255 & y=0 \text { or } y=10, & 0 \leq x \leq 10 \\
0 & \text { otherwise }
\end{array}\right. \tag{1}\\
B[\psi, \xi]=\left\{\begin{array}{lll}
255 & \psi-\xi=0 \text { or } \psi-\xi=10 \sqrt{2}, & 0 \leq \psi+\xi \leq 10 \sqrt{2} \\
255 & \psi+\xi=0 \text { or } \psi+\xi=10 \sqrt{2}, & 0 \leq \psi-\xi \leq 10 \sqrt{2} \\
0 & \text { otherwise }
\end{array}\right. \\
\stackrel{\text { A }[y, x]}{24.46810} \times 2
\end{gather*}
$$

(a) Affine Transform: This affine transform can be written by a transform matrix, as

$$
\left[\begin{array}{c}
\xi \\
\psi \\
1
\end{array}\right]=\left[\begin{array}{l}
a, b, c \\
d, e, f \\
g, h, i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Find a, b, c, d, e, f, g, h and i. Your answers should be numbers, or else explicit numerical expressions; there should be no unresolved variables in your answers. Note: there is more than one correct answer.

Solution:

There are exactly eight correct solutions. The two solutions that map point $x=0, y=0$ to point $\xi=0, \psi=0$ are given by

$$
\left[\begin{array}{c}
a, b, c \\
d, e, f \\
g, h, i
\end{array}\right]=\left[\begin{array}{c}
\pm \frac{\sqrt{2}}{2}, \mp \frac{\sqrt{2}}{2}, 0 \\
\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0 \\
0,0,1
\end{array}\right]
$$

The two solutions that map point $x=10, y=0$ to point $\xi=0, \psi=0$ are given by

$$
\left[\begin{array}{c}
a, b, c \\
d, e, f \\
g, h, i
\end{array}\right]=\left[\begin{array}{c}
\pm \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{2}}{2}, \mp 5 \sqrt{2} \\
-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 5 \sqrt{2} \\
0,0,1
\end{array}\right]
$$

The two solutions that map point $x=10, y=10$ to point $\xi=0, \psi=0$ are given by

$$
\left[\begin{array}{c}
a, b, c \\
d, e, f \\
g, h, i
\end{array}\right]=\left[\begin{array}{c}
\mp \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{2}}{2}, 0 \\
-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}, 10 \sqrt{2} \\
0,0,1
\end{array}\right]
$$

The two solutions that map point $x=0, y=10$ to point $\xi=0, \psi=0$ are given by

$$
\left[\begin{array}{c}
a, b, c \\
d, e, f \\
g, h, i
\end{array}\right]=\left[\begin{array}{c}
\mp \frac{\sqrt{2}}{2}, \mp \frac{\sqrt{2}}{2}, \pm 5 \sqrt{2} \\
\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}, 5 \sqrt{2} \\
0,0,1
\end{array}\right]
$$

(b) Bilinear Interpolation: $A[y, x]$ is a discrete-space image (y and x are integers), whereas $A(y, x)$ is the corresponding continuous-space image (y and x are real numbers). An affine transform maps integer coordinates ξ and ψ to real-valued coordinates x and y, so it's necessary to estimate the values of the continuous-space image. For example, one way to compute the intensity of the pixel at $B[2,1]$ is by setting it equal to $A\left(\frac{3 \sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \approx$ $A(2.1,0.7)$. Use bilinear interpolation, combined with the information given in Eq. 1, to estimate the numerical value of $A(2.1,0.7)$.
Solution:

$$
\begin{aligned}
A(2.1,0.7) & =(0.9)(0.3) A[2,0]+(0.9)(0.7) A[2,1]+(0.1)(0.3) A[3,0]+(0.1)(0.7) A[3,1] \\
& =(0.9)(0.3)(255)+(0.9)(0.7)(0)+(0.1)(0.3)(255)+(0.1)(0.7)(0) \\
& =(0.3) 255
\end{aligned}
$$

(The last step, simplification, is optional).
(c) Barycentric Coordinates: Suppose we have some coordinate with known values of x and y, and we're trying to find the values of ξ and ψ to which it gets moved. One way to solve this problem is by using the transform matrix you computed in part (a). A different solution is to use the triangle whose coordinates are $\left[x_{1}, y_{1}\right],\left[x_{2}, y_{2}\right]$, and $\left[x_{3}, y_{3}\right]$ before transformation, but $\left[\xi_{1}, \psi_{1}\right],\left[\xi_{2}, \psi_{2}\right]$, and $\left[\xi_{3}, \psi_{3}\right]$ after transformation, where

$$
\begin{gathered}
{\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
10 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
x_{3} \\
y_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
10
\end{array}\right]} \\
{\left[\begin{array}{l}
\xi_{1} \\
\psi_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
\xi_{2} \\
\psi_{2}
\end{array}\right]=\left[\begin{array}{l}
5 \sqrt{2} \\
5 \sqrt{2}
\end{array}\right], \quad\left[\begin{array}{l}
\xi_{3} \\
\psi_{3}
\end{array}\right]=\left[\begin{array}{c}
-5 \sqrt{2} \\
5 \sqrt{2}
\end{array}\right]}
\end{gathered}
$$

In terms of these triangles, the Barycentric coordinates of any point are the same before and after transformation:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\lambda_{1}\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]+\lambda_{2}\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]+\lambda_{3}\left[\begin{array}{l}
x_{3} \\
y_{3}
\end{array}\right], \quad\left[\begin{array}{l}
\xi \\
\psi
\end{array}\right]=\lambda_{1}\left[\begin{array}{l}
\xi_{1} \\
\psi_{1}
\end{array}\right]+\lambda_{2}\left[\begin{array}{l}
\xi_{2} \\
\psi_{2}
\end{array}\right]+\lambda_{3}\left[\begin{array}{l}
\xi_{3} \\
\psi_{3}
\end{array}\right]
$$

\qquad
where $\lambda_{1}+\lambda_{2}+\lambda_{3}=1$. Suppose that x and y are known, but ξ and ψ are unknown. Find λ_{1}, λ_{2}, and λ_{3} in terms of x and y.
Solution:

$$
\lambda_{2}=\frac{x}{10}, \quad \lambda_{3}=\frac{y}{10}, \quad \lambda_{1}=1-\lambda_{2}-\lambda_{3}
$$

Problem 3 (20 points)

Suppose we're trying to predict the sequence $\zeta_{1}, \ldots, \zeta_{100}$ from the sequence x_{1}, \ldots, x_{100}. We want to use some type of neural net (fully-connected, CNN, or LSTM) to compute z_{1}, \ldots, z_{100} in order to minimize the error

$$
E=\frac{1}{200} \sum_{t=1}^{100}\left(z_{t}-\zeta_{t}\right)^{2}
$$

We only have one training sequence $\left(x_{1}, \ldots, x_{100}, \zeta_{1}, \ldots, \zeta_{100}\right)$.
(a) Suppose we use a fully-connected one-layer neural net, with 10,000 trainable network weights $w_{k j}$, and 100 trainable bias terms $w_{k 0}$, such that

$$
z_{k}=\sigma\left(w_{k 0}+\sum_{j=1}^{100} w_{k j} x_{j}\right)
$$

where $\sigma(x)=1 /\left(1+e^{-x}\right)$ is the logistic nonlinearity. Find the derivatives of the error with respect to the weights $\left(d E / d w_{k j}\right)$ and biases $\left(d E / d w_{k 0}\right)$. Express your answers in terms of x_{j}, z_{k}, and ζ_{k} for appropriate values of k and j; the terms $w_{k j}$ and $w_{k 0}$ should not show up on the right-hand-side of any of your equations.
Solution:

$$
\begin{aligned}
\frac{d E}{d w_{k 0}} & =\frac{1}{100}\left(z_{k}-\zeta_{k}\right) z_{k}\left(1-z_{k}\right) \\
\frac{d E}{d w_{k j}} & =\frac{1}{100}\left(z_{k}-\zeta_{k}\right) z_{k}\left(1-z_{k}\right) x_{j}
\end{aligned}
$$

(b) Suppose we use a CNN (convolutional neural net) with 99 trainable weights $w[\tau]$ and a single scalar bias term, b, i.e.,

$$
z_{t}=\sigma\left(b+\sum_{\tau=-49}^{49} w[\tau] x_{t-\tau}\right)
$$

where $\sigma(x)=1 /\left(1+e^{-x}\right)$ is the logistic nonlinearity. Find the derivatives of the error with respect to the weights $(d E / d w[\tau])$ and bias $(d E / d b)$. Assume that $x_{t}=0$ for $t \leq 0$ or $t \geq 101$. Express your answers in terms of x_{j}, z_{k}, and ζ_{k} for appropriate values of k and j; the terms $w[\tau]$ and b should not show up on the right-hand-side of any
\qquad
of your equations.
Solution:

$$
\begin{aligned}
\frac{d E}{d b} & =\frac{1}{100} \sum_{t=1}^{100}\left(z_{t}-\zeta_{t}\right) z_{t}\left(1-z_{t}\right) \\
\frac{d E}{d w[\tau]} & =\frac{1}{100} \sum_{t=1}^{100}\left(z_{t}-\zeta_{t}\right) z_{t}\left(1-z_{t}\right) x_{t-\tau}
\end{aligned}
$$

(c) Suppose we use an RNN (recurrent neural network) with just one scalar memory cell whose weights and biases are w, u, and b :

$$
z_{t}=\sigma\left(u x_{t}+w z_{t-1}+b\right)
$$

Find the derivatives of the error with respect to the weights and biases ($d E / d u, d E / d w$, and $d E / d b)$. Express your answers in terms of x_{j}, z_{k}, and ζ_{k} for appropriate values of k and j; the terms u, w and b should not show up on the right-hand-side of any of your equations. You may express your answer recursively, or your answer may contain summation $\left(\sum\right)$ and/or product (Π) terms.

Solution:

It is possible to express $d E / d u, d E / d w$, and $d E / d b$ without w on the right-hand-side only if we express them in terms of $d E / d z_{t}$. It is not possible to correctly express $d E / d z_{t}$ without w on the right-hand-side. This should probably be considered to be an error in the problem statement, but in any case, here's the solution I find that is closest to matching the problem statement:

$$
\begin{gathered}
\frac{\partial E}{\partial z_{t}}=\frac{1}{100}\left(z_{t}-\zeta_{t}\right) \\
\frac{d E}{d z_{t}}=\frac{\partial E}{\partial z_{t}}+\frac{d E}{d z_{t+1}} \frac{\partial z_{t+1}}{\partial z_{t}} \\
=\frac{1}{100}\left(z_{t}-\zeta_{t}\right)+\frac{d E}{d z_{t+1}} z_{t+1}\left(1-z_{t+1}\right) w
\end{gathered}
$$

\qquad

$$
\begin{aligned}
\frac{d E}{d b} & =\sum_{t=1}^{100} \frac{d E}{d z_{t}} \frac{\partial z_{t}}{\partial b} \\
& =\sum_{t=1}^{100} \frac{d E}{d z_{t}} z_{t}\left(1-z_{t}\right) \\
\frac{d E}{d u} & =\sum_{t=1}^{100} \frac{d E}{d z_{t}} \frac{\partial z_{t}}{\partial u} \\
& =\sum_{t=1}^{100} \frac{d E}{d z_{t}} z_{t}\left(1-z_{t}\right) x_{t} \\
\frac{d E}{d w} & =\sum_{t=1}^{100} \frac{d E}{d z_{t}} \frac{\partial z_{t}}{\partial w} \\
& =\sum_{t=2}^{100} \frac{d E}{d z_{t}} z_{t}\left(1-z_{t}\right) z_{t-1}
\end{aligned}
$$

(d) Suppose we use an LSTM (long-short-term memory network) whose weights and biases are pre-specified: $u_{c}=1$, and all of the other weights and biases are zero:
$b_{c}=0, u_{c}=1, w_{c}=0, b_{f}=0, u_{f}=0, w_{f}=0, b_{i}=0, u_{i}=0, w_{i}=0, b_{o}=0, u_{o}=0, w_{o}=0$
$f[t]=\sigma\left(u_{f} x_{t}+w_{f} z_{t-1}+b_{f}\right), \quad i[t]=\sigma\left(u_{i} x_{t}+w_{i} z_{t-1}+b_{i}\right), \quad o[t]=\sigma\left(u_{o} x_{t}+w_{o} z_{t-1}+b_{o}\right)$

$$
c[t]=f[t] c[t-1]+i[t] \sigma\left(u_{c} x_{t}+w_{c} z_{t-1}+b_{c}\right), \quad z_{t}=o[t] c[t]
$$

Assume that $c[t]=0$ for $t \leq 0$. Express z_{t} in terms of $\sigma\left(x_{t}\right)$ for $0 \leq t \leq 100$. Your answer should NOT contain any of the variables $c[t], f[t], i[t]$, or $o[t]$. Your answer may contain a summation (\sum). You may find it useful to know that $\sigma(0)=\frac{1}{2}$.
Solution:

$$
\begin{aligned}
c[t] & =\frac{1}{2} c[t-1]+\frac{1}{2} \sigma\left(x_{t}\right) \\
z_{t} & =\frac{1}{2} c[t] \\
& =\sum_{\tau=1}^{t}\left(\frac{1}{2}\right)^{2+t-\tau} \sigma\left(x_{\tau}\right)
\end{aligned}
$$

