UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
 Department of Electrical and Computer Engineering

ECE 417 Principles of Signal Analysis

Spring 2015

EXAM 2 SOLUTIONS

Thursday, April 9, 2015

Problem 1 (25 points)

The stock market alternates between long bull markets (state 1) and short bear markets (state 2). This HMM has the following parameters:

$$
\vec{\pi}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad A=\left[\begin{array}{ll}
0.999 & 0.001 \\
0.005 & 0.995
\end{array}\right], \quad \mu_{1}=0.1, \quad \mu_{2}=-0.3, \quad \sigma_{1}^{2}=\sigma_{2}^{2}=1
$$

where $\pi_{i}=p\left(q_{1}=i\right), a_{i j}=p\left(q_{t+1}=j \mid q_{t}=i\right)$, and $p\left(x_{t} \mid q_{t}=j\right)=\mathcal{N}\left(x_{t} ; \mu_{j}, \sigma_{j}^{2}\right)$.
You observe x_{2} on day 2.
For what values of x_{2} does the forward algorithm yield probabilities $\alpha_{t}(i)$ such that $\alpha_{2}(2)>$ $\alpha_{2}(1)$?

Asking exactly the same question in different words: for what values of x_{2} would it be rational to conclude that a bear market has started?

SOLUTION: $x_{2}<-0.1-2.5 \ln (999)$

Problem 2 (15 points)

A triangle begins at

$$
X=\left[\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3} \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Notice that, in this triangle, the barycentric coordinates of any point $\left(x_{4}, y_{4}\right)$ are given by

$$
\vec{\lambda}_{4}=\left[\begin{array}{c}
1-x_{4}-y_{4} \\
x_{4} \\
y_{4}
\end{array}\right]
$$

Suppose the triangle is rotated, shifted and scaled to the new position

$$
\Xi=\left[\begin{array}{ccc}
\xi_{1} & \xi_{2} & \xi_{3} \\
\eta_{1} & \eta_{2} & \eta_{3} \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 3 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

The point $\left(x_{4}, y_{4}\right)=\left(\frac{1}{3}, \frac{1}{3}\right)$, internal to the first triangle, gets mapped to some point $\left(\xi_{4}, \eta_{4}\right)$. Find ξ_{4} and η_{4}.
\qquad

SOLUTION: $\xi_{4}=\frac{1}{3}, \quad \eta_{4}=2$

Problem 3 (10 points)

Suppose a particular image has the following pixel values:

$$
a[0,0]=1, \quad a[1,0]=0, \quad a[0,1]=0, \quad a[1,1]=0
$$

Use bilinear interpolation to estimate the value of the pixel $a\left(\frac{1}{3}, \frac{1}{3}\right)$.

$$
\text { SOLUTION: } a\left(\frac{1}{3}, \frac{1}{3}\right)=\frac{4}{9}
$$

Problem 4 (25 points)

Consider two PDFs. Class $y=0$ is Gaussian:

$$
p(x \mid y=0)=\mathcal{N}\left(x ; \mu_{0}, \sigma_{0}^{2}\right)
$$

Class $y=1$ is mixture Gaussian, and for some reason, one of its mixture components is the Gaussian from class 0:

$$
p(x \mid y=1)=0.9 p(x \mid y=0)+0.1 \mathcal{N}\left(x ; \mu_{1}, \sigma_{1}^{2}\right)
$$

where $\mu_{0}=0, \mu_{1}=3$, and $\sigma_{0}^{2}=\sigma_{1}^{2}=1$.
For what values of x is

$$
\frac{p(x \mid y=1)}{p(x \mid y=0)}>1 ?
$$

SOLUTION: $x>\frac{3}{2}$

Problem 5 (25 points)

You have six audio training examples:

$$
\vec{a}_{1}=\left[\begin{array}{c}
400 \\
0
\end{array}\right], \quad \vec{a}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \vec{a}_{3}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \quad \vec{a}_{4}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \quad \vec{a}_{5}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right], \quad \vec{a}_{6}=\left[\begin{array}{c}
-400 \\
0
\end{array}\right]
$$

You also have six video training examples:

$$
v_{1}=-5, \quad v_{2}=-3, \quad v_{3}=-1, \quad v_{4}=1, \quad v_{5}=3, \quad v_{6}=5
$$

The class labels for these audiovisual training data are as follows:

$$
y_{1}=0, \quad y_{2}=0, \quad y_{3}=0, \quad y_{4}=1, \quad y_{5}=1, \quad y_{6}=1
$$

Define the classification function $f(\vec{a}, v, y)=\lambda \ln p(y \mid \vec{a})+(1-\lambda) \ln p(y \mid v)$, where
\qquad

- $p(y \mid \vec{a})$ is estimated using a 3-nearest neighbor (3NN) pmf,
- $p(y \mid v)$ is estimated using a $\mathbf{5}$-nearest neighbor (5NN) pmf.

Suppose $v_{7}=2$, and $\vec{a}_{7}=\left[\begin{array}{l}0.5 \\ 0.5\end{array}\right]$. For what values of λ is $f\left(\vec{a}_{7}, v_{7}, 1\right)>f\left(\vec{a}_{7}, v_{7}, 0\right)$?

$$
\text { SOLUTION: } \lambda<\frac{\ln (3 / 2)}{\ln (3)}
$$

