
Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

Lecture 20: Rotating, Scaling, Shifting and
Shearing an Image

ECE 417: Multimedia Signal Processing
Mark Hasegawa-Johnson

University of Illinois

Nov. 1, 2018



Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

1 Modifying an Image by Moving Its Points

2 Image Interpolation

3 Affine Transformations

4 Conclusions



Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

Outline

1 Modifying an Image by Moving Its Points

2 Image Interpolation

3 Affine Transformations

4 Conclusions



Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

Moving Points Around

First, let’s suppose that somebody has given you a bunch of points:



Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

. . . and let’s
suppose you
want to move
them around,
to create new
images. . .



Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

Moving One Point

Your goal is to synthesize an output image, J[x , y ], where
J[x , y ] might be intensity, or RGB vector, or whatever, x is
row number (measured from top to bottom), y is column
number (measured from left to right).

What you have available is:

An input image, I [m, n], sampled at integer values of m and n.
Knowledge that the input point at I (u, v) has been moved to
the output point at J[x , y ], where x and y are integers, but u
and v might not be integers.

J[x , y ] = I (u, v)



Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

Integer Output Points

You want to create the output image as

f o r x i n range ( 0 ,M) :
f o r y i n range ( 0 ,N ) :

( u , v ) = i n p u t p i x e l s c o r r e s p o n d i n g t o ( x , y )
J [ x , y ] = c o m p u t e p i x e l ( I , u , v )

Non-Integer Input Points

If [x , y ] are integers, then usually, (u, v) are not integers.



Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

Outline

1 Modifying an Image by Moving Its Points

2 Image Interpolation

3 Affine Transformations

4 Conclusions



Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

Image Interpolation

The function compute pixel performs image interpolation. Given
the pixels of I [m, n] at integer values of m and n, it computes the
pixel at a non-integer position I (u, v) as:

I (u, v) =
∑
m

∑
n

I [m, n]h(u −m, v − n)



Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

Piece-Wise Constant Interpolation

I (u, v) =
∑
m

∑
n

I [m, n]h(u −m, v − n) (1)

For example, suppose

h(u, v) =

{
1 0 ≤ u < 1, 0 ≤ v < 1
0 otherwise

Then Eq. (1) is the same as just truncating u and v to the
next-lower integer, and outputting that number:

I (u, v) = I [buc, bvc]

where buc means “the largest integer smaller than u”.



Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

Bi-Linear Interpolation

I (u, v) =
∑
m

∑
n

I [m, n]h(u −m, v − n)

For example, suppose

h(u, v) = max (0, (1− |u|)(1− |v |))

Then Eq. (1) is the same as piece-wise linear interpolation among
the four nearest pixels. This is called bilinear interpolation
because it’s linear in two directions.

m = buc, e = u −m

n = bvc, f = v −m

I (u, v) = (1− e)(1− f )I [m, n] + (1− e)fI [m, n + 1]

+ e(1− f )I [m + 1, n] + efI [m + 1, n + 1]



Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

Sinc Interpolation

I (u, v) =
∑
m

∑
n

I [m, n]h(u −m, v − n)

For example, suppose

h(u, v) = sinc(πu)sinc(πv)

Then Eq. (1) is an ideal band-limited sinc interpolation. It
guarantees that the continuous-space image, I (u, v), is exactly a
band-limited D/A reconstruction of the digital image I [m, n].



Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

Outline

1 Modifying an Image by Moving Its Points

2 Image Interpolation

3 Affine Transformations

4 Conclusions



Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

How do we find (u, v)?

Now the question: how do we find (u, v)?
We’re going to assume that this is a piece-wise affine
transformation. [

u
v

]
=

[
a b
d e

] [
x
y

]
+

[
c
f

]



Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

How do we find (u, v)?

An affine transformation is defined by:[
u
v

]
=

[
a b
d e

] [
x
y

]
+

[
c
f

]
A much easier to write this is by using extended-vector notation: u

v
1

 =

 a b c
d e f
0 0 1

 x
y
1


It’s convenient to define ~u = [u, v , 1]T , and ~x = [x , y , 1]T , so that
for any ~x in the output image,

~u = A~x



Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

Affine Transforms

Notice that the affine transformation has 6 degrees of freedom:
(a, b, c , d , e, f ). Therefore, you can accmplish 6 different types of
transformation:

Shift the image left↔right (using f )

Shift the image up↔down (using c)

Scale the image horizontally (using e)

Scale the image vertically (using a)

Rotate the image (using a, b, d , e)

Shear the image horizontally (using d)

Vertical shear (using b) is a combination of horizontal shear +
rotation.



Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

Example: Reflection

 u
v
1

 =

 1 0 0
0 −1 0
0 0 1

 x
y
1





Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

Example: Scale

 u
v
1

 =

 1 0 0
0 2 0
0 0 1

 x
y
1





Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

Example: Rotation

 u
v
1

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 x
y
1





Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

Example: Shear

 u
v
1

 =

 1 0 0
0.5 1 0
0 0 1

 x
y
1





Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

https://www.youtube.com/watch?v=il6Z5LCykZk


Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

Outline

1 Modifying an Image by Moving Its Points

2 Image Interpolation

3 Affine Transformations

4 Conclusions



Modifying an Image by Moving Its Points Image Interpolation Affine Transformations Conclusions

Conclusions

You can generate an output image J[x , y ] by warping an input
image I (u, v).

If (u, v) are not integers, you can compute the value of I (u, v)
by interpolating among I [m, n], where [m, n] are integers.

Shift, scale, rotation and shear are affine transformations,
given by  u

v
1

 =

 a b c
d e f
0 0 1

 x
y
1




	Modifying an Image by Moving Its Points
	Image Interpolation
	Affine Transformations
	Conclusions

