UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing

Spring 2016

EXAM 2

Thursday, March 31, 2016

- This is a CLOSED BOOK exam. You may use one sheet (front and back) of handwritten notes.
- No calculators are permitted. You need not simplify explicit numerical expressions.
- There are a total of 100 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
5	
Total	

Name: \qquad
\qquad

Possibly Useful Formulas

Gaussian (Normal) Distribution A Gaussian is parameterized by $\vec{\mu}, \Sigma$, and $D=\operatorname{dim}(\vec{\mu})$ as

$$
\mathcal{N}(\vec{x} \mid \vec{\mu}, \Sigma)=\frac{1}{(2 \pi)^{D / 2}|\Sigma|^{1 / 2}} e^{-\frac{1}{2}(\vec{x}-\vec{\mu})^{T} \Sigma^{-1}(\vec{x}-\vec{\mu})}
$$

Gaussian Mixture Model (GMM) A GMM is parameterized by $c_{k}, \vec{\mu}_{k}$, and Σ_{k} for $1 \leq$ $k \leq K$ as

$$
p_{X}(\vec{x})=\sum_{k=1}^{K} c_{k} \mathcal{N}\left(\vec{x} \mid \vec{\mu}_{k}, \Sigma_{k}\right)
$$

Hidden Markov Model (HMM) An HMM is parameterized by $\lambda=\left\{\pi_{i}, a_{i j}, b_{j}(\vec{x})\right\}$, where

$$
\begin{aligned}
\pi_{i} & =p\left(q_{1}=i \mid \lambda\right), \quad 1 \leq i \leq N \\
a_{i j} & =p\left(q_{t+1}=j \mid q_{t}=i, \lambda\right), \quad 1 \leq i, j \leq N \\
b_{j}(\vec{x}) & =p\left(\vec{x} \mid q_{t}=j, \lambda\right), \quad 1 \leq j \leq N
\end{aligned}
$$

The acoustic model $b_{j}(\vec{x})$ might be GMM, for example, in which case the HMM parameters include

$$
\begin{aligned}
c_{j k} & =p\left(g_{t}=k \mid q_{t}=j\right) \\
\vec{\mu}_{j k} & =E\left[\vec{x}_{t} \mid q_{t}=j, g_{t}=k\right] \\
\Sigma_{j k} & =E\left[\left(\vec{x}_{t}-\vec{\mu}_{j k}\right)\left(\vec{x}_{t}-\vec{\mu}_{j k}\right)^{T} \mid q_{t}=j, g_{t}=k\right]
\end{aligned}
$$

Scaled Forward Algorithm

$$
\begin{aligned}
\hat{\alpha}_{1}(i) & =\pi_{i} b_{i}\left(\vec{x}_{1}\right), \quad 1 \leq i \leq N \\
g_{1} & =\sum_{i=1}^{N} \hat{\alpha}_{1}(i) \\
\tilde{\alpha}_{1}(i) & =\frac{1}{g_{1}} \hat{\alpha}_{1}(i) \\
\hat{\alpha}_{t}(j) & =\sum_{i=1}^{N} \tilde{\alpha}_{t-1}(i) a_{i j} b_{j}\left(\vec{x}_{t}\right) \\
g_{t} & =\sum_{j=1}^{N} \hat{\alpha}_{t}(j) \\
\tilde{\alpha}_{t}(j) & =\frac{1}{g_{t}} \hat{\alpha}_{t}(j) \\
p\left(\vec{x}_{1}, \ldots, \vec{x}_{t} \mid \lambda\right) & =\prod_{t=1}^{T} g_{t}
\end{aligned}
$$

Problem 1 (20 points)

You want to classify zoo animals. Your zoo only has two species: elephants and giraffes. There are more elephants than giraffes: if Y is the species,

$$
\begin{aligned}
p_{Y}(\text { elephant }) & =\frac{e}{e+1} \\
p_{Y}(\text { giraffe }) & =\frac{1}{e+1}
\end{aligned}
$$

where $e=2.718 \ldots$ is the base of the natural logarithm. The height of giraffes is Gaussian, with mean $\mu_{G}=5$ meters and variance $\sigma_{G}^{2}=1$. The height of elephants is also Gaussian, with mean $\mu_{E}=3$ and variance $\sigma_{E}^{2}=1$. Under these circumstances, the minimum probability of error classifier is

$$
\hat{y}(x)= \begin{cases}\text { giraffe } & x>\theta \\ \text { elephant } & x<\theta\end{cases}
$$

Find the value of θ that minimizes the probability of error.
\qquad

Problem 2 (20 points)

A 3-nearest neighbor (3NN) estimator of $p_{Y \mid X}\left(y_{0} \mid \vec{x}_{0}\right)$ is computed by finding the 3 nearest neighbors of vector $\vec{x}_{0}=\left[x_{10}, x_{20}\right]^{T}$, then measuring

$$
p_{Y \mid X}\left(y_{0} \mid \vec{x}_{0}\right)=\frac{\# \text { neighbors from class } y_{0}}{3}
$$

Suppose that the training dataset contains six labeled $\left(\vec{x}_{n}, y_{n}\right)$ pairs, given by

$$
\begin{gathered}
{\left[y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right]=[0,0,0,1,1,1]} \\
{\left[\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \vec{x}_{4}, \vec{x}_{5}, \vec{x}_{6}\right]=\left[\begin{array}{cccccc}
0 & 0 & 0 & 2 & 2 & 2 \\
-1 & 0 & 1 & -3 & 0 & 3
\end{array}\right]}
\end{gathered}
$$

Find the 3NN estimator $p_{Y \mid X}\left(y_{0}=1 \left\lvert\,\left[\begin{array}{c}x_{10} \\ 0\end{array}\right]\right.\right)$ as a function of $\vec{x}_{0}=\left[\begin{array}{c}x_{10} \\ 0\end{array}\right]$, that is, for $x_{20}=0$.
\qquad

Problem 3 (20 points)

Random vector X is distributed as

$$
p_{X}(\vec{x})=\sum_{k=1}^{2} c_{k} \mathcal{N}(\vec{x} \mid \vec{\mu}, \Sigma)
$$

where $c_{1}=c_{2}=0.5$, and

$$
\vec{\mu}_{1}=\left[\begin{array}{c}
-2 \\
0
\end{array}\right], \quad \vec{\mu}_{2}=\left[\begin{array}{l}
2 \\
0
\end{array}\right], \quad \Sigma_{1}=\left[\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right], \quad \Sigma_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]
$$

Draw a contour plot showing $p_{X}(\vec{x})$ as a function of \vec{x}. Mark the modes of the distribution, and draw contour lines at levels of $e^{-1 / 2}$ and e^{-2} times the height of the modes.

Problem 4 (20 points)

A particular hidden Markov model is parameterized by $\lambda=\left\{\pi_{i}, a_{i j}, b_{j}(\vec{x})\right\}$ where π_{i} is uniform $\left(\pi_{i}=\frac{1}{N}\right)$. Devise an algorithm to compute $p\left(q_{1}=k \mid \vec{x}_{1}, \ldots, \vec{x}_{T}, \lambda\right)$. Your algorithm should be similar to the forward algorithm, but with a different initialization.
\qquad

Problem 5 (20 points)

The scaled forward algorithm is provided for you on the formula page at the beginning of this exam. In terms of the quantities $\pi_{i}, a_{i j}, b_{j}(\vec{x}), \hat{\alpha}_{t}(j), g_{t}$, and/or $\tilde{\alpha}_{t}(j)$, find a formula for the quantity $p\left(q_{t-1}=i, q_{t}=j, \vec{x}_{t-1}, \vec{x}_{t} \mid \vec{x}_{1}, \ldots, \vec{x}_{t-2}, \lambda\right)$.

