UNIVERSITY OF ILLINOIS

Department of Electrical and Computer Engineering ECE 417 MULTIMEDIA SIGNAL PROCESSING

Lecture 5 Sample Problems

Problem 5.1

Suppose that a particular covariance matrix, $R = V\Lambda V^T$, has a trace equal to $D\sigma^2$, and eigenvalues given by

$$\lambda_d = D\sigma^2 \left(\frac{1}{2}\right)^n, \quad 1 \le d \le D - 1$$

and $\lambda_D = \lambda_{D-1}$. Suppose that D = 512 dimensions.

The principal components are defined as

$$\vec{y} = \left[\vec{v}_1, \dots, \vec{v}_M\right]^T (\vec{x} - \vec{\mu})$$

where M < D is the number of principal components retained. What is the smallest value of M that will result in $E[\|\vec{y}\|^2] \ge 0.95D\sigma^2$?

Problem 5.2

What is the probability density function of the vector \vec{y} in problem 1?

Problem 5.3

Consider a particular covariance matrix, $R = V\Lambda V^T$, where $V = [\vec{v}_1, \dots, \vec{v}_D]$, and the vectors \vec{v}_d are orthonormal. Suppose that the first C eigenvalues, $\lambda_1, \dots, \lambda_C$ are all positive, but the remaining D - C eigenvalues are all zero.

A matrix whose eigenvalues are all $\lambda_d \geq 0$ is called a "positive semi-definite matrix." If some eigenvalues are zero, there is no matrix R^{-1} such that $R^{-1}R = I$. It's possible, however, to define a pseudo-inverse R^{\dagger} that has some of the properties of an inverse, for example:

- 1. $R^{\dagger}R = \sum_{m=1}^{C} \vec{v}_{m} \vec{v}_{m}^{T}$
- 2. $R^{\dagger}RR^{\dagger} = R^{\dagger}$, and
- 3. $RR^{\dagger}R = R$

Come up with a definition of R^{\dagger} , in terms of the nonzero eigenvalues λ_d and their corresponding eigenvectors \vec{v}_d , that satisfies these three requirements.

Problem 5.4

Suppose you have a two-class classification problem, with D-dimensional observations given by

$$\vec{x} = \left[\begin{array}{c} x_1 \\ \vdots \\ x_D \end{array} \right]$$

In this case, use the random variable $Y \in \{0, 1\}$ as the class label (e.g., the name of the person you're trying to identify). The prior probabilities are given by the known parameter π_0 :

$$p_Y(0) = \pi_0, \quad p_Y(1) = 1 - \pi_0$$

Suppose that, if you know the class label, the feature vector has no further randomness at all. If vector \vec{x} is drawn from class Y=0, then it ALWAYS has a value of $\vec{x}=\vec{\mu}_0$; if it is drawn from class Y=1, then it ALWAYS has a value of $\vec{x}_n=\vec{\mu}_1$.

Define the global mean, covariance, and principal components to be

$$\vec{\mu} = E\left[\vec{x}\right], \quad R = E\left[\left(\vec{x} - \vec{\mu}\right)\left(\vec{x} - \vec{\mu}\right)^T\right], \quad R = V\Lambda V^T, \quad V^TV = I, \quad \Lambda \text{ diagonal}$$

Find $\vec{\mu}$, R, V and Λ in terms of the parameters π_0 , $\vec{\mu}_0$, and $\vec{\mu}_1$.