ECE 420 Lecture 5 Feb 18 2019

Now Entering

2D Signal Processing

- Manipulation of samples of a bivariate function
 - $f(x,y) \rightarrow f[n,m]$ or f[i,j] or x[n,m] or ???
 - Unfortunate namespace collision with usual function names x, y
 - Pick whatever you wish but just be consistent with your notation!
- All the usual 1D operations/theorems apply as usual along each dimension/axis
 - Sampling
 - Filtering

۲

- Rate changing
- Interpolation
- There are also true 2D extensions of the above!

2D Sampling

Many more options in sampling patterns •

Sampling and 2D Fourier Transforms

- 2D Fourier transform is cascade of transforms along each dimension
 - $G(\Omega_x, \Omega_y) = F_y \{ F_x \{ g(x, y) \} \}$
- The essential support of $G(\Omega_x, \Omega_y)$ determines how it must be sampled

- The better packed the spectra, the more efficient our sampling scheme is
 - Sampling efficiency = fewer samples = more performant algorithms!
- However, processing on non-rectangular lattices can be tricky
 - Unless there is an application-specific reason to do so, probably will be working with uniform sampling in both directions

2D Convolution

- Recall 1-D convolution
 - $y[n] = \sum_m x[m]h[n-m]$
- 2D Convolution is a multi-dimensional generalization of this
 - $y[i,j] = \sum_m \sum_n x[m,n]h[i-m,j-n]$
- *h* typically referred to as the filter kernel
- Same idea of a weighted average of elements over a sliding window
- Applications usually have entire 2D samples available, so "non-causal" h are typical
 - Centered, zero phase filters are also common

Separable Convolution

- *h* is defined as separable if it can be factored
 - $h[n,m] = h_x[n]h_y[m]$
- Rewrite convolution as cascade of 1D convolutions

•
$$y[i,j] = \sum_{m} \sum_{n} x[m,n]h[i-m,j-n]$$

$$=\sum_{m}h_{x}[i-m]\sum_{n}x[m,n]h_{y}[j-n]$$

- Why is this advantageous? Computation! For an *NxN* filter
 - 2D convolution is N^2 multiply-accumulates
 - Separable convolution is 2 x 1D convolution for 2N multiplyaccumulates

Image Processing

- Particular (exciting!) application of 2D signal processing is image processing
- Many different file types: BMP, JPG, PNG, TIF (among others)
- Typical images are
 - binary (0/1)
 - grayscale (single intensity value)
 - color (e.g. 3-channel RGB image, 4-channel RGBa)

'Test' images

- A number of classical images used in image processing papers
- Allow for quantitative and subjective comparison of different algorithms

Boundary Condition Handling

- Just as with 1D signals, we have to consider how to handle boundary conditions
 - How does signal behave outside sampled boundaries?
- Zero padding
 - Might not be a good option when working with images
- Constant extension
- Mirror extension
- Wrap-around extension
- Filter normalization
- How to pick? Mainly what makes 'sense' for your application

Convolution Output Domain

- Different varieties of output sets for 2D convolution
- Valid region where h does not go outside image boundary. Output size N - K + 1.
- Same same size as input image, requires handling of elements outside of image. Output size N.
- Full expanded output image by size of *h*, usually assumes zeros outside image, useful for 'overlap-add' type image block processing.
 Output size N + K 1

Examples of Filters

Original

Sharpen

Average

Median

Gaussian

Trimmed Mean

Examples of Filters

Numerical derivative filters

 ∂x

Edge Map

Original

Image Data Types

- Image processing provides some unique numerical processing challenges
- Bit depth (or dynamic range) of input (and likely output) spaces
 - Binary: 0/1
 - 8-Bit: 0-255
 - 16-Bit: 0-65535
 - Most images use 8-bit representation
- Integer values over that interval
- Very easy for algorithms to
 - Exceed dynamic range of data type
 - Use too narrow an interval of dynamic range and suffer degradation due to quantization noise

Processing Pixel Values

- Option 1: Keep in native data type
 - Similar difficultly to implementing fixed point algorithms
 - Unsigned datatypes can yield unexpected mathematical evaluations
 - a = 50, b = 30
 - 2a 4b = 236 ?!? 4a + 3b = 34 ?!?
 - Can exceed maximum/minimum representable value if not careful
 - For convolution operations, can keep in native datatype without worry if all filter coefficients $h[n,m] \ge 0$ and $\sum_{n,m} h[n,m] \le 1$
 - Need careful analysis of algorithm to ensure proper operation
 - Intermediate values can suffer from this same problem!

Processing Pixel Values

- Option 2: Temporarily convert to working data type and convert back for output
 - Work with a more 'natural' domain (signed integers, floating point) so reduced impact on algorithm itself
 - For floating point, can map to [0, 1) and abstract algorithm with respect to input data type
 - Introduces cost of performing type conversions
 - Working domain datatype typically larger datatype, so more memory required
 - Throughput of operations on larger datatype typically lower as well
 - Still may have problems with output elements exceeding representable range

Conversion of Output Pixels

- Ideally our algorithm 'behaves' and keeps the output range within the dynamic range of the image pixel $[0, 2^B 1]$
- If not, we have to map into that range in order to have a valid output image
- Some options: Clip/saturate, rescale/map, wrap-around (examples below with transform f²/100)

Original

Clamp / Saturate

Rescale

Histograms

- Histogram represents distribution of numerical data
- Each bin denotes a particular value / outcome (or range of values/outcomes)
- Number assigned to a bin is the count of observed occurrences of values for that bin
- For images, perform analysis over all pixels in the image
 - Creates statistical distribution of pixel intensities
 - Spatial information is discarded

Histogram of 1,000 Dice Rolls

Histogram Manipulation

 Manipulate pixel values to achieve desired modified histogram distribution

Histogram Equalization

- Histogram manipulation to leverage entire dynamic range of pixel values
- Define the cumulative distribution function
 - $C[x] = \sum_{t=0}^{x} h[t]$
- Determine a warping function that maps pixel values in the input distribution to pixel values in the output distribution
 - $x_2 = W(x_1) \approx C_2^{-1}(C_1[x_1])$
- For a linear distribution in C₂

•
$$W(x_1) = \frac{C_1[x_1] - C_1[x_{min}]}{N^2 - C_1[x_{min}]} (2^B - 1)$$

Histogram Equalization

Lab 6 Overview

- Implementation of real-time histogram equalization and 2D convolution
- Not both at the same time, user selectable
- Different filters can be chosen, can assume a 3x3 kernel

Working with Image Data

- Most high level languages define array/image objects
 - Simplifies algorithm implementation with explicit multi-dimensional indexing
 - Complicates algorithm implementation with possibly non-intuitive indexing conventions
 - Recommend create a small image with some landmark pixels to understand convention
- Lower level languages use a flat buffer
 - Explicit index calculations
 - offset = x + y * width
 - Careful for buffer overrun!

Raster order?

Dimension Index?

RGB vs. YUV

- Color images are broken down into different bands of information
- "Traditional" representation is RGB
 - One channel each for red, green, and blue respectively
- Another common representation is YUV
 - Y luminance
 - U,V chrominance
- YUV provides a perception-based encoding
 - RGB mostly distributes information among all channels
 - YUV concentrates most information in Y channel

B

Android Handling of Color

- YUV420 encoding
 - U, V channels sampled at half the rate in x/y dimensions
 - U, V channels follow Y channel
- Since Y carries most of the information, we will just manipulate the Y channel alone (grayscale intensity map)
- Leaving U, V alone automatically 'recolors' the pixels

Single Frame YUV420:

Position in byte stream:

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y20 Y21 Y22 Y23 Y24 U1 U2 U3 U4 U5 U6 V1 V2 V3 V4 V5 V6

Many, Many Other Image Manipulations

- Segmentation
- Morphological operations
- Compositing
- Warping
- Rotation
- Denoising
- Compression
- Classification / Identification
- Feature Extraction

This week

- Lab 5: Pitch Synthesizer Quiz/Demo
- Lab 6: Image Processor (Histogram and Filtering)
- Assigned Project Lab Proposals Due March 1