Lecture 24: Barycentric Coordinates

ECE 417: Multimedia Signal Processing Mark Hasegawa-Johnson

University of Illinois

11/14/2018

Overview of MP4

2 Barycentric Coordinates

Outline

Overview of MP4

2 Barycentric Coordinates

•00

Goal of MP4: Generate video frames (right) by warping a static image (left).

MP4 full outline

How it is done (Full walkthrough: Tuesday November 27)

```
lip\_height,width = NeuralNet(MFCC)
    out_triangs = LinearlyInterpolate (inp_triangs,lip_height,width)
      inp_coord = BaryCentric (out_coord,inp_triangs,out_triangs)
     out_image = BilinearInterpolate (inp_coord,inp_image)
```

Outline

Overview of MP4

2 Barycentric Coordinates

Affine Transformations

* Combines linear transformations, and Translations

	$\begin{bmatrix} x' \end{bmatrix} \begin{bmatrix} a \end{bmatrix}$	b	c	$\begin{bmatrix} x \end{bmatrix}$
the	he ones we looked at, that were $egin{array}{c} d \\ you know the rotation scaling and 0 \\ \end{array}$	$e \\ 0$	$egin{array}{c} f \\ 1 \end{array}$	$\left[egin{array}{c} y \ w \end{array} ight]$
▶ ▶ ♠) 0:26 / 1:19			cc 💯	\$J #

Piece-wise affine transform

- OK, so somebody's given us a lot of points, arranged like this in little triangles.
- We know that we want a DIFFERENT AFFINE TRANSFORM for EACH TRIANGLE. For the $k^{\rm th}$ triangle, we want to have

$$A_k = \left[\begin{array}{ccc} a_k & b_k & c_k \\ d_k & e_k & f_k \\ 0 & 0 & 1 \end{array} \right]$$

Piece-wise affine transform

output point:
$$\vec{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
, input point: $\vec{u} = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$

Definition: if \vec{x} is in the k^{th} triangle in the **output image**, then we want to use the k^{th} affine transform:

$$\vec{x} = A_k \vec{u}, \quad \vec{u} = A_k^{-1} \vec{x}$$

If it is known that $\vec{u} = A_k^{-1} \vec{x}$ for some unknown affine transform matrix A_k ,

then

the method of barycentric coordinates finds \vec{u}

without ever finding A_k .

4□ > 4□ > 4□ > 4□ > 4□ > 9

Barycentric Coordinates

Barycentric coordinates turns the problem on its head. Suppose \vec{x} is in a triangle with corners at \vec{x}_1 , \vec{x}_2 , and \vec{x}_3 . That means that

$$\vec{x} = \lambda_1 \vec{x_1} + \lambda_2 \vec{x_2} + \lambda_3 \vec{x_3}$$

where

$$0 \leq \lambda_1, \lambda_2, \lambda_3 \leq 1$$

and

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

Barycentric Coordinates

Suppose that all three of the corners are transformed by some affine transform A, thus

$$\vec{u}_1 = A\vec{x}_1, \quad \vec{u}_2 = A\vec{x}_2, \quad \vec{u}_3 = A\vec{x}_3$$

Then if

If:
$$\vec{x} = \lambda_1 \vec{x_1} + \lambda_2 \vec{x_2} + \lambda_3 \vec{x_3}$$

Then:

$$\vec{u} = A\vec{x}$$

$$= \lambda_1 A\vec{x}_1 + \lambda_2 A\vec{x}_2 + \lambda_3 A\vec{x}_3$$

$$= \lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2 + \lambda_3 \vec{u}_3$$

In other words, once we know the λ 's, we no longer need to find A. We only need to know where the corners of the triangle have moved.

Barycentric Coordinates

lf

$$\vec{x} = \lambda_1 \vec{x}_1 + \lambda_2 \vec{x}_2 + \lambda_3 \vec{x}_3$$

Then

$$\vec{u} = \lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2 + \lambda_3 \vec{u}_3$$

How to find Barycentric Coordinates

But how do you find λ_1 , λ_2 , and λ_3 ?

$$\vec{x} = \lambda_1 \vec{x}_1 + \lambda_2 \vec{x}_2 + \lambda_3 \vec{x}_3 = [\vec{x}_1, \vec{x}_2, \vec{x}_3] \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix}$$

Write this as:

$$\vec{x} = X \vec{\lambda}$$

Therefore

$$\vec{\lambda} = X^{-1}\vec{x}$$

This **always works:** the matrix X is always invertible, unless all three of the points $\vec{x_1}$, $\vec{x_2}$, and $\vec{x_3}$ are on a straight line.

How do you find out which triangle the point is in?

• Suppose we have K different triangles, each of which is characterized by a 3×3 matrix of its corners

$$X_k = [\vec{x}_{1,k}, \vec{x}_{2,k}, \vec{x}_{3,k}]$$

where $\vec{x}_{m,k}$ is the m^{th} corner of the k^{th} triangle.

• Notice that, for any point \vec{x} , for ANY triangle X_k , we can find

$$\lambda = X_k^{-1} \vec{x}$$

• However, the coefficients λ_1 , λ_2 , and λ_3 will all be between 0 and 1 **if and only if** the point \vec{x} is inside the triangle X_k . Otherwise, some of the λ 's must be negative.

The Method of Barycentric Coordinates

To construct the animated output image frame O(x, y), we do the following things:

- First, for each of the reference triangles U_k in the input image I(u, v), decide where that triangle should move to. Call the new triangle location X_k .
- Second, for each output pixel (x, y):
 - For each of the triangles, find $\vec{\lambda} = X_k^{-1} \vec{x}$.
 - Choose the triangle for which all of the λ coefficients are $0 \le \lambda \le 1$.
 - Find $\vec{u} = U_k \vec{\lambda}$.
 - Estimate I(u, v) using bilinear interpolation.
 - Set O(x, y) = I(u, v).

Outline

Overview of MP4

2 Barycentric Coordinates

lip_height,width = NeuralNet (MFCC)
 out_triangs = LinearlyInterpolate (inp_triangs,lip_height,width)
 inp_coord = BaryCentric (out_coord,inp_triangs,out_triangs)
 out_image = BilinearInterpolate (inp_coord,inp_image)