
ECE 420

Lecture 11

November 11 2019

Origins of Android

• Founded in 2003, with the intention of making “smarter mobile

devices that are more aware of its owner’s location and

preferences”

• Initial application was intended as an operating system for digital

cameras

• Acquired by Google in 2005 and retargeted at the mobile phone

market

• Linux-based system allowed the OS to be distributed for free to

manufacturers

• Google to make money via apps and services

• Android was still a secret when Apple announced the iPhone in

2007

1

Origins of Android

• Late 2007, Google started the Open Handset Alliance among

various phone manufacturers

• Established hardware standards upon which Android could run

• First official Android based

smartphone was T-Mobile G1

released in 2008

• Android lines popularized by the

‘Droid’ line from Motorola

2

Android Codenames

• Initial versions of the OS did not have official codenames

• Android version 1.5 was named ‘Cupcake’ starting the trend of

alphabetically organized sweets and desserts

• No official reason has been given behind this naming decision

• Google actually unveils a code-name themed statue at their

headquarters with each release

• Sadly, the naming trend has stopped with Android version 10

(perhaps no good options for ‘Q’?)

3

API Level Codenames

Code Name API Level

B.C. 1, 2

Cupcake 3

Donut 4

Eclair 5, 6, 7

Froyo 8

Gingerbread 9, 10

Honeycomb 11, 12, 13

Ice Cream

Sandwich

14, 15

4

Code Name API Level

Jelly Bean 16, 17, 18

KitKat 19, 20

Lollipop 21, 22

Marshmallow 23

Nougat 24, 25

Oreo 26, 27

Pie 28

‘10’ 29

Android Motivations

• Secure and efficient platform

• Applicable for a broad range of devices, with significant resource

constraints

• Customizable, low cost option for manufacturers

• Platform for Google to embed and monetize services

5

6

Android

Software

Stack

Linux Kernel

• The foundation of the Android platform is the Linux

kernel

• Upper layers of the software stack utilize underlying

functionalities such as threading and low-level

memory management

• The Linux kernel as a common base facilitates hardware driver

development for device manufacturers

• Linux also provides several security features

• User-based permissions

• Process isolation

• Secure interprocess communication

• Modularized, with ability to remove unneeded parts of the kernel

7

Hardware Abstraction Layer

• Provides standard interfaces for device hardware

• Abstracts details of interactions with device layer

modules

• Consists of library modules as interfaces for each type of

hardware component (Bluetooth, camera, etc.)

• Dynamically loaded by Android system when hardware is

accessed

8

Dalvik Runtime

• Dalvik is the virtual machine that executes Android

applications

• Aimed at running processes efficiently

• Register-based instead of stack-based like the Java VM

• Minimize memory footprint of applications, VM

• Conversion from Java bytecode to Davlik bytecode (.dex) can

take advantage of more complex instruction set to save space,

along with other optimizations

• Additional optimization can be performed at install time

• Inlining of libraries, byte order swapping

• Discontinued after Android 4.4

9

Android Runtime (ART)

• Replacement for the Dalvik VM, runs the same .dex bytecode

• Faster interpreter, faster native methods

• Ahead-of-time compilation

• Compile the full application to native code

• Improved garbage collection

• Parallelized GC

• Special handling for short-lived objects

• Compacting GC for reduction of memory fragmentation

• Better debugging support, including a dedicated sampling

profiler, detailed diagnostic exceptions and crash reporting, and

the ability to set watchpoints

• More aggressive optimizations for loops and inlining

10

AOT vs. JIT

• AOT has the benefits of off-line

optimization, fast app startup,

no overhead from VM manager

• JIT has the benefits of being

able to take code behavior into

account for optimizations

• Current Android does both

• Run AOT when available

• If no AOT code, use JIT

and collect profiling stats

• Periodically use profiling info

to drive full AOT compile

• “Continuously improve applications as they run”

11

Native C++ Libraries

• Many core Android system components and

services are built from native code

• They require native libraries written in C and C++

• The Java framework APIs to expose the functionality of some of

these native libraries to apps (e.g. OpenGL for graphics support)

• Android NDK (Native Development Kit) allows developing an

app in C or C++ code and can access these native platform

libraries directly

12

Java API Framework

• The Java API framework exposes the entire

feature-set of system components and services of

the Android OS’

• The View System is used to build an app’s UI,

including lists, grids, text boxes, buttons

• The Resource Manager provides access to non-code resources

such as strings, graphics, and layout files

• The Notification Manager enables all apps to display custom alerts

in the status bar

• The Activity Manager manages the lifecycle of apps and provides a

“back stack” framework

• Content Providers enable apps to access data from other apps,

such as the Contacts app, or to share their own data

13

System Apps

• Android comes with a set of core apps

• Email, SMS messaging, calendars, internet browsing,

contacts, etc.

• Initial core apps no special status and can be replaced by a

third-party app as the default SMS messenger, or browser, etc.

• System apps provide functionality as apps for the end user and

to also capabilities usable by other apps

• Example: Delivering an SMS message involves invoking the SMS

app

14

System Level Protections

• Android leverages Linux user-based protection to identify

and isolate apps and app resources

• Each app is assigned a unique user ID and run in its own

process

• The UID is also used to set up a kernel-level Application

Sandbox which enforces security between apps and the

system (limited OS access) and other apps

• Kernel level sandboxing allows native code and interpreted

code to be comparably secured

• Each app explicitly requests permissions to access
resources (Internet, camera, GPS, etc.) at install time

15

Interprocess Communication

• Processes can communicate using any of the traditional UNIX-

type mechanisms (files, sockets, signals) but Linux permissions

still apply

• Android specific IPC (recommended):

• Binder: A lightweight remote procedure call mechanism designed

for high performance, implemented in the Linux driver

• Intents: A simple message object that represents an "intention" to

do something. For example, to display a web page, the app

expresses its "Intent" to view the URL by handing off an intent

object to the system. The system passes it to the handler and runs

it.

• ContentProviders: A storehouse that provides access to data on the

device. Apps can access data other apps have exposed, and can

define its own Content Providers to share data

16

Modularization

• Android 10 continues

modularization efforts into

the system components

• Enables system components

to be updated with critical

bug fixes and other

improvements as needed

• Module updates don’t

introduce new APIs, so will

not break existing functionality

• Module package installs/rollbacks are performed atomically, so

all updated successfully or none are in the case of an error

17

System Updates

• Modern Android devices have two partitions, the current and

backup partition

• Received updates are applied to the backup partition

• Upon next reboot, the system will swap partition roles

• Backup partition becomes active, current partition becomes backup

• If an error occurs and the system is not bootable, the system is

rolled back to the backup partition

• Update can be attempted again

18

System Updates

• Prevents interfering with normal operation and moves upgrade

to a background process

• ‘Cost’ of updating is only a system reboot

• System is resilient against errors introduced

• Updates can be streamed into the new partition instead of

downloading then installing packages

• No caching required

• Permits for system module updates outside of usual release

cycle (continuous delivery) and independent from device

manufacturer

19

Kotlin Background

• JetBrains unveiled Project Kotlin in July 2011

• Targeting the JVM, it aimed to contain “all the features they were

looking for” that were not present in other languages

• Kotlin version 1.0 was released in February 2016.

• Google added Kotlin support in Android Studio in 2017, in

addition to Java and C++

• Google announced Kotlin is the preferred language for Android

development in May 2019

• The project name is derived from Kotlin Island near St.

Petersburg.

20

Compatibility/Interop

• Interoperability with Java is a key concern of Kotlin

• Kotlin compilers can target JVM bytecode, allowing for easy

mixing of Java and Kotlin based code

• Leverage existing libraries and frameworks

• Run on existing VM infrastructure

• Progressive code migration

• Kotlin is also an open-source language

21

Kotlin Highlights

• Everything is an object in Kotlin – there are no primitive types

• Methods can be called on any object

• Variables are defined as constant or mutable

• Classes are ‘final’ by default unless explicitly marked ‘open’

• Classes that only represent data marked as ‘data’

• ‘If’ constructs are expressions rather than statements

22

println(if(x > 10) "greater" else "smaller")

val i: Int = 42

var j: Int = 42

Kotlin Highlights

• Use of iterables in for loops

• ‘when’ construct for case selection (value and type)

• Lambda expressions

23

for (item in array) {

print(item)

}

when (x) {

1, 2 -> print(“Target”)

in 3..20 -> print(“Too low”)

!in 21..40 -> print(“Too high”)

else -> print(“Undefined”)

}

var a: (Int) -> Int = { i: Int -> i * 2 }

Null Safety

• Missing NULL checks have been identified as a frequent source

of errors

• Kotlin moves runtime errors to compile time errors

• Improve program safety

• Reduce the amount of defensive checks required

• Variables are not allowed to be null, unless explicitly declared as

a nullable type

• Append a ‘?’ to the type, e.g. String?

• Compiler then can check for

• Assignment of null to a non-nullable variable

• Use of a nullable type without null checks

24

Null Safety

• Methods of a nullable object can be called if null check is

performed

• The ‘safe call’ operator ?. can also be used. This returns a null

value if the object is null. This can be chained together.

• The Elvis operator ?: allows for default values to be returned in

case of a null operand.

25

if (foo != null)

check = foo.docheck()

else

check = false

check = foo?.docheck()

check = foo?.docheck() ?: false

Kotlin Summary

• Kotlin aims to provide lightweight mechanisms to improve

programmer productivity and program safety

• Concise program syntax

• Null safety mechanisms

• Compile time checking for common program errors

• Interoperability with existing Java runtime resources

• Supports all tooling inside of Android Studio (code inspection,

etc.)

• Future plans for iOS compatibility

26

This Week

• Continued Final Project Work

• Milestone 1 Demo due in lab

27

