
ECE 420

Lecture 4

Feb 11 2019

Signal Resampling

• General problem statement:

• We have samples of a signal

• These aren’t the sample positions we want

• Different sampling rate

• Different sampling locations

• Both of the above

• What algorithms can we use to synthesize the signal at the

desired output locations?

1

Rate Changing Operators - Upsampler

• Performs zero insertion on the signal

• Add K-1 zeros between each sample

• Always ‘safe’ as we do not lose any data

2

𝑥 ↑ 𝐾 𝑦

Rate Changing Operators - Upsampler

• “Compresses” spectrum by a factor of K

• 𝑌 𝜔 = 𝑋(𝜔𝐾)

• Introduces aliased copies

• How can we eliminate aliased spectra?

3

−2𝜋 2𝜋 −2𝜋 2𝜋

LPF (
𝜋

𝐾
)

Rate Changing Operators - Downsampler

• Reduce the number of samples in the signal

• Keep first sample out of every batch of K samples

• Potentially unsafe as we are discarding samples

4

𝑥 ↓ 𝐾 𝑦

Rate Changing Operators - Downsampler

• “Expands” spectrum by a factor of K

• Potential for aliasing to occur. Caution!

5

−2𝜋 2𝜋−2𝜋 2𝜋

𝑌 𝜔 =
1

𝐾

𝑘=0

𝐾−1

𝑋(
𝜔 − 2𝜋𝑘

𝐾
)

Rate Changing Operators - Downsampler

• How can we prevent aliased spectra?

6

−2𝜋 2𝜋−2𝜋 2𝜋

LPF (
𝜋

𝐾
)

−2𝜋 2𝜋 −2𝜋 2𝜋

Rate Changing – Fractional Rates

• Upsampling/downsampling operations defined for integer K

• How can you implement arbitrary fractional rates?

• Cascade of Upsampler (rate M) followed by Downsampler (rate K)

• Effective rate change of 𝑀/𝐾

• Why upsampling first?

7

𝑥 ↑ 𝑀 ↓ 𝐾 𝑦LPF (
𝜋

𝑀
) LPF (

𝜋

𝐾
)

𝑥 ↑ 𝑀 ↓ 𝐾 𝑦LPF (
𝜋

max(𝑀,𝐾)
)

Upsampling as Interpolation

• Another interpretation of upsampling with an LPF is an

interpolation operation

• Interpolation kernel is the impulse response of the LPF

• Interpolated signal is this IR centered at each upsampled sample

position and added together

8

LPF Impulse Response Interpolated Signal

Direct Interpolation

• Efficient filtering works for integer upsampling due to

consistency of relative offset of desired sample locations to input

sample locations

• For rational rate changes this is not the case

• We can still use the interpolation interpretation to directly

resample the signal at arbitrary positions

• Can be costly due to large support of interpolation kernel

9

Alternate interpolation basis

• Generally speaking, recast the problem as a D-to-A-to-D

• 𝑥(𝑡) = ∑𝑥 𝑘 𝜙(𝑡 − 𝑘)

• Therefore we can resample at an arbitrary position of x by

evaluating x(t) at the desired non-integer t positions

• 𝑦 𝑛 = 𝑥 𝜏𝑛 = ∑𝑥 𝑘 𝜙(𝜏𝑛 − 𝑘)

• Assuming 𝜙(𝑡) has small support, only a small number of

samples in 𝑥[𝑛] are required

• Linear interpolation (or ‘tent function’) is one such option

10

Spline Interpolation Basis

• Splines are recursively defined

• 𝛽0 𝑡 =
1 𝑡 ≤

1

2

0 𝑡 >
1

2

• 𝛽𝑛 𝑡 = 𝛽𝑛−1 𝑡 ∗ 𝛽0(𝑡)

• 𝛽0 is a box, 𝛽1 is a tent, higher orders are

progressively smoother, with more regularity

• Can provide good interpolation performance

at reasonable computational cost

• Higher order splines no longer an

interpolating function

• Must perform a spline transform first

11

𝛽0

𝛽1

𝛽3

Interpolation Comparison

12

Sinc/LPF 𝛽0

𝛽1 𝛽3

TD-PSOLA

• TD – Time domain

• Operating directly on the signal samples, no domain transformation

• PS – Pitch Synchronous

• Operations revolve around reference points (epoch markers or

pitch-marks) corresponding to the input or desired pitch of the

signal

• OLA – Overlap-Add

• The synthesized signal is produced by signals positioned about the

pitch-marks, where those signals overlap and are added together to

form the final output

• Prosody/Prosodic – Patterns of stress and intonation in a

language

13

Speech Synthesis Model

• Speech production initiated as a pulse train

• Vocal tract / mouth / tongue / etc. create a transfer function

• Spoken voice is a ‘convolution’ of these functions

14

*

Pitch-synchronous Manipulation

• Let production model be 𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ[𝑛]

• Spacing of the pulses/delta functions defines pitch of the signal

• Main idea behind pitch synchronous processing is to

• Identify delta locations of 𝑥 𝑛 and filter ℎ[𝑛]

• Manipulate the delta locations to alter the signal to have the desired

characteristics

• Resynthesize the modified signal by reapplying ℎ[𝑛]

• For example, if we want to change the pitch to a new value 𝑃

• 𝑥 𝑛 = ∑𝛿 𝑛 − 𝑃𝑘

• 𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ[𝑛] = ∑ℎ 𝑛 − 𝑃𝑘

15

Types of Pitch-Synchronous Modifications

• Pitch-scale modifications

• Modify the pitch of the signal to a desired target pitch

• Focus of the lab

• Time-scale modifications

• Modify the time extent of the signal without changing the pitch

• Pitch- and time- scale modifications

• Can be done as a cascade of operations or jointly

• Jointly allows us to skip reprocessing of the signal and manipulate

the delta positions in one step

16

Challenges

• Varying pitch over time

• Even variation with a ‘constant’ pitch region

• Variations in speech waveform over time

• Uniform ℎ[𝑛] assumption does not hold

• Preventing distortions in the synthesized signal

• Block processing of the audio frames

17

Epoch Definition

• We want to extract the delta positions

• While mostly regular, they do not follow an exact spacing

• Also ℎ[𝑛] varies with time

• Attempt to pick a consistent point within each ℎ[𝑛]

• Denote this the epoch or pitch-mark

• Strategy: search for the maximum value within each estimated pitch

interval

18

Epoch Mapping

• Establish relationship between input and output epoch points

• Input epochs: from pitch / waveform analysis

• Output epochs: regularly spaced positions at target pitch / time

duration

• Algorithm: For each output epoch location, find the nearest input

epoch location

19

Signal Synthesis

• To accommodate variations in ℎ[𝑛], estimate over two adjacent

periods

• Window ℎ[𝑛] to taper transitions

• Position at output epoch points

• Combine all outputs together to form synthesized signal

20

𝑤[𝑛]

Σ

Block Processing Challenges

• Data is broken up into blocks/frames of data for processing due

to practical reasons

• Memory

• Responsiveness

• Depending on the algorithm, there may be dependencies among

blocks of data

• How can we address this problem?

• Buffering!

• Be aware of impact on

• Memory Footprint

• Latency

21

Overlap-Add

• Consider a filtering operation application

• Application of the filter to a frame of data will result in an output

wider than the input frame

• Buffer this output in a larger ‘working’ output buffer and

aggregate block outputs

• Send off an output block once all contributions are complete

22

𝑥[𝑛]

𝑥𝑖 𝑛 ∗ ℎ[𝑛]

Σ = 𝑦[𝑛]

Overlap-Save

• As opposed to buffering outputs we can instead buffer inputs

• ‘Work backwards’ from a given output block to determine what

input data is required to produce it

• Buffer all input data that falls outside of block boundaries

23

𝑥[𝑛]

𝑦[𝑛]

∗ ℎ[𝑛] ∗ ℎ[𝑛] ∗ ℎ[𝑛]

PSOLA Block Processing

• Two main issues that arise from framing the data

• Depending on epochs selected, windowed interval may stretch

across multiple input frames

• After repositioning on output epoch location, windowed response

may stretch across multiple output frames

24

Frame

Input

Output

PSOLA Block Processing

• Approach: Keep buffer of input blocks and output blocks

• Denoted ‘past’, ‘present’, and ‘future’

• Determine contributions for

output epoch points in the

‘Present’

• Allow impulse response to spill

over into ‘Past’ and ‘Future’

• After all ‘Present’ points processed

‘Past’ will be complete,

ready to emit

• Shift down Present to Past and Future to Present

25

Past

Input

Output

Present Future

Past Present Future

Pitch Synthesis Algorithm Summary

26

Output Epoch

Positioning

F_newFrame

Best Epoch

Match

Signal

Extraction &

Windowing

Pitch

Analysis

Overlap-Add Output

Epoch

Determination

PSOLA Variations

• Linear Prediction PSOLA

• Effectively tries to model ℎ[𝑛] and decompose speech to find

excitation signal 𝑥 𝑛

• Manipulate 𝑥 𝑛 as desired and then reapply filter to synthesize

speech

• Fourier-Domain PSOLA

• Perform STFT on pitch periods

• Estimate spectral envelope of speech and divide out

• Modify pitch harmonics

• Reapply spectral envelope and inverse STFT

27

This week

• Lab 4: Pitch Analyzer Quiz/Demo

• Lab 5: Pitch Synthesizer

• Linked video recommended!

• Be thinking about Assigned Project Labs / Groups

• Proposal due March 1

28

