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Autoencoder

An autoencoder is a neural net that learns a hidden code, ~h, that
is sufficient to reconstruct ~x :

~h = f (~x)

x̂ = g(~h)

An autoencoder is usually trained to minimize mean-squared error,
equivalent to maximizing the likelihood of a spherical Gaussian
model:

L =
n∑

i=1

‖x̂i − ~xi‖2
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Autoencoder

Image Michela Massi, 2019, CC-SA 4.0, https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png

https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png
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Linear Two-layer Autoencoder = PCA

Consider a two-layer linear autoencoder:

~h = W T (~x − ~b)

x̂ = W~h + ~b

The loss becomes

L =
n∑

i=1

‖~xi −WW T (~x − ~b)− ~b‖2
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Linear Two-layer Autoencoder = PCA

L =
n∑

i=1

‖~xi −WW T (~x − ~b)− ~b‖2

If len(~h) ≥ len(~x), then the optimum solution is W = I ,
~b = ~0, and x̂ = ~x .

If len(~h) < len(~x), then PCA minimizes L.
~b = the data mean,
W = the matrix of principal component directions.
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Types of Autoencoders

If the hidden layer has too few constraints, we can get perfect
reconstruction without learning anything useful. In order to learn
useful hidden representations, a few common constraints are:

Low-dimensional hidden layer. In this case, ~h is a nonlinear
generalization of PCA, sometimes called a bottleneck.

Sparse autoencoder: use a large hidden layer, but regularize
the loss using a penalty that encourages ~h to be mostly zeros,
e.g.,

L =
n∑

i=1

‖x̂i − ~xi‖2 + λ

n∑
i=1

‖~hi‖1

Variational autoencoder: like a sparse autoencoder, but the
penalty encourages ~h to match a predefined prior distribution,
pθ(~h).
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Bayesian Learning

The goal of Bayesian learning is to learn a complete model of the
probability density function, p(~x). We usually assume that there is
some latent variable ~z , and a set of parameters θ, such that

~z is a latent variable generated randomly according to pθ(~z)

~x is then generated randomly according to pθ(~x |~z)
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Bayesian Learning

A hidden Markov model is an example of Bayesian learning. We
can generalize the three problems of an HMM, using the words of
(Kingma and Welling, 2013):

1 Recognition: Efficient approximate marginal inference of the
variable ~x . Besides comparing different models, this can also
allow us to generate synthetic data using pθ(~x).

2 Segmentation: Efficient approximate posterior inference of
the latent variable ~z given an observed value ~x for a choice of
parameters ~θ.

3 Learning: Efficient approximate ML or MAP estimation for
the parameters ~θ.



Autoencoders Variational Bayes Variational Autoencoder Summary

Variational Bayes: Intractable Posteriors

Variational Bayes is used in cases like the HMM, when

the likelihood, pθ(~x |~z), is easy to compute, but
the posterior, pθ(~z |~x), is intractable.

If pθ(~z |~x) is intractable, then we can’t exactly solve the
segmentation or learning problems. Instead, we introduce a
variational approximation, qφ(~z |~x) ≈ pθ(~z |~x), and try to
learn parameters φ and θ in order to match the data as well as
possible.
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The Evidence Lower Bound

Variational Bayes learns parameters θ and φ in order to maximize
the evidence distribution:

ln pθ(~x)

Averaging over the training data is understood.
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The Evidence Lower Bound

Since the evidence doesn’t depend on ~z at all, it doesn’t hurt to
compute its expected value w.r.t. ~z :

ln pθ(~x) = Eqφ(~z|~x) [ln pθ(~x)]
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The Evidence Lower Bound

We can introduce ~z inside the expectation by using the definition
of conditional probability, p(~x , ~z) = p(~x)p(~z |~x), to get:

ln pθ(~x) = Eqφ(~z|~x)

[
ln

(
pθ(~x , ~z)

pθ(~z |~x)

)]
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The Evidence Lower Bound

Now, we can introduce qφ inside the expectation as:

ln pθ(~x) = Eqφ(~z|~x)

[
ln

(
pθ(~x , ~z)

pθ(~z |~x)

qφ(~z |~x)

qφ(~z |~x)

)]
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Kullback-Leibler Divergence

Claude Shannon introduced a measure of the difference between
two probability densities, called the Kullback-Leibler divergence:

DKL (qφ(~z |~x)‖pθ(~z‖~x)) = Eq(~z|~x)

[
ln

(
qφ(~z |~x)

pθ(~z |~x)

)]
A useful thing to know about KLD is that it’s always non-negative:
DKL(q‖p) ≥ 0, with equality if and only if q = p.
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The Evidence Lower Bound

Re-arranging terms inside the expectation, we get

ln pθ(~x) = DKL (qφ(~z |~x)‖pθ(~z |~x)) + L (θ, φ; ~x)

and therefore

ln pθ(~x) ≥ L (θ, φ; ~x)

with equality if and only if qφ(~z |~x) = pθ(~z |~x). The term L (θ, φ; ~x)
is therefore called the evidence lower bound or ELBO, and is given
by

L (θ, φ; ~x) = Eq(~z|~x) [ln pθ(~x , ~z)− ln qφ(~z |~x)]
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Summary: Variational Bayes

Variational Bayes is a method for learning a latent-variable
model that can be used to generate synthetic data, encode
the data, or recognize the data.

It solves the intractability of pθ(~z |~x) by introducing a
variational approximation, qφ(~z |~x) ≈ pθ(~z |~x).

The intractable term pθ(~z |~x) is then eliminated from the
evidence by wrapping it up inside DKL (qφ(~z |~x)‖pθ(~z‖~x)).
Since KLD is always non-negative, we can eliminate it from
training criterion, leaving us with the evidence lower bound:

L (θ, φ; ~x) = Eq(~z|~x) [ln pθ(~x , ~z)− ln qφ(~z |~x)]
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The Problem with Variational Bayes

All previous VB algorithms struggled with the problem of efficiently
computing expectations of the form Eq(~z|~x) [f (~z)]. Two tricks were
commonly used, each with its own problems:

Factoring: assume that q(~z |~x) has some simple form, e.g.,
assume that the dimensions of ~z are independent given ~x .
Problem: sometimes, no reasonable simplification of this type
is possible.

Sampling (Monte Carlo methods): draw L samples ~z(l)

from the distribution q(~z |~x), and then approximate

Eq(~z|~x) [f (~z)] ≈ 1

L

L∑
l=1

f (~z(l))

Problem: if q(~z |~x) is a complicated distribution with many
local maxima, then the approximation may be very bad, even
for relatively large values of L.
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Kingma & Welling: The Reparameterization Trick

Kingma & Welling (2013) proposed a reparameterization trick:
assume

~z(l) = gφ(~ε(l), ~x),

where gφ is a flexible universal approximator (a neural net), and ~ε
is drawn from a predefined unimodal compact probability density
function, e.g., a unit-normal Gaussian or uniform distribution. The
sample average of a Gaussian or uniform distribution approaches
its true average very quickly, e.g., even for L ≈ 5J, where
J = len(~z). Kingma & Welling recommend using a minibatch of
about 100 training tokens, with L = 1 for each training token.

Eq(~z|~x) [f (~z)] ≈ 1

L

L∑
l=1

f (gφ(~ε(l), ~x))



Autoencoders Variational Bayes Variational Autoencoder Summary

Kingma & Welling: The Reparameterization Trick

The reparameterization trick is most useful if you assume that the
latent variable has a parameter-independent prior, e.g.,
pθ(~z) = p(~z) = N (~0, I ). Then you can re-write the ELBO as

L (θ, φ; ~x) = −DKL (qφ(~z |~x)‖pθ(~z)) + Eq(~z|~x) [ln pθ(~x |~z)]

≈ −DKL (qφ(~z |~x)‖p(~z)) +
1

L

L∑
l=1

ln pθ(~x |~z(l))

The second term, ln pθ(~x |~z(l)), is a neural network
parameterized by θ.

The first term, −DKL (qφ(~z |~x)‖p(~z)), needs to be solved by
pencil and paper.
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Variational Autoencoder

The variational autoencoder has the following steps. For each
training token,

1 Use a neural network, parameterized by φ, to compute the
posterior mean and variance of the latent variable:

qφ(~z |~x) = N (~µ~z(~x ;φ),Σ~z(~x ;φ))

where N (~µ,Σ) is the normal distribution, ~µ~z(~x ;φ) and
Σ~z(~x ;φ) are the mean and variance of ~z conditioned on ~x and
φ.

2 Draw L random ~z vectors from the distribution (e.g., L = 1).

3 Estimate pθ(~x |~z) using another neural network, parameterized
by θ.

4 Update θ and φ using gradient ascent.
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Benefits and Drawbacks of VAE

A key benefit of the VAE is interpretability. You have two
networks: one that generates ~z from ~x , and one that
generates ~x from ~z . Therefore, you can map out the latent
space, observing what types of data vectors ~x are generated
from each point in the latent space.

Another key benefit is generation. The latent variable is
forced to have the distribution N (~0, I ), so it’s easy to
generate synthetic data.

A drawback is over-smoothing. VAE is trained to maximize
the evidence of the training data, i.e., the likelihood
marginalized over all latent variables. Maximum-likelihood
models tend to generate synthetic data that is over-smoothed,
more like an average of many images, instead of any particular
image.
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Summary

Autoencoders try to find a latent vector that encodes as much
information as possible about ~x , subject to some constraints.

Bayesian learning methods try to find a latent vector that
encodes the data, subject to a known model of the prior and
likelihood distributions.

Variational Bayes avoids the intractability of the Bayesian
posterior by using, instead, a variational approximation,
qφ(~z |~x) ≈ pθ(~z |~x). The difference between q and p is
captured by their KLD, which is known to be non-negative,
therefore VB can just maximize the ELBO.

VAE models qφ and pθ using neural networks. The ELBO
then has two terms: reconstruction error (parameterized by
θ), and KLD between qφ and a desired latent prior.
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