ECE 420
Lecture 11
November 11 2019

Origins of Android

Founded in 2003, with the intention of making “smarter mobile
devices that are more aware of its owner’s location and
preferences’

Initial application was intended as an operating system for digital
cameras

Acquired by Google in 2005 and retargeted at the mobile phone
market

Linux-based system allowed the OS to be distributed for free to
manufacturers

Google to make money via apps and services

Android was still a secret when Apple announced the iPhone in
2007

Origins of Android

- Late 2007, Google started the Open Handset Alliance among
various phone manufacturers
- Established hardware standards upon which Android could run

» First official Android based
smartphone was T-Mobile G1
released in 2008

» Android lines popularized by the
‘Droid’ line from Motorola

\ 5 G 2R A
GG RGO)

=Zoddew B @S
?ALVQ@_.—‘“M./AUQ

Android Codenames

Initial versions of the OS did not have official codenames

Android version 1.5 was named ‘Cupcake’ starting the trend of
alphabetically organized sweets and desserts

No official reason has been given behind this naming decision

Google actually unveils a code-name themed statue at their
headquarters with each release

Sadly, the naming trend has stopped with Android version 10
(perhaps no good options for ‘Q’?)

APl Level Codenames

API Level API Level

B.C. 1,2

Jelly Bean 16,17, 18
Cupcake 3 KitKat 19, 20
Dom_Jt 4 Lollipop 21, 22
Eclair > 6,7 Marshmallow 23
Froyo 8 Nougat 24, 25
Gingerbread 9,10 Oreo 26, 27
Honeycomb 11,12, 13 Pic o8
lce Cream 14, 15 10 29

Sandwich

Android Motivations

Secure and efficient platform

Applicable for a broad range of devices, with significant resource
constraints

Customizable, low cost option for manufacturers

Platform for Google to embed and monetize services

System Apps

Dialer Email Calendar Camera

Java APl Framework

Managers
Content Providers
Activity Location Package Notification

View System Resource Telephony Window

Native C/C++ Libraries

A n d ro i d Webkit OpenMAX AL Android Runtime (ART)
Software
Stack

Media Framework OpenGL ES . Core Libraries

Hardware Abstraction Layer (HAL)

Bluetooth Camera Sensors

Linux Kernel

Drivers

Binder (IPC) Display

Bluetooth Camera

Shared Memory

Power Management

Linux Kernel

The foundation of the Android platform is the Linux
kernel

Upper layers of the software stack utilize underlying
functionalities such as threading and low-level
memory management

The Linux kernel as a common base facilitates hardware driver
development for device manufacturers
Linux also provides several security features

+ User-based permissions

* Process isolation

- Secure interprocess communication

- Modularized, with ability to remove unneeded parts of the kernel

Hardware Abstraction Layer

Provides standard interfaces for device hardware

 Abstracts details of interactions with device layer
modules

Consists of library modules as interfaces for each type of
hardware component (Bluetooth, camera, etc.)

Dynamically loaded by Android system when hardware is
accessed

Dalvik Runtime

Dalvik is the virtual machine that executes Android
applications

,,,,,,,,,,,,,,,

Aimed at running processes efficiently - |-

- Register-based instead of stack-based like the Java VM=

« Minimize memory footprint of applications, VM

Conversion from Java bytecode to Davlik bytecode (.dex) can
take advantage of more complex instruction set to save space,
along with other optimizations

Additional optimization can be performed at install time

+ Inlining of libraries, byte order swapping

Discontinued after Android 4.4

Android Runtime (ART)

Replacement for the Dalvik VM, runs the same .dex bytecode
Faster interpreter, faster native methods
Ahead-of-time compilation
- Compile the full application to native code
Improved garbage collection
+ Parallelized GC

- Special handling for short-lived objects
« Compacting GC for reduction of memory fragmentation

Better debugging support, including a dedicated sampling
profiler, detailed diagnostic exceptions and crash reporting, and
the ability to set watchpoints

More aggressive optimizations for loops and inlining

10

AOT vs. JIT

AOT has the benefits of off-line |
optimization, fast app startup, :ADTi—"
no overhead from VM manager

JIT has the benefits of being

-

able to take code behavior into Interpreter RUNS
account for optimizations A)
Current Android does both o
- Run AOT when available n—*
- If no AOT code, use JIT hot code
and collect profiling stats y

 Periodically use profiling info
to drive full AOT compile

“Continuously improve applications as they run”

11

Native C++ Libraries

« Many core Android system components and
services are built from native code

« They require native libraries written in C and C++

- The Java framework APIs to expose the functionality of some of
these native libraries to apps (e.g. OpenGL for graphics support)

- Android NDK (Native Development Kit) allows developing an
app in C or C++ code and can access these native platform
libraries directly

12

- The Java API framework exposes the entire
feature-set of system components and services of
the Android OS’

Java APl Framework

The View System is used to build an app’s UI,
iIncluding lists, grids, text boxes, buttons

The Resource Manager provides access to non-code resources
such as strings, graphics, and layout files

The Notification Manager enables all apps to display custom alerts
in the status bar

The Activity Manager manages the lifecycle of apps and provides a
“back stack” framework

Content Providers enable apps to access data from other apps,
such as the Contacts app, or to share their own data

13

System Apps

- Android comes with a set of core apps

- Email, SMS messaging, calendars, internet browsing,
contacts, etc.

- |nitial core apps no special status and can be replaced by a
third-party app as the default SMS messenger, or browser, etc.

- System apps provide functionality as apps for the end user and
to also capabilities usable by other apps

- Example: Delivering an SMS message involves invoking the SMS
app

14

System Level Protections

Android leverages Linux user-based protection to identify
and isolate apps and app resources

Each app is assigned a unique user ID and run in its own
process

The UID is also used to set up a kernel-level Application
Sandbox which enforces security between apps and the
system (limited OS access) and other apps

Kernel level sandboxing allows native code and interpreted
code to be comparably secured

Each app explicitly requests permissions to access
resources (Internet, camera, GPS, etc.) at install time

15

Interprocess Communication

Processes can communicate using any of the traditional UNIX-
type mechanisms (files, sockets, signals) but Linux permissions

still apply
Android specific IPC (recommended):

Binder: A lightweight remote procedure call mechanism designed
for high performance, implemented in the Linux driver

Intents: A simple message object that represents an "intention" to
do something. For example, to display a web page, the app
expresses its "Intent" to view the URL by handing off an intent
object to the system. The system passes it to the handler and runs
it.

ContentProviders: A storehouse that provides access to data on the
device. Apps can access data other apps have exposed, and can
define its own Content Providers to share data

16

Modularization

OEM Apps &
Customizations

- Android 10 continues Android Apps
modularization efforts into
the system components

- Enables system components Modules

(modularized

to be Updated with critical system components)
bug fixes and other Android OS Framework

iImprovements as needed
Vendor Implementation + Kernel
* Module updates don'’t

introduce new APIs, so will
not break existing functionality

- Module package installs/rollbacks are performed atomically, so
all updated successfully or none are in the case of an error

17

System Updates

Modern Android devices have two partitions, the current and
backup partition

Received updates are applied to the backup partition

Upon next reboot, the system will swap partition roles

- Backup partition becomes active, current partition becomes backup

If an error occurs and the system is not bootable, the system is
rolled back to the backup partition

- Update can be attempted again

18

System Updates

Prevents interfering with normal operation and moves upgrade
to a background process

‘Cost’ of updating is only a system reboot
System is resilient against errors introduced

Updates can be streamed into the new partition instead of
downloading then installing packages

No caching required

Permits for system module updates outside of usual release
cycle (continuous delivery) and independent from device
manufacturer

19

Kotlin Background

JetBrains unveiled Project Kotlin in July 2011

Targeting the JVM, it aimed to contain “all the features they were
looking for” that were not present in other languages

Kotlin version 1.0 was released in February 2016.

Google added Kaotlin support in Android Studio in 2017, in
addition to Java and C++

Google announced Kotlin is the preferred language for Android
development in May 2019

The project name is derived from Kotlin Island near St.
Petersburg.

20

Compatibility/Interop

Interoperability with Java is a key concern of Kotlin

Kotlin compilers can target JVM bytecode, allowing for easy
mixing of Java and Kotlin based code

+ Leverage existing libraries and frameworks
* Run on existing VM infrastructure

* Progressive code migration

Kotlin is also an open-source language

21

Kotlin Highlights

Everything is an object in Kotlin - there are no primitive types
* Methods can be called on any object

Variables are defined as constant or mutable

val 1i: Int = 42
var j: Int = 42

Classes are ‘final’ by default unless explicitly marked ‘open’
Classes that only represent data marked as ‘data’

'If’ constructs are expressions rather than statements

println(if(x > 10) "greater" else "smaller")

22

Kotlin Highlights

Use of iterables in for loops

for (item 1in array) {
print (item)

)
‘when’ construct for case selection (value and type)

when (x) {
1, 2 -> print (“Target”)
in 3..20 -> print (“"Too low”)
'in 21..40 -> print (“Too high”)
else -> print (“Undefined”)

)
Lambda expressions

var a: (Int) -> Int = { i: Int -> 1 * 2 }

23

Null Safety

Missing NULL checks have been identified as a frequent source
of errors

Kotlin moves runtime errors to compile time errors
Improve program safety
Reduce the amount of defensive checks required

Variables are not allowed to be null, unless explicitly declared as
a nullable type

Append a ‘?’ to the type, e.g. String?
Compiler then can check for

Assignment of null to a non-nullable variable

Use of a nullable type without null checks

24

Null Safety

Methods of a nullable object can be called if null check is
performed

if (foo != null)

check = foo.docheck()
else

check = false

The ‘safe call’ operator ?. can also be used. This returns a null
value if the object is null. This can be chained together.

check = foo?.docheck ()

The Elvis operator ?: allows for default values to be returned in
case of a null operand.

check = foo?.docheck() ?: false

25

Kotlin Summary

» Kaotlin aims to provide lightweight mechanisms to improve
programmer productivity and program safety

- Concise program syntax
* Null safety mechanisms
- Compile time checking for common program errors

- Interoperability with existing Java runtime resources

« Supports all tooling inside of Android Studio (code inspection,
etc.)

+ Future plans for iOS compatibility

26

This Week

Continued Final Project Work

Milestone 1 Demo due in lab

27

