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Now Entering
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The Third Dimension!
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𝑓(𝑥, 𝑦, 𝑧)

No, not this 
one!

This one!

3D Signal Processing

𝑓(𝑥, 𝑦, 𝑡)



Video Processing

• Not volumetric 3D signal processing, but processing of video 

streams

• Set of 2D image frames

• Typical algorithms operate on a frame-by-frame basis with some 

state carried among frames

• Many video processing algorithms (some of these apply to still 

images as well):

• Detection / recognition

• Tracking

• Compression

• 3D reconstruction
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Algorithm Performance

• Based on processing time per frame, we can express the 

performance of the algorithm in terms of frames per second

• Very common metric in computer gaming / display systems

• Human visual system can perceive up to 1000 fps under certain 

circumstances

• 13 – 20 fps: video motion becomes fairly fluid

• 24 fps: broadcast TV / motion picture standard

• 30 – 60 fps: gaming

• 120+ fps: TV [with interpolation]
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Algorithm Performance

• Insufficient FPS?

• Live with it

• Drop frames

• Drop pixels

• Drop frames and/or pixels and interpolate result

• Decreasing frame rate or resolution can potentially make things 

harder due to 

• lower temporal correlation

• lower resolution

• Target FPS can put a significant limit on how much computation 

your algorithm can perform on each frame
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2D DFT

𝑋[𝑘, ℓ] = 

𝑚=0

𝑀−1



𝑛=0

𝑁−1

𝑥 𝑚, 𝑛 𝑒−𝑗2𝜋(𝑘𝑚/𝑀+ℓ𝑛/𝑁)

Direct implementation: 𝑂 𝑁4 [ouch!]

𝑋 𝑘, ℓ = 

𝑚=0

𝑀−1

𝑒−
𝑗2𝜋𝑘𝑚

𝑀 

𝑛=0

𝑁−1

𝑥 𝑚, 𝑛 𝑒−
𝑗2𝜋ℓ𝑛
𝑁

Separable implementation: 𝑂 𝑁3 [better!]

Replace direct sums with FFT

𝑦 𝑚, ℓ = 𝐹𝑛{𝑥 𝑚, 𝑛 }

𝑋 𝑘, ℓ = 𝐹𝑚{𝑦 𝑚, ℓ }

2D FFT: 𝑂 𝑁2 log𝑁 [best!]
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2D DFT

• 2D DFT samples span [0, 2𝜋) in each

dimension

• Samples are conjugate-symmetric about

the origin

• fftshift() moves the DC component to

the image center for easier visualization

• Also images tend to have a VERY strong

DC component, so some manipulation of

magnitude values is necessary for 

visualization

• log, sqrt, etc.

• If your DFT looks empty, check the DC

pixel!
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Magnitude 2D 

DFT

2D DFT after

fftshift



2D Convolution with DFT

• Multidimensional extension of the convolution theorem

• 𝑦 𝑚, 𝑛 = 𝑥 𝑚, 𝑛 ∗∗ ℎ 𝑚, 𝑛 = 𝐹2
−1{𝐹2 𝑥 𝐹2 ℎ }

• When using the 2D DFT, we get 2D circular convolution
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2D Convolution with DFT

• We want to apply a (mostly) zero phase filter ℎ[𝑚, 𝑛]

• The ‘center’ of ℎ needs to be at the [0,0] location

• Other patches of h wrap around

• ℎ is non-causal, which results in circular wrapping

• Zero padding the image prior to DFT yields linear convolution

• Still need to rearrange ℎ as above, or accommodate pixel shift

• Can also leverage ifftshift() to restructure ℎ appropriately
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Brief Review of Matrix Operations

• An 𝑚 by 𝑛 matrix has 𝑚 rows and 𝑛 columns

• Elements indexed as 𝑎𝑖𝑗 for element in 

row 𝑖 and column 𝑗

• Input data (samples, state, etc.) represented as a 

column vector (𝑚 by 1 matrix)

• Higher dimensional input data (e.g. images)

‘stacked’ to form a 1D vector

• A matrix variable is usually written in bold, using lowercase (𝒙) 

for a column matrix and uppercase for a ‘full’ matrix operator (𝑨)
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𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6



Brief Review of Matrix Operations

• Addition/subtraction is element wise application of operation

• Multiplication is inner products between rows and columns of 

respective matrices

• Instead of ‘division’ we talk about matrix inverse 𝐴−1

𝐴−1𝐴 = 𝐼
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𝐴 + 𝐵 =

𝑎11 + 𝑏11 𝑎12 + 𝑏12
𝑎21 + 𝑏21 𝑎22 + 𝑏22
𝑎31 + 𝑏31 𝑎32 + 𝑏32

𝐶 = 𝐴𝐵, 𝑐𝑖𝑗=

𝑘

𝑎𝑖𝑘𝑏𝑘𝑗



Brief Review of Matrix Operations

• Identity matrix 𝐼 is 1 on the diagonal 

and 0 everywhere else

• A matrix is diagonal if its non-zero 

elements are on the diagonal only

• The inverse of a diagonal matrix

is easily calculated
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𝐼 =
1 0 0
0 1 0
0 0 1

𝐴 =
𝑎11 0 0
0 𝑎22 0
0 0 𝑎33

𝐴−1 =

1/𝑎11 0 0
0 1/𝑎22 0
0 0 1/𝑎33



Brief Review of Matrix Operations

• Matrix transpose flips elements about the diagonal

• Hermitian 𝐴𝐻 is a matrix transpose with conjugation of each 

element

• Norm is defined as    𝐴 = σ𝑖,𝑗 𝑎𝑖𝑗
2

• An operator is defined as linear if

𝐴𝑥 + 𝐴𝑦 = 𝐴 𝑥 + 𝑦 , 𝐴𝛼𝑥 = 𝛼𝐴𝑥

• All linear operators can be written as a matrix!
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𝐴𝑇 =
𝑎11 𝑎21 𝑎31
𝑎12 𝑎22 𝑎32



Detection vs. Tracking

• Detection

• Usually posed as a single-frame / image problem

• Is there a particular object present?

• Where is it?

• What is it?

• Tracking

• Given a starting location/description (seed)

• Follow object as it traverses scene

• May also want to estimate/report changes in “pose”

• How is it oriented / configured?

• Tracking will typically involve some detection
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Challenges in Tracking
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Kalman Filter

• General problem statement:

• Given a model of the system state evolution, estimate progression 

of system state over time, given system measurements

• State update equation

• 𝑥𝑡 = 𝐹𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 + 𝑤𝑡

• 𝑥𝑡 - system state vector

• 𝐹𝑡 - state transition matrix

• 𝑢𝑡 - system control vector

• 𝐵𝑡 - control input matrix

• 𝑤𝑡 - process noise (with covariance 𝑄𝑡)
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Kalman Filter

• State measurement

• 𝑧𝑡 = 𝐻𝑡𝑥𝑡 + 𝑣𝑡

• 𝑧𝑡 - measured data

• 𝐻𝑡 - measurement matrix

• 𝑣𝑡 - measurement noise (covariance 𝑅𝑡)

• Kalman filter algorithm has two parts

• Prediction step

• Measurement update step

• For notational simplicity, let 𝐻𝑡 = 𝐼
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Kalman Filter - Prediction

• Given past state estimate, calculate new state estimate

• ො𝑥𝑡|𝑡−1 = 𝐹𝑡 ො𝑥𝑡−1|𝑡−1 + 𝐵𝑡𝑢𝑡

• Notation ො𝑥𝑎|𝑏

• Estimate of 𝑥 at time 𝑡 = 𝑎 given measurements up to time 𝑡 = 𝑏

• This update propagates the estimated state forward

• Key to the Kalman filter is keeping track of the certainty of our 

estimates

• 𝑃𝑡|𝑡−1 = 𝑉𝑎𝑟 𝑥𝑡 − ො𝑥𝑡|𝑡−1 = 𝐹𝑡𝑃𝑡−1|𝑡−1𝐹𝑡
𝑇 + 𝑄𝑡

• Note that at this point we have updated the state without any 

feedback from the system
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Kalman Filter - Prediction
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ො𝑥𝑡−1|𝑡−1

ො𝑥𝑡|𝑡−1



Kalman Filter – Measurement update

• Given noisy measurements, update the state estimation

• ො𝑥𝑡|𝑡 = ො𝑥𝑡|𝑡−1 + 𝐾𝑡(𝑧𝑡 − ො𝑥𝑡|𝑡−1)

• 𝐾𝑡 = 𝑃𝑡|𝑡−1 𝑃𝑡|𝑡−1 + 𝑅𝑡
−1

• Note that at no point in time do we assume a perfect state value

• Every vector has an associated uncertainty with it

• Updated certainty of estimate

• 𝑃𝑡|𝑡 = 𝑉𝑎𝑟 𝑥𝑡 − ො𝑥𝑡|𝑡 = 𝑃𝑡|𝑡−1 − 𝐾𝑡𝑃𝑡|𝑡−1

• How did these updates come about?
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Kalman Filter – Measurement Update
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ො𝑥𝑡|𝑡−1, 𝑧𝑡

ො𝑥𝑡|𝑡



Fusing Measurements

• Consider two noisy measurements 𝑥1, 𝑥2 with different variances 

𝜎1
2, 𝜎2

2

• How should these be ‘optimally’ combined?

• Consider a linear combination of the two measurements that 

minimizes the variance of the combined estimate

• ො𝑥𝑜𝑝𝑡 = min
𝛼

𝑉𝑎𝑟[ 1 − 𝛼 𝑥1 + 𝛼𝑥2]

• This is achieved by ‘Kalman Gain’ 𝐾

• 𝛼 = 𝐾 = 𝜎1
2/(𝜎1

2 + 𝜎2
2)

• Yielding

• ො𝑥𝑜𝑝𝑡 = 𝑥1 + 𝐾 𝑥2 − 𝑥1

• 𝑉𝑎𝑟[ො𝑥𝑜𝑝𝑡] = 1 − 𝐾 𝜎1
2
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Fusing Measurements – Kalman Filter

• In the Kalman Filter derivation, we want to estimate ො𝑥𝑡|𝑡 given 

• ො𝑥𝑡|𝑡−1, which has variance 𝑃𝑡|𝑡−1

• 𝑧𝑡, which has variance 𝑅𝑡

• Applying the ‘optimal’ fusion of these two measurements from 

the scalar case

• The attractive feature of Kalman filtering is its simple, recursive 

form
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Variable Scalar Fusion Kalman/Vector Fusion

𝐾 𝜎1
2/(𝜎1

2 + 𝜎2
2) 𝑃𝑡|𝑡−1 𝑃𝑡|𝑡−1 + 𝑅𝑡

−1

ො𝑥𝑡|𝑡 𝑥1 + 𝐾 𝑥2 − 𝑥1 ො𝑥𝑡|𝑡−1 + 𝐾𝑡(𝑧𝑡 − ො𝑥𝑡|𝑡−1)

𝑃𝑡|𝑡 1 − 𝐾 𝜎1
2 (𝐼 − 𝐾𝑡)𝑃𝑡|𝑡−1



Example of Kalman Video Tracking

• Consider tracking a ball

• Provided an initial location

• Estimate new ball location

• Check for ball near new location, update based on discrepancy

• If no ball detected, continue propagating state without 

measurement reinforcement
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Correlation Filter Tracking

• Not correlation of image patches with each

other but rather correlation with a

classifier filter

• In a training phase a target image/patch is

provided which is used to construct the 

classifier filter

• The filter is designed so that its response to the

training image is similar to a predefined regression

target image (e.g a Gaussian)

• In the tracking phase applies the classifier filter to patches in the 

image

• Large responses = high correlation = the object we are looking for!
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Correlation Filter Tracking

• Selecting which sections of the image to test can be tricky

• Correlation evaluation can be costly per patch

• Insufficient patch coverage leads to loss of tracking performance

• Test all the patches using the DFT / convolution

• Apply a window to attenuate circular wrapping effects

• Look for maximum response and update classifier filter

• FFT implementation allows for very efficient tracking algorithm
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OpenCV

• Open Source Computer Vision Library

• Implements main different computer vision algorithms with focus 

on real-time applications

• Can leverage multiple cores, hardware accelerators

• Among other areas has support for facial and gesture 

recognition, object identification, segmentation, motion tracking, 

machine learning, image filtering and transforms, drawing

• C++, Python and Java Interfaces

• Active community with continual contributions

• Goal is not to reinvent the wheel
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Lab 7

• Video Processing

• Utilize KCF to track an object of interest

• Identified at start of algorithm’s execution by user

• Leverages OpenCV to do the heavy lifting
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Assigned Project Lab Proposals

• Due March 4, 2PM

• Expectations for proposal:

• Overview of the algorithm to be implemented, including citation of 

sources.

• Plan for testing and validation of the algorithm's implementation.

• Rough idea(s) for Final Project applications of the algorithm.

• Feedback to be provided prior to starting on Assigned Project 

Lab

• The earlier the proposal is submitted, the sooner it can be returned 

and the more time you have to adjust based on feedback
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Outline of Rest of Semester

• 3/17: Final Project Proposals Due

• Week of 3/25: Final Project Proposal Presentation + Assigned 

Lab Demo

• Week of 4/22: Final Project Demo

• 4/29: In-class Final Lecture Cumulative Quiz

• 5/3: Final Project Report and optional Video Due
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This week

• Lab 6: Image Processor Quiz/Demo

• Lab 7: Video Tracker

• Assigned Project Lab Proposals Due March 4

• Sign up groups as soon as you have them worked out

• Submission of proposals on Compass (available soon)
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