ECE 420
Lecture 5
Feb 18 2019

Now Entering

%

2D Signal Processing

Manipulation of samples of a bivariate function

* f(x,y) = f|n,m] or f[i, j] or x[n, m] or ??7?

- Unfortunate namespace collision with usual function names x, y

* Pick whatever you wish but just be consistent with your notation!
All the usual 1D operations/theorems apply as usual along each
dimension/axis

« Sampling

* Filtering

- Rate changing

* Interpolation

There are also true 2D extensions of the above!

2D Sampling

Many more options in sampling patterns

Rectangular

Regular / Square

Hexagonal

Slanted / Skewed

Sampling and 2D Fourier Transforms

- 2D Fourier transform is cascade of transforms along each
dimension

© G(Qy, Qy) =FE{E{g(xy)}]}
- The essential support of G(£,, Q) determines how it must be

sampled s %
ByT ‘ (\\ Square sam%ling s (\\
v \\) based on s s\)

max(By, By)

&@&

Sampling and 2D Fourier Transforms

Square Rectangular Non-Rectangular Lattice

Wms O
s sm AN

» The better packed the spectra, the more efficient our sampling
scheme is

- Sampling efficiency = fewer samples = more performant algorithms!

- However, processing on non-rectangular lattices can be tricky

« Unless there is an application-specific reason to do so, probably will
be working with uniform sampling in both directions

2D Convolution

Recall 1-D convolution
© yln] = XmxIm]h[n — m]
2D Convolution is a multi-dimensional generalization of this
© ylijl = X Znxlmn]h[i —m,j —n]
h typically referred to as the filter kernel
Same idea of a weighted average of elements over a sliding
window
Applications usually have entire 2D samples
available, so “non-causal” h are typical
- Centered, zero phase filters are also common

Separable Convolution

- his defined as separable if it can be factored
* hln,m] = h, [n]hy [m]
+ Rewrite convolution as cascade of 1D convolutions

‘ y[i:]] ZmZn] [l_]—Tl]

Zh [i —m z x[m,n]h,[j — n]

- Why is this advantageous? Computation! For an NxN filter
- 2D convolution is N? multiply-accumulates

« Separable convolution is 2 x 1D convolution for 2N multiply-
accumulates

Image Processing

Particular (exciting!) application of 2D signal processing is image
processing

Many different file types: BMP, JPG, PNG, TIF (among others)
Typical images are

 binary (0/1)

- grayscale (single intensity value)

 color (e.g. 3-channel RGB image, 4-channel RGBa)

‘Test’ images

- A number of classical images used in image processing papers

- Allow for quantitative and subjective comparison of different
algorithms

Boundary Condition Handling

Just as with 1D signals, we have to consider how to handle
boundary conditions

- How does signal behave outside sampled boundaries?
Zero padding

« Might not be a good option when working with
Images

Constant extension
Mirror extension
Wrap-around extension

Filter normalization

How to pick? Mainly what makes
‘'sense’ for your application

10

Convolution Output Domain

Different varieties of output sets for 2D convolution

Valid - region where h does not go outside image boundary.
Output size N — K + 1.

Same - same size as input image, requires handling of elements
outside of image. Output size N.

Full - expanded output image by size
of h, usually assumes zeros outside
image, useful for ‘overlap-add’

type image block processing.
Outputsize N + K — 1

11

liters

Examples of F

Ian

Gauss

Igina

Or

Trimmed Mean

Median

12

Examples of Filters

Numerical derivative filters

Original

Image Data Types

Image processing provides some unique numerical processing
challenges
Bit depth (or dynamic range) of input (and likely output) spaces
- Binary: 0/1
- 8-Bit: 0-255
- 16-Bit: 0-65535
- Most images use 8-bit representation
Integer values over that interval

Very easy for algorithms to
- Exceed dynamic range of data type

- Use too narrow an interval of dynamic range and suffer degradation
due to quantization noise

14

Processing Pixel Values

Option 1: Keep in native data type

Similar difficultly to implementing fixed point algorithms

Unsigned datatypes can yield unexpected mathematical
evaluations

- a=50,b=30
- 2a-4b =236 ?!? 4a + 3b =34 7?1?
Can exceed maximum/minimum representable value if not careful

For convolution operations, can keep in native datatype without
worry if all filter coefficients h[n,m] = 0 and), , h[n,m] < 1

Need careful analysis of algorithm to ensure proper operation

- Intermediate values can suffer from this same problem!

15

Processing Pixel Values

- Option 2: Temporarily convert to working data type and convert
back for output

» Work with a more ‘natural’ domain (signed integers, floating point)
so reduced impact on algorithm itself

 For floating point, can map to [0, 1) and abstract algorithm with respect
to input data type

» Introduces cost of performing type conversions

- Working domain datatype typically larger datatype, so more
memory required

« Throughput of operations on larger datatype typically lower as well

- Still may have problems with output elements exceeding
representable range

16

Conversion of Output Pixels

|deally our algorithm ‘behaves’ and keeps the output range
within the dynamic range of the image pixel [0,25 — 1]

If not, we have to map into that range in order to have a valid
output image

Some options: Clip/saturate, rescale/map, wrap-around
(examples below with transform £2/100)

b s Rt ik " : :
Original Clamp / Rescale Wrap
Saturate

17

Histograms

Histogram represents distribution of
numerical data

Each bin denotes a particular value / _
outcome (or range of values/outcomes) =

2 4 6 8 10 12

Number assigned to a bin is the count Histogram of 1,000 Dice Rolls

of observed occurrences of values for
that bin

3000 +

2500 A

For images, perform analysis over all
pixels in the image

1000 +

- Creates statistical distribution of
pixel intensities

Histogram of 8-bit gray Mandrill
- Spatial information is discarded

18

Histogram Manipulation

- Manipulate pixel values to achieve
desired modified histogram distribution

00000

00000

Brighte/ Darken l \Refcale

00000

00000

00000

00000

000000000000000

0000000000

Histogram Equalization

Histogram manipulation to leverage entire dynamic range of
pixel values

Define the cumulative distribution

function [,
° C[x] — ?=0 h[t] 200000 A

Determine a warping function that ™

maps pixel values in the input pd
distribution to pixel values inthe ™| «—
output distribution)

© Xy = W(xy) = G (Ci[x])
For a linear distribution in C,

o W(xl) — Cl[xl]_cl[xmin] (zB _ 1)

NZ-— C1[xminl

Histogram Equalization

250000 4

200000 4

150000 -

100000 -

v

50000 4

T T T T
0 50 100 150 200 250

21

Lab 6 Overview

Implementation of real-time histogram equalization and 2D
convolution

Not both at the same time, user selectable
Different filters can be chosen, can assume a 3x3 kernel

22

Working with Image Data

« Most high level languages define

array/image objects Raster order?

- Simplifies algorithm implementation A g
with explicit multi-dimensional /
indexing Element 0?

- Complicates algorithm implementation \
with possibly non-intuitive indexing N
conventions

- Recommend create a small image with Dimension Index?

some landmark pixels to understand convention

- Lower level languages use a flat buffer
- Explicit index calculations

. offset = x +y * width —

- Careful for buffer overrun! gfament 0

23

RGB vs. YUV

Color images are broken down into different
bands of information
“Traditional” representation is RGB

» One channel each for red, green, and blue
respectively

Another common representation is YUV
* Y -luminance
- U,V - chrominance
YUV provides a perception-based encoding

- RGB mostly distributes information among
all channels

YUV concentrates most informationin Y
channel

24

Android Handling of Color

YUV420 encoding

» U, V channels sampled at half the rate in x/y dimensions
- U, V channels follow Y channel

Since Y carries most of the information, we will just manipulate
the Y channel alone (grayscale intensity map)

Leaving U, V alone automatically ‘recolors’ the pixels

Single Frame YUV420:

Y5 | Y6

Y11l|Y1l2
Y15|Y16| Y17 |Y18

Y22)Y23]|Y24
Us | ue
V5 | V6

Position in byte stream:

[Tz [= [e [v7 | ve [EIaR 12 [v: 2 [¥as[vaa[vas]vie]vi 7| v1e[¥as[vzo]vz1[vzz[v23[v2a] u1 us[us[wv

Y21
u3

V3

25

Many, Many Other Image Manipulations

Segmentation
Morphological operations
Compositing

Warping

Rotation

Denoising

Compression

Classification / Identification

Feature Extraction

26

This week

- Lab 5: Pitch Synthesizer Quiz/Demo

- Lab 6: Image Processor (Histogram and Filtering)

» Assigned Project Lab Proposals Due March 1

27

