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Basics of DSP: Filtering

y [n] =
∞∑

m=−∞
h[m]x [n −m]

Y (z) = H(z)X (z)
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Finite Impulse Response (FIR)

y [n] =
N−1∑
m=0

h[m]x [n −m]

The coefficients, h[m], are chosen in order to optimally position
the N − 1 zeros of the transfer function, rk , defined according to:

H(z) =
N−1∑
m=0

h[m]z−m = h[0]
N−1∏
k=1

(
1− rkz

−1)
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Infinite Impulse Response (IIR)

y [n] =
N−1∑
m=0

bmx [n −m] +
M−1∑
m=1

amy [n −m]

The coefficients, bm and am, are chosen in order to optimally
position the N − 1 zeros and M − 1 poles of the transfer function,
rk and pk , defined according to:

H(z) =

∑N−1
m=0 bmz

−m

1−
∑M−1

m=1 amz
−m

= b0

∏N−1
k=1

(
1− rkz

−1)∏M−1
k=1 (1− pkz−1)

STABILITY: If any of the poles are on or outside the unit circle
(|pk | ≥ 1), then y [n]→∞, even with finite x [n].
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Convolutional Neural Net = Nonlinear(FIR)

Image CC-SA-4.0 by Aphex34, https://commons.wikimedia.org/wiki/File:Conv_layer.png

https://commons.wikimedia.org/wiki/File:Conv_layer.png
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Convolutional Neural Net = Nonlinear(FIR)

ŷ [n] = g

(
N−1∑
m=0

w [m]x [n −m]

)
The coefficients, w [m], are chosen to minimize some kind of error.
For example, suppose that the goal is to make ŷ [n] resemble a
target signal y [n]; then we might use

E =
1

2

N∑
n=0

(ŷ [n]− y [n])2

and choose

w [n]← w [n]− η dE

dw [n]
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Recurrent Neural Net (RNN) = Nonlinear(IIR)

Image CC-SA-4.0 by Ixnay,

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg
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Recurrent Neural Net (RNN) = Nonlinear(IIR)

ŷ [n] = g

(
x [n] +

M−1∑
m=1

w [m]y [n −m]

)
The coefficients, w [m], are chosen to minimize the error. For
example, suppose that the goal is to make ŷ [n] resemble a target
signal y [n]; then we might use

E =
1

2

N∑
n=0

(ŷ [n]− y [n])2

and choose

w [m]← w [m]− η dE

dw [m]
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Review: Excitation and Activation

The activation of a hidden node is the output of the
nonlinearity (for this reason, the nonlinearity is sometimes
called the activation function). For example, in a
fully-connected network with outputs ŷl , weights ~w , bias b,
nonlinearity g(), and hidden node activations ~h, the activation
of the l th output node is

ŷl = g

(
bl +

p∑
k=1

wlkhk

)

The excitation of a hidden node is the input of the
nonlinearity. For example, the excitation of the node above is

el = bl +

p∑
k=1

wlkhk
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Backprop = Derivative w.r.t. Excitation

The excitation of a hidden node is the input of the
nonlinearity. For example, the excitation of the node above is

el = bl +

p∑
k=1

wlkhk

The gradient of the error w.r.t. the weight is

dE

dwlk
= εlhk

where εl is the derivative of the error w.r.t. the l th excitation:

εl =
dE

del
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Backprop for Fully-Connected Network

Suppose we have a fully-connected network, with inputs ~x , weight
matrices W (1) and W (2), nonlinearities g() and h(), and output ŷ :

e
(1)
k = b

(1)
k +

∑
j

w
(1)
kj xj , hk = g

(
e
(1)
k

)
e
(2)
l = b

(2)
l +

∑
k

w
(2)
lk hk , ŷl = h

(
e
(2)
l

)
Then the back-prop gradients are the derivatives of E with respect
to the excitations at each node:

dE

dw
(2)
lk

= εlhk , εl =
dE

de
(2)
l

dE

dw
(1)
kj

= δkxj , δk =
dE

de
(1)
k
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Back-Prop Example
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Back-Prop Example

Suppose we have the following network:

h = cos(x)

ŷ =
√

1 + h2

Suppose we need dŷ
dx . We find it as

dŷ

dx
=

dŷ

dh

∂h

∂x
=

(
h√

1 + h2

)
(− sin(x))
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Back-Prop Example
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Back-Prop Example

Suppose we have the following network:

h0 = cos(x)

h1 =
1√
2

(
h30 + sin(x)

)
ŷ =

√
h20 + h21

What is dŷ
dx ? How can we compute that?
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Causal Graphs for Neural Networks

x

h0

h1

ŷ

We often show the causal graph for the chain rule using bubbles
and arrows, as shown above. You can imagine the chain rule as
taking a summation along any cut through the causal graph—for
example, the dashed line shown above. You take the total
derivative from ŷ to the cut, and then the partial derivative from
there back to x .

dŷ

dx
=

N−1∑
i=0

dŷ

dhi

∂hi
∂x
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Causal Graphs for Neural Networks

x

h0

h1

ŷ

d ŷ

dx
=

N−1∑
i=0

dŷ

dhi

∂hi
∂x

For each hi , we find the total derivative of ŷ w.r.t. hi , multiplied
by the partial derivative of hi w.r.t. x .
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Back-Prop Example

First, we find dŷ
dh1

:

ŷ =
√

h20 + h21

dŷ

dh1
=

h1√
h20 + h21
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Back-Prop Example

x

h0

h1

ŷ

Second, back-prop to find dŷ
dh0

:

dŷ

dh0
=

∂ŷ

∂h0
+

dŷ

dh1

∂h1
∂h0

=
1√

h20 + h21

(
h0 +

(
3√
2

)
h20h1

)
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Back-Prop Example

x

h0

h1

ŷ

Third, back-prop to find dŷ
dx :

dŷ

dx
=

dŷ

dh1

∂h1
∂x

+
dŷ

dh0

∂h0
∂x

=

 h1√
h20 + h21

 cos(x)−


(
h0 +

(
3√
2

)
h20h1

)
√
h20 + h21

 sin(x)
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Back-Prop in a CNN

Suppose we have a convolutional neural net, defined by

e[n] =
N−1∑
m=0

w [m]x [n −m]

ŷ [n] = g (e[n])

then
dE

dw [m]
=
∑
n

δ[n]x [n −m]

where δ[n] is the back-prop gradient, defined by

δ[n] =
dE

de[n]
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Back-Prop in an RNN

Suppose we have a recurrent neural net, defined by

e[n] = x [n] +
M−1∑
m=1

w [m]ŷ [n −m]

ŷ [n] = g (e[n])

then
dE

dw [m]
=
∑
n

δ[n]ŷ [n −m]

where ŷ [n−m] is calculated by forward-propagation, and then δ[n]
is calculated by back-propagation as

δ[n] =
dE

de[n]
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Partial vs. Full Derivatives

For example, suppose we want ŷ [n] to be as close as possible to
some target signal y [n]:

E =
1

2

∑
n

(ŷ [n]− y [n])2

Notice that E depends on ŷ [n] in many different ways:

dE

dŷ [n]
=

∂E

∂ŷ [n]
+

dE

dŷ [n + 1]

∂ŷ [n + 1]

∂ŷ [n]
+

dE

dŷ [n + 2]

∂ŷ [n + 2]

∂ŷ [n]
+ . . .
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Partial vs. Full Derivatives

In general,

dE

dŷ [n]
=

∂E

∂ŷ [n]
+
∞∑

m=1

dE

dŷ [n + m]

∂ŷ [n + m]

∂ŷ [n]

where
dE

dŷ [n] is the total derivative, and includes all of the different

ways in which E depends on ŷ [n].
∂ŷ [n+m]
∂ŷ [n] is the partial derivative, i.e., the change in ŷ [n + m]

per unit change in ŷ [n] if all of the other variables (all other
values of ŷ [n + k]) are held constant.
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Partial vs. Full Derivatives

So for example, if

E =
1

2

∑
n

(ŷ [n]− y [n])2

then the partial derivative of E w.r.t. ŷ [n] is

∂E

∂ŷ [n]
= ŷ [n]− y [n]

and the total derivative of E w.r.t. ŷ [n] is

dE

dŷ [n]
= (ŷ [n]− y [n]) +

∞∑
m=1

dE

dŷ [n + m]

∂ŷ [n + m]

∂ŷ [n]
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Partial vs. Full Derivatives

So for example, if

ŷ [n] = g(e[n]), e[n] = x [n] +
M−1∑
m=1

w [m]ŷ [n −m]

then the partial derivative of ŷ [n + k] w.r.t. ŷ [n] is

∂ŷ [n + k]

∂ŷ [n]
= ġ(e[n + k])w [k]

where we use the notation ġ(e) = dg
de .
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Synchronous Backprop vs. BPTT

The basic idea of back-prop-through-time is divide-and-conquer.

1 Synchronous Backprop: First, calculate the partial
derivative of E w.r.t. the excitation e[n] at time n, assuming
that all other time steps are held constant.

ε[n] =
∂E

∂e[n]

2 Back-prop through time: Second, iterate backward through
time to calculate the total derivative

δ[n] =
dE

de[n]
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Synchronous Backprop in an RNN

Suppose we have a recurrent neural net, defined by

e[n] = x [n] +
M−1∑
m=1

w [m]ŷ [n −m]

ŷ [n] = g (e[n])

E =
1

2

∑
n

(ŷ [n]− y [n])2

then

ε[n] =
∂E

∂e[n]
= (ŷ [n]− y [n]) ġ(e[n])
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Back-Prop Through Time (BPTT)

Suppose we have a recurrent neural net, defined by

e[n] = x [n] +
M−1∑
m=1

w [m]ŷ [n −m]

ŷ [n] = g (e[n])

E =
1

2

∑
n

(ŷ [n]− y [n])2

then

δ[n] =
dE

de[n]

=
∂E

∂e[n]
+
∞∑

m=1

dE

de[n + m]

∂e[n + m]

∂e[n]

= ε[n] +
M−1∑
m=1

δ[n + m]w [m]ġ(e[n])
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Conclusions

Back-Prop, in general, is just the chain rule of calculus:

dE

dw
=

N−1∑
i=0

dE

dhi

∂hi
∂w

Convolutional Neural Networks are the nonlinear version of an
FIR filter. Coefficients are shared across time steps.

Recurrent Neural Networks are the nonlinear version of an IIR
filter. Coefficients are shared across time steps. Error is
back-propagated from every output time step to every input
time step.

δ[n] =
dE

de[n]
=

∂E

∂e[n]
+

M−1∑
m=1

δ[n + m]w [m]ġ(e[n])

dE

dw [m]
=
∑
n

δ[n]ŷ [n −m]


	Linear Time Invariant Filtering: FIR & IIR
	Nonlinear Time Invariant Filtering: CNN & RNN
	Back-Propagation Review
	Back-Propagation Training for CNN and RNN
	Back-Prop Through Time
	Conclusion

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	0.34: 
	0.35: 
	0.36: 
	0.37: 
	0.38: 
	0.39: 
	0.40: 
	0.41: 
	0.42: 
	0.43: 
	0.44: 
	0.45: 
	0.46: 
	0.47: 
	0.48: 
	0.49: 
	0.50: 
	0.51: 
	0.52: 
	0.53: 
	0.54: 
	0.55: 
	0.56: 
	0.57: 
	0.58: 
	0.59: 
	0.60: 
	0.61: 
	0.62: 
	0.63: 
	0.64: 
	0.65: 
	0.66: 
	0.67: 
	0.68: 
	0.69: 
	0.70: 
	0.71: 
	0.72: 
	0.73: 
	0.74: 
	0.75: 
	0.76: 
	0.77: 
	0.78: 
	0.79: 
	0.80: 
	0.81: 
	0.82: 
	0.83: 
	0.84: 
	0.85: 
	0.86: 
	0.87: 
	0.88: 
	0.89: 
	0.90: 
	0.91: 
	0.92: 
	0.93: 
	0.94: 
	0.95: 
	0.96: 
	0.97: 
	0.98: 
	0.99: 
	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PauseLeft: 
	0.PlayLeft: 
	0.PlayPauseLeft: 
	0.PauseRight: 
	0.PlayRight: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	1.20: 
	1.21: 
	1.22: 
	1.23: 
	1.24: 
	1.25: 
	1.26: 
	1.27: 
	1.28: 
	1.29: 
	1.30: 
	1.31: 
	1.32: 
	1.33: 
	1.34: 
	1.35: 
	1.36: 
	1.37: 
	1.38: 
	1.39: 
	1.40: 
	1.41: 
	1.42: 
	1.43: 
	1.44: 
	1.45: 
	1.46: 
	1.47: 
	1.48: 
	1.49: 
	1.50: 
	1.51: 
	1.52: 
	1.53: 
	1.54: 
	1.55: 
	1.56: 
	1.57: 
	1.58: 
	1.59: 
	1.60: 
	1.61: 
	1.62: 
	1.63: 
	1.64: 
	1.65: 
	1.66: 
	1.67: 
	1.68: 
	1.69: 
	1.70: 
	1.71: 
	1.72: 
	1.73: 
	1.74: 
	1.75: 
	1.76: 
	1.77: 
	1.78: 
	1.79: 
	1.80: 
	1.81: 
	1.82: 
	1.83: 
	1.84: 
	1.85: 
	1.86: 
	1.87: 
	1.88: 
	1.89: 
	1.90: 
	1.91: 
	1.92: 
	1.93: 
	1.94: 
	1.95: 
	1.96: 
	1.97: 
	1.98: 
	1.99: 
	anm1: 
	1.EndLeft: 
	1.StepLeft: 
	1.PauseLeft: 
	1.PlayLeft: 
	1.PlayPauseLeft: 
	1.PauseRight: 
	1.PlayRight: 
	1.PlayPauseRight: 
	1.StepRight: 
	1.EndRight: 
	1.Minus: 
	1.Reset: 
	1.Plus: 


