Lecture 20: Rotating, Scaling, Shifting and
Shearing an Image

ECE 417: Multimedia Signal Processing
Mark Hasegawa-Johnson

University of lllinois

Nov. 1, 2018

I

1867

@ Modifying an Image by Moving Its Points
© Image Interpolation
© Affine Transformations

@ Conclusions

Modifying an Image by Moving Its Points

Outline

@ Modifying an Image by Moving Its Points

Modifying an Image by Moving Its Points
©000

Moving Points Around

se that somebody has given you a bunch of points:

First, let's suppo

ying an Image by Mo

...and let's
suppose you
want to move
them around,
to create new
images. . .

Modifying an Image by Moving Its Points
ooeo

Moving One Point

@ Your goal is to synthesize an output image, J[x, y|, where
J[x, y] might be intensity, or RGB vector, or whatever, x is
row number (measured from top to bottom), y is column
number (measured from left to right).

@ What you have available is:

o An input image, I[m, n], sampled at integer values of m and n.
o Knowledge that the input point at /(u, v) has been moved to

the output point at J[x, y], where x and y are integers, but u
and v might not be integers.

Jx; ¥l = I(u, v)

Modifying an Image by Moving Its Points
oooe

Integer Output Points

You want to create the output image as

for x in range(0 M):
for y in range(0,N):
(u,v) = input_pixels_corresponding_to(x,y)
J[x,y] = compute_pixel(l,u,v)

Non-Integer Input Points

If [x, y] are integers, then usually, (u, v) are not integers.

Image Interpolation

Outline

© Image Interpolation

Image Interpolation
®000

Image Interpolation

The function compute_pixel performs image interpolation. Given
the pixels of /[m, n] at integer values of m and n, it computes the
pixel at a non-integer position /(u, v) as:

I(u,v) = ZZI[m, nlh(u — m,v — n)

m

Image Interpolation
0®00

Piece-Wise Constant Interpolation

I(u, v):ZZ/[m,n]h(u—m,v—n) (1)

For example, suppose

1 0<u<l, 0<v<«l1
0 otherwise

h(u, v) = {

Then Eq. (1) is the same as just truncating v and v to the
next-lower integer, and outputting that number:

I(u,v) = I[u], [v]]

where |u| means “the largest integer smaller than u".

Image Interpolation
coeo

Bi-Linear Interpolation

v)=> > I[m,nlh(u—m,v — n)
For example, suppose
h(u, v) = max (0, (1 — |u[)(1 — |v]))

Then Eq. (1) is the same as piece-wise linear interpolation among
the four nearest pixels. This is called bilinear interpolation
because it's linear in two directions.

m=|ul, e=u—m
n=|v], f=v—-m
H(u,v)=(1—e)(1—F)[m,n]+(1—e)fl[m, n+1]
+e(l—1F)I[m+1,n+eflm+1,n+1]

Image Interpolation
oooe

Sinc Interpolation

(u,v) = ZZI[m nlh(u — m,v — n)

For example, suppose
h(u, v) = sinc(mu)sinc(mv)

Then Eq. (1) is an ideal band-limited sinc interpolation. It
guarantees that the continuous-space image, /(u, v), is exactly a
band-limited D/A reconstruction of the digital image /[m, n].

Affine Transformations

Outline

© Affine Transformations

Affine Transformations
©0000000

How do we find (u, v)?

Now the question: how do we find (u, v)?
We're going to assume that this is a piece-wise affine
transformation.

Affine Transformations
0®000000

How do we find (u, v)?

An affine transformation is defined by:

ul| | a b X n c
v | d e y f
A much easier to write this is by using extended-vector notation:

u X

y
1

Il
ca o

b
e
0

= 0

1

It's convenient to define & = [u,v,1]7, and X = [x,y,1]", so that
for any X in the output image,

U= AX

Affine Transformations
00®00000

Affine Transforms

Notice that the affine transformation has 6 degrees of freedom:
(a, b, c,d,e,). Therefore, you can accmplish 6 different types of
transformation:

@ Shift the image left<>right (using f)
@ Shift the image up«>down (using c)

@ Scale the image horizontally (using e)
@ Scale the image vertically (using a)

@ Rotate the image (using a, b, d, e)

@ Shear the image horizontally (using d)

Vertical shear (using b) is a combination of horizontal shear +
rotation.

Affine Transformations
000e®0000

Example: Reflection

Identity (Criginal) Reflected Horzontaly

Affine Transformations

0000e000

Example: Scale

Identity (Original) Scaled 2y Horizontaly

O O
O N O
= O O

Affine Transformations

00000e00

Example: Rotation

rotated by /4

)6 ¢

l[dentity (Criginal)

u cosf® sinf O X
v |=| —sinf cosf 0 3%
1 0 0 1 1

Affine Transformations
00000080

Example: Shear

Identity (Criginal) Sheared Horizontaly

Affine Transformations

0O000000e

Affine Transformations

e T vyanstfornmations

¥ Combines linear +ransformations,

and Translations

x [a b c x
the ones we looked at, thatwere| d e f Y
tihe you know the ﬁ@ﬁﬁﬂﬂ@n s;@? ing an@ﬂ 0 0 1 w

> P o) 0:26/1:19 @B £ 3] i

https://www.youtube.com/watch?v=il6Z5LCykZk

Conclusions

Outline

@ Conclusions

Conclusions
.

Conclusions

@ You can generate an output image J[x, y] by warping an input
image /(u,v).

@ If (u,v) are not integers, you can compute the value of /(u, v)
by interpolating among /[m, n], where [m, n] are integers.

@ Shift, scale, rotation and shear are affine transformations,

given by
u a b ¢ X
v|=|d e f y
1 0 01 1

	Modifying an Image by Moving Its Points
	Image Interpolation
	Affine Transformations
	Conclusions

