UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing

Fall 2019

EXAM 2

Tuesday, October 22, 2019

Problem 1 (10 points)

Consider an unvoiced zero-mean Gaussian random signal, $x[n] \sim \mathcal{N}(0,1)$, with the following autocorrelation:

$$
R_{x x}[n]=e^{-\beta|n|}
$$

Suppose $e[n]=x[n]-\alpha x[n-1]$.
(a) Find α to minimize $E\left[e^{2}[n]\right]$.

Solution:

$$
\begin{gathered}
\varepsilon=E\left[e ^ { 2 } \left[n[]=E\left[(x[n]-\alpha x[n-1])^{2}\right]\right.\right. \\
=R_{x x}[0]-2 \alpha R_{x x}[1]+\alpha^{2} R_{x x}[0] \\
\frac{\partial \varepsilon}{\partial \alpha}=-2 R_{x x}[1]+2 \alpha R_{x x}[0] \\
\alpha=\frac{R_{x x}[1]}{R_{x x}[0]}=e^{-\beta}
\end{gathered}
$$

(b) Find the value of $E\left[e^{2}[n]\right]$ that results from the α you chose in part (a).

Solution:

$$
\begin{aligned}
\varepsilon & =R_{x x}[0]-2 \alpha R_{x x}[1]+\alpha^{2} R_{x x}[0] \\
& =1-2 \alpha e^{-\beta}+\alpha^{2} \\
& =1-e^{-2 \beta}
\end{aligned}
$$

Problem 2 (5 points)

Consider the synthesis filter $s[n]=e[n]+b s[n-1]-\left(\frac{b}{2}\right)^{2} s[n-2]$. For what values of b is the synthesis filter stable?
Solution:
Take the Z transform of the difference equation and re-arrange terms, we get

$$
S(z)\left(1-b z^{-1}+\left(\frac{b}{2}\right)^{2} z^{-2}\right)=E(z)
$$

\qquad
is stable if the roots of the polynomial have absolute value less than 1 . The roots of the polynomial are

$$
r_{k}=\frac{b}{2} \pm \frac{\sqrt{b^{2}-4(b / 2)^{2}}}{2}=\frac{b}{2}
$$

So $\left|r_{k}\right|<1$ iff $|b|<2$.

Problem 3 (5 points)

Suppose $e[n] \sim \mathcal{N}(0,1)$ is Gaussian white noise, $R_{e e}[n]=\delta[n]$. Consider the synthesis filter, $s[n]=e[n]+\alpha s[n-1]$. Find the power spectrum of the synthesized signal, $S_{s s}(\omega)$, in terms of ω and α. You need not simplify, but your answer should contain no integrals or infinite sums. Solution:

It was proven in class that $S_{s s}(\omega)=\left|H\left(e^{j \omega}\right)\right|^{2} S_{e e}(\omega)$. Since $S_{e e}(\omega)=\mathcal{F}\left\{R_{e e}[n]\right\}=1$, we just need to find $H\left(e^{j \omega}\right)$. To do that, we take the Z transform of the difference equation and re-arrange terms to get

$$
H(z)=\frac{S(z)}{E(z)}=\frac{1}{1-\alpha z^{-1}}
$$

Subbing $z=e^{j \omega}$ gives

$$
S_{s s}(\omega)=\left|H\left(e^{j \omega}\right)\right|^{2}=\left|\frac{1}{1-\alpha e^{-j \omega}}\right|^{2}
$$

Problem 4 (5 points)

You are given the integral image $i i\left[n_{1}, n_{2}\right]$, defined in terms of the image $i\left[n_{1}, n_{2}\right]$ as

$$
i i\left[n_{1}, n_{2}\right]=\sum_{m_{1}=0}^{n_{1}} \sum_{m_{2}=0}^{n_{2}} i\left[m_{1}, m_{2}\right]
$$

Write an equation that computes the complementary integral image, $c\left[n_{1}, n_{2}\right]$, in a small constant number of operations per output pixel, where

$$
c\left[n_{1}, n_{2}\right]=\sum_{m_{1}=n_{1}}^{N_{1}-1} \sum_{m_{2}=n_{2}}^{N_{2}-1} i\left[m_{1}, m_{2}\right]
$$

Solution:

$$
\begin{aligned}
c\left[n_{1}, n_{2}\right] & =\sum_{m_{1}=0}^{N_{1}-1} \sum_{m_{2}=0}^{N_{2}-1} i\left[m_{1}, m_{2}\right]-\sum_{m_{1}=0}^{n_{1}-1} \sum_{m_{2}=0}^{N_{2}-1} i\left[m_{1}, m_{2}\right]-\sum_{m_{1}=0}^{N_{1}-1} \sum_{m_{2}=0}^{n_{2}-1} i\left[m_{1}, m_{2}\right]+\sum_{m_{1}=0}^{n_{1}-1} \sum_{m_{2}=0}^{n_{2}-1} i\left[m_{1}, m_{2}\right] \\
& =i i\left[N_{1}-1, N_{2}-1\right]-i i\left[n_{1}-1, N_{2}-1\right]-i i\left[N_{1}-1, n_{2}-1\right]+i\left[n_{1}-1, n_{2}-1\right]
\end{aligned}
$$

\qquad Exam 2 Solutions

Problem 5 (5 points)

Suppose you have a 200×200-pixel image that is just one white dot at pixel $(45,25)$, and all the other pixels are black:

$$
x\left[n_{1}, n_{2}\right]= \begin{cases}255 & n_{1}=45, n_{2}=25 \\ 0 & \text { otherwise, } 0 \leq n_{1}<199,0 \leq n_{2}<199\end{cases}
$$

This image is upsampled to size 400×400, then filtered, as

$$
y\left[n_{1}, n_{2}\right]=\left\{\begin{array}{ll}
x\left[n_{1} / 2, n_{2} / 2\right] & n_{1} / 2 \text { and } n_{2} / 2 \text { both integers } \\
0 & \text { otherwise }
\end{array} \quad z\left[n_{1}, n_{2}\right]=y\left[n_{1}, n_{2}\right] * * h\left[n_{1}, n_{2}\right]\right.
$$

where $h\left[n_{1}, n_{2}\right]$ is the ideal anti-aliasing filter whose frequency response is

$$
H\left(\omega_{1}, \omega_{2}\right)= \begin{cases}1 & \left|\omega_{1}\right|<\frac{\pi}{2},\left|\omega_{2}\right|<\frac{\pi}{2} \\ 0 & \text { otherwise }\end{cases}
$$

Find $z\left[n_{1}, n_{2}\right]$.
Solution:

$$
\begin{gathered}
y\left[n_{1}, n_{2}\right]= \begin{cases}255 & n_{1}=90, n_{2}=50 \\
0 & \text { otherwise }\end{cases} \\
h\left[n_{1}, n_{2}\right]=\frac{1}{2} \operatorname{sinc}\left(\frac{\pi n_{1}}{2}\right) \frac{1}{2} \operatorname{sinc}\left(\frac{\pi n_{2}}{2}\right)=h_{1}\left[n_{1}\right] h_{2}\left[n_{2}\right]
\end{gathered}
$$

Row convolution gives $v\left[n_{1}, n_{2}\right]=h_{2}\left[n_{2}\right] * y\left[n_{1}, n_{2}\right]$, which is

$$
v\left[n_{1}, n_{2}\right]= \begin{cases}\frac{255}{2} \operatorname{sinc}\left(\frac{\pi\left(n_{2}-50\right)}{2}\right) & n_{1}=90 \\ 0 & \text { otherwise }\end{cases}
$$

Column convolution then gives

$$
z\left[n_{1}, n_{2}\right]=\frac{255}{4} \operatorname{sinc}\left(\frac{\pi\left(n_{1}-90\right)}{2}\right) \operatorname{sinc}\left(\frac{\pi\left(n_{2}-50\right)}{2}\right)
$$

Problem 6 (10 points)

Consider an infinite-sized RGB image containing a single diagonal white line on a black background, specifically

$$
R\left[n_{1}, n_{2}\right]=G\left[n_{1}, n_{2}\right]=B\left[n_{1}, n_{2}\right]= \begin{cases}255 & n_{1}-n_{2}=5 \\ 0 & \text { otherwise }\end{cases}
$$

where $-\infty<n_{1}<\infty,-\infty<n_{2}<\infty$, and the signals R, G, and B are the red, green, and blue channels, respectively.
\qquad
(a) Find the luminance $Y\left[n_{1}, n_{2}\right]$.

Solution:

The best answer is

$$
Y\left[n_{1}, n_{2}\right]=255
$$

because the coefficients of the first row of the transform matrix sum to 1 . But an unsimplified explicit numerical formula is also OK:

$$
Y\left[n_{1}, n_{2}\right]=0.299 \times 255+0.587 \times 255+0.114 \times 255
$$

(b) Find the blue-shift $P_{b}\left[n_{1}, n_{2}\right]$.

Solution:

The best answer is

$$
P_{b}\left[n_{1}, n_{2}\right]=0
$$

because the coefficients of the second row of the transform matrix sum to 0 . But an unsimplified explicit numerical formula is also OK:

$$
P_{b}\left[n_{1}, n_{2}\right]=-0.168736 \times 255-0.331264 \times 255+0.5 \times 255
$$

Problem 7 (10 points)

Consider an infinite-sized grayscale image of a diagonal gray line:

$$
x\left[n_{1}, n_{2}\right]=\left\{\begin{array}{ll}
105 & n_{1}-n_{2}=5 \\
0 & \text { otherwise }
\end{array}, \quad-\infty<n_{1}<\infty, \quad-\infty<n_{2}<\infty\right.
$$

(a) Suppose we convolve each row with a differencing filter:

$$
y\left[n_{1}, n_{2}\right]=x\left[n_{1}, n_{2}\right] * d_{2}\left[n_{2}\right], \quad d_{2}\left[n_{2}\right]= \begin{cases}1 & n_{2}=0 \\ -1 & n_{2}=2 \\ 0 & \text { otherwise }\end{cases}
$$

Find $y\left[n_{1}, n_{2}\right]$.
Solution:

$$
\begin{aligned}
y\left[n_{1}, n_{2}\right] & =\sum_{m_{2}} x\left[n_{1}, n_{2}-m_{2}\right] d_{2}\left[m_{2}\right] \\
& =x\left[n_{1}, n_{2}\right]-x\left[n_{1}, n_{2}-2\right] \\
& = \begin{cases}105 & n_{2}=n_{1}-5 \\
-105 & n_{2}=n_{1}-3 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

\qquad
(b) Suppose, INSTEAD, that we convolve each row with an averaging filter

$$
z\left[n_{1}, n_{2}\right]=x\left[n_{1}, n_{2}\right] * a_{2}\left[n_{2}\right], \quad a_{2}\left[n_{2}\right]= \begin{cases}1 & n_{2} \in\{0,2\} \\ 2 & n_{2}=1 \\ 0 & \text { otherwise }\end{cases}
$$

Find $z\left[n_{1}, n_{2}\right]$.
Solution:

$$
\begin{aligned}
y\left[n_{1}, n_{2}\right] & =\sum_{m_{2}} x\left[n_{1}, n_{2}-m_{2}\right] a_{2}\left[m_{2}\right] \\
& =x\left[n_{1}, n_{2}\right]+2 x\left[n_{1}, n_{2}-1\right]+x\left[n_{1}, n_{2}-2\right] \\
& = \begin{cases}105 & n_{2}=n_{1}-5 \text { or } n_{1}-3 \\
210 & n_{2}=n_{1}-4 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

