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Discrete Cosine Transform

• Last time: PCA
• Why it’s useful: PCs are uncorrelated with one another, so you can 

keep just the top-N (for N<<D), and still get a pretty good nearest-
neighbor classifier.
• Why it’s difficult: PCA can only be calculated when you’ve already 

collected the whole dataset.
• Question: can we estimate what the PCA will be in advance, before 

we have the whole dataset?  For example, what are the PC axes for 
the set of “all natural images”?



A model of natural images

1. Choose an object of a random 
color,

2. Make it a random size,
3. Position it at a random 

location in the image,
4. Repeat.



Result: PCA = DFT!
Define the 2D DFT, 𝑋 𝑘#, 𝑘# ,	as
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It turns out that the pixels, 𝑥 𝑛#, 𝑛# , are 
highly correlated with one another (often 
exactly the same!)

But on average, as # images → ∞, the 
DFT coefficients 𝑋 𝑘#, 𝑘# become 
uncorrelated with one another (because 
object sizes are drawn at random).



2D DFT as a vector transform
• Suppose we vectorize the image, for example, in raster-scan order, so 

that 

𝑥⃗ =

𝑥 0,0
𝑥[0,1]
⋮

𝑥[𝑁# − 1, 𝑁2 − 1]
• … and suppose we invent some mapping from 𝑘 to 𝑘#, 𝑘2 , for 

example, it could be in diagonal order: 
0: 0,0 , 1: 1,0 , 2: 0,1 , 3: 2,0 , 4: 1,1 , 5: 0,2 , 6: 3,0 ,⋯.  Then 
the features are 𝑦4 = 𝑥⃗H𝑣⃗4, with basis vectors 
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The problem with DFT…

… is that it’s complex-valued!  That makes it hard to do some types of 
statistical analysis and machine learning (some types of derivatives, for 
example, do not have a definition if the variable is complex-valued).
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How to make the DFT real

The DFT of a real symmetric sequence is real & symmetric.

𝑥 𝑛 = 𝑥∗ 𝑁 − 𝑛 ↔ Im 𝑋[𝑘] = 0

Im 𝑥[𝑛] = 0 ↔ 𝑋 𝑘 = 𝑋∗ 𝑁 − 𝑘



How to make the DFT real

• Most natural images are real-
valued.
• Let’s also make it symmetric: 

pretend that the observed image 
is just ¼ of a larger, mirrored 
image.



Discrete Cosine Transform

Define 𝑠 𝑚 = P
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2D DCT as a vector transform
Assume that you have some reasonable mapping from 𝑛 to 𝑛#, 𝑛2 , 
and from 𝑘 to 𝑘#, 𝑘2 .  Then 𝑦⃗ = 𝑉H𝑥⃗, where 𝑉 = 𝑣⃗*,⋯ , 𝑣⃗+(+-,# , 
and
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Basis Images: 9th-order 2D DCT
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• The k1=0, k2=0 case represents the 
average intensity of all pixels in the 
image.

• The k1=1 or k2=1 basis vectors capture 
the brightness gradient from top to 
bottom, or from left to right, respectively.

• The k1=2 or k2=2 basis vectors capture 
the difference in pixel intensity between 
the center vs. the edges of the image.



Nearest neighbors: 9th-order 2D DCT

This image shows the four nearest 
neighbors of “Image 0” (Arnold 
Schwarzenegger) and “Image 47” 
(Jiang Zemin), calculated using a 9th-
order 2D DCT.
Neighbors of “Image 0” are dark on 
the right-hand-side, and in the lower-
left corner.
Neighbors of “Image 47” are darker 
on the bottom than the top.
Neither of these features captures 
person identity very well… 



Basis Images: 36th-order 2D DCT
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With a 36th order DCT (up to k1=5,k2=5), we 
can get a bit more detail about the image. 



Nearest neighbors: 36th-order 2D DCT

The 36 order DCT is, at least, 
capturing the face orientation: most 
of the images considered “similar” are 
at least looking in the same way.

Jiang Zemin seems to be correctly 
identified (2 of the 4 neighbors are 
the same person), but Arnold 
Schwarzenegger isn’t (each of the 4 
“similar” images shows a different 
person!)



PCA vs. DCT
PCA is like DCT in some ways.  In 
this example, 𝑣⃗* might be 
measuring average brightness; 𝑣⃗#
is left-to-right gradient; 𝑣⃗2 is 
measuring center-vs-edges.

But PCA can also learn what’s 
important to represent sample 
covariance of the given data.  For 
example, eyeglasses (𝑣⃗Z, 𝑣⃗[), 
short vs. long nose (𝑣⃗Z), narrow 
vs. wide chin (𝑣⃗\).



Nearest neighbors: 9th-order PCA

For these two test images, 9th-order 
PCA has managed to identify both 
people.
Two of the four neighbors of ”Image 
0” are Arnold Schwarzenegger.
Three of the four neighbors of “Image 
47” are Jiang Zemin.



High-order PCA might be just noise!
It is not always true that PCA outperforms DCT.  Especially for higher-
dimension feature vectors, PCA might just learn random variation in the 
training dataset, which might not be useful for identifying person identity.

…vs…



Summary

• As M → ∞, PCA of randomly generated images → DFT
• DCT = half of the real symmetric DFT of a real mirrored image.
• As order of the DCT grows, details of the image start to affect its nearest 

neighbor calculations, allowing it capture more about person identity.
• PCA can pick out some details with smaller feature vectors than DCT, 

because it models the particular problem under study (human faces) rather 
than a theoretical model of all natural images.
• With larger feature vectors, PCA tends to learn quirks of the given dataset, 

which are usually not useful for person identification.  DCT is a bit more 
robust (maybe because it’s like using M → ∞).
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K-Nearest Neighbors (KNN) Classifier

1. To classify each test token, find the K training tokens that are 
closest.

2. Look up the reference labels (known true person IDs) of those K 
neighbors.  Let them vote.  If there is a winner, then use that person 
ID as the hypothesis for the test token.
• If there is no winner, then fall back to 1NN.



Confusion Matrix

0 1 2 3

0 # times that 
person 0 was 
classified 
correctly 
(sometimes 
abbreviated 
C(0|0))

# times that 
person 0 was 
classified as 
person 1 
(sometimes 
abbreviated 
C(1|0))

… …

1 … … …

2

3
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Accuracy, Recall, and Precision
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The Multivariate Gaussian probability density 
function
If the dimensions of 𝑥⃗ are jointly Gaussian, then we can write their joint 
probability density function (pdf) as

𝑓w 𝑥⃗ = 𝒩 𝑥⃗; 𝜇⃗, 𝑅 =
1

2𝜋𝑅 #/2 𝑒
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The exponent is sometimes called the Mahalanobis distance (with weight 
matrix 𝑅) between 𝑥⃗ and 𝜇⃗ (named after Prasanta Chandra Mahalanobis, 
1893-1972):

𝑑�2 𝑥⃗, 𝜇⃗ = 𝑥⃗ − 𝜇⃗ H𝑅,# 𝑥⃗ − 𝜇⃗



Contour lines of a Gaussian pdf
The	contour	lines	of	a	Gaussian	pdf	are	the	
lines	of	constant	Mahalanobis distance	
between	𝑥⃗ and	𝜇⃗.		For	example:
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(
- when	1 = 𝑑�2 𝑥⃗, 𝜇⃗ which	

happens	when
1 = 𝑑�2 𝑥⃗, 𝜇⃗ = 𝑥⃗ − 𝜇⃗ H𝑅,# 𝑥⃗ − 𝜇⃗
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= 𝑒,2 when	4 = 𝑑�2 𝑥⃗, 𝜇⃗ which	
happens	when

4 = 𝑑�2 𝑥⃗, 𝜇⃗ = 𝑥⃗ − 𝜇⃗ H𝑅,# 𝑥⃗ − 𝜇⃗



Inverse of a positive definite matrix
The	inverse	of	a	positive	definite	matrix	is:

𝑅,# = 𝑉Λ,#𝑉H

Proof:
𝑅 𝑅,# = 𝑉Λ𝑉H𝑉Λ,#𝑉H = 𝑉ΛΛ,#𝑉H = 𝑉𝑉H = 𝐼

So
𝑑�2 𝑥⃗, 𝜇 = 𝑥⃗ − 𝜇 H𝑅,# 𝑥⃗ − 𝜇 = 𝑥⃗ − 𝜇 H 𝑉Λ,#𝑉H 𝑥⃗ − 𝜇

= 𝑦⃗H Λ,#𝑦⃗



Facts about ellipses
The formula

1 = 𝑦⃗HΛ,#𝑦⃗,				where   𝑦⃗ = 𝑉H 𝑥⃗ − 𝜇
… or equivalently

1 = ��-
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+ ⋯+ ���(-

���(
where 𝑦� = 𝑣⃗�

H 𝑥⃗ − 𝜇

… is the formula for an ellipsoid (in 2D, an ellipse).
• The principal axes are the vectors 𝑣⃗*, 𝑣⃗#,…

• The radius of the ellipse in the 𝑣⃗� direction is 𝜆�
• If 𝜆* = 𝜆# = ⋯, then it’s a circle.



Example

Suppose that 𝑥# and 𝑥2 are linearly correlated Gaussians with means 1 
and -1, respectively, and with variances 1 and 4, and covariance 1. 

𝜇 = 1
−1

Remember the definitions of variance and covariance: 
𝜎#2 = 𝐸 𝑥# − 𝜇# 2 = 1
𝜎22 = 𝐸 𝑥2 − 𝜇2 2 = 4

𝜌#2 = 𝜌2# = 𝐸 𝑥# − 𝜇# 𝑥2 − 𝜇2 = 1

𝑅 = 1 1
1 4



Example

We have that
𝑅 = 1 1

1 4
We get the eigenvalues from the determinant equation: 𝑅 − 𝜆𝐼 =
1 − 𝜆 4 − 𝜆 − 1 = 𝜆2 − 5𝜆 + 3 which equals zero for 𝜆 = Z± #Q

2
.

We get the eigenvectors by solving  𝜆𝑣⃗ = 𝑅𝑣⃗, which gives

𝑣⃗# ∝
1

3 + 13
2

, 𝑣⃗2 ∝
1

3 − 13
2



Example
So the principal axes of the ellipse 
are in the directions

𝑣⃗# ∝
1

3 + 13
2

,

𝑣⃗2 ∝
1

3 − 13
2



Summary
In fact, it’s useful to talk about 𝑅 in 
this way:
• The first principal component, 𝑦#, 

is the part of  𝑥⃗ − 𝜇⃗ that’s in the 
𝑣⃗# direction.  It has a variance of 𝜆# .
• The second principal component, 
𝑦2, is the part of  𝑥⃗ − 𝜇⃗ that’s in 
the 𝑣⃗2 direction.  It has a variance 
of 𝜆2.
• The principal components are 

uncorrelated with each other.
• If 𝑥⃗ is Gaussian, then 𝑦# and 𝑦2 are 

independent Gaussian random 
variables.


