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2D Signal Processing

Manipulation of samples of a bivariate function

* f(x,y) = f|n,m] or f[i, j] or x[n, m] or ??7?

- Unfortunate namespace collision with usual function names x, y

* Pick whatever you wish but just be consistent with your notation!
All the usual 1D operations/theorems apply as usual along each
dimension/axis

« Sampling

* Filtering

- Rate changing

* Interpolation

There are also true 2D extensions of the above!



2D Sampling

Many more options in sampling patterns

Rectangular

Regular / Square

Hexagonal

Slanted / Skewed



Sampling and 2D Fourier Transforms

- 2D Fourier transform is cascade of transforms along each
dimension

© G(Qy, Qy) =FE{E{g(xy)}]}
- The essential support of G(£,, Q) determines how it must be
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Sampling and 2D Fourier Transforms

Square Rectangular Non-Rectangular Lattice
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» The better packed the spectra, the more efficient our sampling
scheme is

- Sampling efficiency = fewer samples = more performant algorithms!

- However, processing on non-rectangular lattices can be tricky

« Unless there is an application-specific reason to do so, probably will
be working with uniform sampling in both directions



2D Convolution

Recall 1-D convolution
© yln] = XmxIm]h[n — m]
2D Convolution is a multi-dimensional generalization of this
© ylijl = X Znxlmn]h[i —m,j —n]
h typically referred to as the filter kernel
Same idea of a weighted average of elements over a sliding
window
Applications usually have entire 2D samples
available, so “non-causal” h are typical
- Centered, zero phase filters are also common




Separable Convolution

- his defined as separable if it can be factored
* hln,m] = h, [n]hy [m]
+  Rewrite convolution as cascade of 1D convolutions

‘ y[i:]] ZmZn ] [l_ ]—Tl]

Zh [i —m z x[m,n]h,[j — n]

- Why is this advantageous? Computation! For an NxN filter
- 2D convolution is N? multiply-accumulates

« Separable convolution is 2 x 1D convolution for 2N multiply-
accumulates



Image Processing

Particular (exciting!) application of 2D signal processing is image
processing

Many different file types: BMP, JPG, PNG, TIF (among others)
Typical images are

 binary (0/1)

- grayscale (single intensity value)

 color (e.g. 3-channel RGB image, 4-channel RGBa)




‘Test’ images

- A number of classical images used in image processing papers

- Allow for quantitative and subjective comparison of different
algorithms




Boundary Condition Handling

Just as with 1D signals, we have to consider how to handle
boundary conditions

- How does signal behave outside sampled boundaries?
Zero padding

«  Might not be a good option when working with
Images

Constant extension
Mirror extension
Wrap-around extension

Filter normalization

How to pick? Mainly what makes
‘'sense’ for your application
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Convolution Output Domain

Different varieties of output sets for 2D convolution

Valid - region where h does not go outside image boundary.
Output size N — K + 1.

Same - same size as input image, requires handling of elements
outside of image. Output size N.

Full - expanded output image by size
of h, usually assumes zeros outside
image, useful for ‘overlap-add’

type image block processing.
Outputsize N + K — 1
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liters

Examples of F

Ian

Gauss

Igina

Or

Trimmed Mean

Median
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Examples of Filters

Numerical derivative filters

Original




Image Data Types

Image processing provides some unique numerical processing
challenges
Bit depth (or dynamic range) of input (and likely output) spaces
- Binary: 0/1
- 8-Bit: 0-255
- 16-Bit: 0-65535
- Most images use 8-bit representation
Integer values over that interval

Very easy for algorithms to
- Exceed dynamic range of data type

- Use too narrow an interval of dynamic range and suffer degradation
due to quantization noise
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Processing Pixel Values

Option 1: Keep in native data type

Similar difficultly to implementing fixed point algorithms

Unsigned datatypes can yield unexpected mathematical
evaluations

- a=50,b=30
- 2a-4b =236 ?!? 4a + 3b =34 7?1?
Can exceed maximum/minimum representable value if not careful

For convolution operations, can keep in native datatype without
worry if all filter coefficients h[n,m] = 0 and ), , h[n,m] < 1

Need careful analysis of algorithm to ensure proper operation

- Intermediate values can suffer from this same problem!

15



Processing Pixel Values

- Option 2: Temporarily convert to working data type and convert
back for output

» Work with a more ‘natural’ domain (signed integers, floating point)
so reduced impact on algorithm itself

 For floating point, can map to [0, 1) and abstract algorithm with respect
to input data type

» Introduces cost of performing type conversions

- Working domain datatype typically larger datatype, so more
memory required

« Throughput of operations on larger datatype typically lower as well

- Still may have problems with output elements exceeding
representable range
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Conversion of Output Pixels

|deally our algorithm ‘behaves’ and keeps the output range
within the dynamic range of the image pixel [0,25 — 1]

If not, we have to map into that range in order to have a valid
output image

Some options: Clip/saturate, rescale/map, wrap-around
(examples below with transform £2/100)

b s Rt ik " : :
Original Clamp / Rescale Wrap
Saturate
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Histograms

Histogram represents distribution of
numerical data

Each bin denotes a particular value / _
outcome (or range of values/outcomes) =

2 4 6 8 10 12

Number assigned to a bin is the count Histogram of 1,000 Dice Rolls

of observed occurrences of values for
that bin

3000 +

2500 A

For images, perform analysis over all
pixels in the image

1000 +

- Creates statistical distribution of
pixel intensities

Histogram of 8-bit gray Mandrill
- Spatial information is discarded
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Histogram Manipulation

- Manipulate pixel values to achieve
desired modified histogram distribution
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Histogram Equalization

Histogram manipulation to leverage entire dynamic range of
pixel values

Define the cumulative distribution

function [,
° C[x] — ?=0 h[t] 200000 A

Determine a warping function that ™

maps pixel values in the input pd
distribution to pixel values inthe ™| «—
output distribution )

© Xy = W(xy) = G (Ci[x])
For a linear distribution in C,

o W(xl) — Cl[xl]_cl[xmin] (zB _ 1)

NZ-— C1[xminl



Histogram Equalization
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21



Lab 6 Overview

Implementation of real-time histogram equalization and 2D
convolution

Not both at the same time, user selectable
Different filters can be chosen, can assume a 3x3 kernel
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Working with Image Data

«  Most high level languages define

array/image objects Raster order?

- Simplifies algorithm implementation A g
with explicit multi-dimensional /
indexing Element 0?

- Complicates algorithm implementation \
with possibly non-intuitive indexing N
conventions

- Recommend create a small image with Dimension Index?

some landmark pixels to understand convention

- Lower level languages use a flat buffer
- Explicit index calculations

. offset = x +y * width —

- Careful for buffer overrun!  gfament 0
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RGB vs. YUV

Color images are broken down into different
bands of information
“Traditional” representation is RGB

» One channel each for red, green, and blue
respectively

Another common representation is YUV
* Y -luminance
- U,V - chrominance
YUV provides a perception-based encoding

- RGB mostly distributes information among
all channels

YUV concentrates most informationin Y
channel
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Android Handling of Color

YUV420 encoding

» U, V channels sampled at half the rate in x/y dimensions
- U, V channels follow Y channel

Since Y carries most of the information, we will just manipulate
the Y channel alone (grayscale intensity map)

Leaving U, V alone automatically ‘recolors’ the pixels

Single Frame YUV420:

Y5 | Y6

Y11l|Y1l2
Y15|Y16| Y17 |Y18

Y22)Y23]|Y24
Us | ue
V5 | V6

Position in byte stream:

[Tz [ = [ e [v7 | ve [EIaR 12 [v: 2 [¥as[vaa[vas]vie]vi 7| v1e[¥as[vzo]vz1[vzz[v23[v2a] u1 us[us[wv

Y21
u3

V3
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Many, Many Other Image Manipulations

Segmentation
Morphological operations
Compositing

Warping

Rotation

Denoising

Compression

Classification / Identification

Feature Extraction
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This week

- Lab 5: Pitch Synthesizer Quiz/Demo

- Lab 6: Image Processor (Histogram and Filtering)

» Assigned Project Lab Proposals Due March 1
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