
ECE 420

Lecture 5

Feb 18 2019

Now Entering

1

2D Signal Processing

• Manipulation of samples of a bivariate function

• 𝑓 𝑥, 𝑦 → 𝑓 𝑛,𝑚 or 𝑓 𝑖, 𝑗 or 𝑥 𝑛,𝑚 or ???

• Unfortunate namespace collision with usual function names x, y

• Pick whatever you wish but just be consistent with your notation!

• All the usual 1D operations/theorems apply as usual along each

dimension/axis

• Sampling

• Filtering

• Rate changing

• Interpolation

• …

• There are also true 2D extensions of the above!

2

2D Sampling

• Many more options in sampling patterns

3

Regular / Square

Slanted / Skewed

Rectangular

Hexagonal

Sampling and 2D Fourier Transforms

• 2D Fourier transform is cascade of transforms along each

dimension

• 𝐺 Ω𝑥 , Ω𝑦 = 𝐹𝑦{ 𝐹𝑥 𝑔(𝑥, 𝑦) }

• The essential support of 𝐺 Ω𝑥 , Ω𝑦 determines how it must be

sampled

4

𝐵𝑥

𝐵𝑦 Square sampling

based on

max(𝐵𝑥 , 𝐵𝑦)

Sampling and 2D Fourier Transforms

• The better packed the spectra, the more efficient our sampling

scheme is

• Sampling efficiency = fewer samples = more performant algorithms!

• However, processing on non-rectangular lattices can be tricky

• Unless there is an application-specific reason to do so, probably will

be working with uniform sampling in both directions

5

Square Non-Rectangular LatticeRectangular

2D Convolution

• Recall 1-D convolution

• 𝑦 𝑛 = σ𝑚 𝑥 𝑚 ℎ[𝑛 − 𝑚]

• 2D Convolution is a multi-dimensional generalization of this

• 𝑦 𝑖, 𝑗 = σ𝑚σ𝑛 𝑥 𝑚, 𝑛 ℎ[𝑖 − 𝑚, 𝑗 − 𝑛]

• ℎ typically referred to as the filter kernel

• Same idea of a weighted average of elements over a sliding

window

• Applications usually have entire 2D samples

available, so “non-causal” ℎ are typical

• Centered, zero phase filters are also common

6

ℎ

Separable Convolution

• ℎ is defined as separable if it can be factored

• ℎ 𝑛,𝑚 = ℎ𝑥 𝑛 ℎ𝑦[𝑚]

• Rewrite convolution as cascade of 1D convolutions

• 𝑦 𝑖, 𝑗 = σ𝑚σ𝑛 𝑥 𝑚, 𝑛 ℎ[𝑖 − 𝑚, 𝑗 − 𝑛]

=෍

𝑚

ℎ𝑥[𝑖 − 𝑚]෍

𝑛

𝑥 𝑚, 𝑛 ℎ𝑦[𝑗 − 𝑛]

• Why is this advantageous? Computation! For an 𝑁𝑥𝑁 filter

• 2D convolution is 𝑁2 multiply-accumulates

• Separable convolution is 2 x 1D convolution for 2𝑁 multiply-

accumulates

7

Image Processing

• Particular (exciting!) application of 2D signal processing is image

processing

• Many different file types: BMP, JPG, PNG, TIF (among others)

• Typical images are

• binary (0/1)

• grayscale (single intensity value)

• color (e.g. 3-channel RGB image, 4-channel RGBa)

8

‘Test’ images

• A number of classical images used in image processing papers

• Allow for quantitative and subjective comparison of different

algorithms

9

Boundary Condition Handling

• Just as with 1D signals, we have to consider how to handle

boundary conditions

• How does signal behave outside sampled boundaries?

• Zero padding

• Might not be a good option when working with

images

• Constant extension

• Mirror extension

• Wrap-around extension

• Filter normalization

• How to pick? Mainly what makes

‘sense’ for your application

10

Convolution Output Domain

• Different varieties of output sets for 2D convolution

• Valid – region where ℎ does not go outside image boundary.

Output size 𝑁 − 𝐾 + 1.

• Same – same size as input image, requires handling of elements

outside of image. Output size 𝑁.

• Full – expanded output image by size

of ℎ, usually assumes zeros outside

image, useful for ‘overlap-add’

type image block processing.

Output size 𝑁 + 𝐾 − 1

11

Full

Same

Valid

Examples of Filters

12

Sharpen

Original Average Gaussian

Median Trimmed Mean

Examples of Filters

• Numerical derivative filters

13

Original

𝜕𝑥

Edge Map

𝜕𝑦

Image Data Types

• Image processing provides some unique numerical processing

challenges

• Bit depth (or dynamic range) of input (and likely output) spaces

• Binary: 0/1

• 8-Bit: 0-255

• 16-Bit: 0-65535

• Most images use 8-bit representation

• Integer values over that interval

• Very easy for algorithms to

• Exceed dynamic range of data type

• Use too narrow an interval of dynamic range and suffer degradation

due to quantization noise

14

Processing Pixel Values

• Option 1: Keep in native data type

• Similar difficultly to implementing fixed point algorithms

• Unsigned datatypes can yield unexpected mathematical

evaluations

• a = 50, b = 30

• 2a – 4b = 236 ?!? 4a + 3b = 34 ?!?

• Can exceed maximum/minimum representable value if not careful

• For convolution operations, can keep in native datatype without

worry if all filter coefficients ℎ 𝑛,𝑚 ≥ 0 and σ𝑛,𝑚 ℎ 𝑛,𝑚 ≤ 1

• Need careful analysis of algorithm to ensure proper operation

• Intermediate values can suffer from this same problem!

15

Processing Pixel Values

• Option 2: Temporarily convert to working data type and convert

back for output

• Work with a more ‘natural’ domain (signed integers, floating point)

so reduced impact on algorithm itself

• For floating point, can map to [0, 1) and abstract algorithm with respect

to input data type

• Introduces cost of performing type conversions

• Working domain datatype typically larger datatype, so more

memory required

• Throughput of operations on larger datatype typically lower as well

• Still may have problems with output elements exceeding

representable range

16

Conversion of Output Pixels

• Ideally our algorithm ‘behaves’ and keeps the output range

within the dynamic range of the image pixel [0, 2𝐵 − 1]

• If not, we have to map into that range in order to have a valid

output image

• Some options: Clip/saturate, rescale/map, wrap-around

(examples below with transform f2/100)

17

Original RescaleClamp /

Saturate

Wrap

Histograms

• Histogram represents distribution of

numerical data

• Each bin denotes a particular value /

outcome (or range of values/outcomes)

• Number assigned to a bin is the count

of observed occurrences of values for

that bin

• For images, perform analysis over all

pixels in the image

• Creates statistical distribution of

pixel intensities

• Spatial information is discarded

18

Histogram of 1,000 Dice Rolls

Histogram of 8-bit gray Mandrill

Histogram Manipulation

• Manipulate pixel values to achieve

desired modified histogram distribution

19

Rescale
DarkenBrighten

Histogram Equalization

• Histogram manipulation to leverage entire dynamic range of

pixel values

• Define the cumulative distribution

function

• 𝐶 𝑥 = σ𝑡=0
𝑥 ℎ[𝑡]

• Determine a warping function that

maps pixel values in the input

distribution to pixel values in the

output distribution

• 𝑥2 = 𝑊(𝑥1) ≈ 𝐶2
−1(𝐶1 𝑥1)

• For a linear distribution in 𝐶2

• 𝑊 𝑥1 =
𝐶1 𝑥1 −𝐶1 𝑥𝑚𝑖𝑛

𝑁2−𝐶1 𝑥𝑚𝑖𝑛
(2𝐵 − 1)

20

Histogram Equalization

21

Lab 6 Overview

• Implementation of real-time histogram equalization and 2D

convolution

• Not both at the same time, user selectable

• Different filters can be chosen, can assume a 3x3 kernel

22

Working with Image Data

• Most high level languages define

array/image objects

• Simplifies algorithm implementation

with explicit multi-dimensional

indexing

• Complicates algorithm implementation

with possibly non-intuitive indexing

conventions

• Recommend create a small image with

some landmark pixels to understand convention

• Lower level languages use a flat buffer

• Explicit index calculations

• 𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑥 + 𝑦 ∗ 𝑤𝑖𝑑𝑡ℎ

• Careful for buffer overrun!

23

Element 0?

Raster order?

Dimension Index?

Element 0

…

RGB vs. YUV

• Color images are broken down into different

bands of information

• “Traditional” representation is RGB

• One channel each for red, green, and blue

respectively

• Another common representation is YUV

• Y – luminance

• U,V – chrominance

• YUV provides a perception-based encoding

• RGB mostly distributes information among

all channels

• YUV concentrates most information in Y

channel

24

Y

U

V

R

G

B

Android Handling of Color

• YUV420 encoding

• U, V channels sampled at half the rate in x/y dimensions

• U, V channels follow Y channel

• Since Y carries most of the information, we will just manipulate

the Y channel alone (grayscale intensity map)

• Leaving U, V alone automatically ‘recolors’ the pixels

25

Many, Many Other Image Manipulations

• Segmentation

• Morphological operations

• Compositing

• Warping

• Rotation

• Denoising

• Compression

• Classification / Identification

• Feature Extraction

26

This week

• Lab 5: Pitch Synthesizer Quiz/Demo

• Lab 6: Image Processor (Histogram and Filtering)

• Assigned Project Lab Proposals Due March 1

27

