UNIVERSITY OF ILLINOIS

Department of Electrical and Computer Engineering ECE 417 MULTIMEDIA SIGNAL PROCESSING

Lecture 19 Sample Problems

Problem 19.1

Consider a one-layer neural net with one-dimensional observations:

$$y = \sigma(a)$$
$$a = u_1 x + u_0$$

where

$$\sigma(a) = \frac{1}{1 + e^{-a}}$$

Start with $u_1 = 1$, $u_0 = 0$, and the following training corpus:

$$(x_i, \zeta_i) = \{(-4.97, 1), (-1.0, 0), (1.0, 1), (4.97, 0)\}$$

Where the training corpus error is defined to be

$$E = \frac{1}{4} \sum_{i=1}^{4} E_i, \qquad E_i = \frac{1}{2} (y_i - \zeta_i)^2$$

You may find it useful to know that $\sigma(b) = (1 - \sigma(-b))$, and that $\sigma'(b) = \sigma'(-b)$. You may also find it useful to know that $\sigma^2(-1) = 0.07$, $\sigma^2(4.97) = 0.99$, $\sigma(-1)\sigma'(-1) = 0.067$, $\sigma(4.97)\sigma'(4.97) = 0.134$, and $4.97\sigma(4.97)\sigma'(4.97) = 0.067$.

- 1. Given the initial values $u_1 = 1$ and $u_0 = 0$, what is the initial training corpus error?
- 2. Find at least one set of values u_1 and u_0 that has lower error than the initial error.
- 3. Prove that, in this case, batch training causes the network to converge to a sub-optimal set of network weights.
- 4. Suppose you implement SGD with replacement. "With replacement" means that you selecting $i \in \{1, 2, 3, 4\}$ for each training iteration, without regard to what was chosen in previous training iterations. Normally, i would be selected at random, but for the purposes of this problem, suppose you could magically choose a sequence of training tokens, presented one at a time to the training algorithm, that would make the algorithm converge to the solution you named in part (b). Propose such a sequence.