CS/ECE 438: Communication Networks Fall 2019

6. Wireless & Mobile Networks

Chapter 6: Wireless and Mobile Networks

Background:

- # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)!
- # wireless Internet-connected devices equals # wireline Internet-connected devices
 - laptops, Internet-enabled phones promise anytime untethered Internet access
- two important (but different) challenges
 - wireless: communication over wireless link
 - mobility: handling the mobile user who changes point of attachment to network

Wireless Networks Increasingly Prevalent

Wireless Biomedical Implants

Wireless Wearables

Cellular Networks

Wireless Sensors

UAVs

Wireless Data Centers

Wireless VR

Wireless Vehicles

Increasing Demand for Wireless Connectivity

Increasing Demand for Wireless Connectivity

Many Motivations for Wireless

- Unrestricted mobility / deployability
 - Unplugged from power outlet

- Significantly lower cost
 - No cable layout, service provision
 - Low maintenance

- Ease
 - Direct communication with minimum infrastructure

No Free Lunch

- Numerous challenges
 - Channel fluctuation
 - Lower bandwidth
 - Limited Battery power
 - Disconnection due to mobility
 - Security
 - •

Question Is ...

Can't we use the rich "wireline" knowledge?
In solving the wireless challenges

The Answer

Wireless channel: A dispersive medium The PHY and MAC layer completely dissimilar

The whole game changes

Chapter 6: Outline

- ☐ Introduction
- Wireless Links
- ☐ Wireless MAC
- ☐ WiFi: 802.11 Wireless LANs
- ☐ Cellular Networks: 3G, LTE
- Mobility

Characteristics of selected wireless links

ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

Wireless network taxonomy

	single hop	multiple hops
infrastructure (e.g., APs)	host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: <i>mesh net</i>
no infrastructure	no base station, no connection to larger Internet (Bluetooth, ad hoc nets)	no base station, no connection to larger Internet. May have to reach other a given wireless node MANET, VANET

Chapter 6: Outline

- ✓ Introduction
- Wireless Links
- ☐ Wireless MAC
- ☐ WiFi: 802.11 Wireless LANs
- ☐ Cellular Networks: 3G, LTE
- Mobility

important differences from wired link

 decreased signal strength: radio signal attenuates as it propagates through matter (path loss)

$$P_{Rx} = \frac{G_{Tx} G_{Rx} \lambda^2}{(4\pi d)^2} P_{Tx}$$

$$Path Loss (dB) = 10 \log_{10} P_{Tx} / P_{Rx}$$

important differences from wired link

decreased signal strength: radio signal attenuates as it propagates through matter (path loss)

$$h \propto \frac{\lambda}{d} e^{j2\pi d/\lambda}$$

$$x(t) \longrightarrow y(t) = h x(t) + n(t)$$

Signal - to - Noise Ratio:

$$SNR = \frac{|h|^2 \times |x(t)|^2}{|n(t)|^2} = \frac{|h|^2 P_{Tx}}{N}$$

- SNR: signal-to-noise ratio
 - High SNR easier to extract signal from noise (a "good thing")

Low SNR – hard to extract signal from noise (a "bad thing")

HIGH SNR → Low Bit Error Rate
LOW SNR → High Bit Error Rate

- SNR: signal-to-noise ratio
 - High SNR → Lower Bit Error → Use higher order modulation i.e. pack more bits per symbol

 $Bit\ Rate = Bandwidth \times bits/symbol$

- SNR: signal-to-noise ratio
 - High SNR → Lower Bit Error → Use higher order modulation i.e. pack more bits per symbol
 - Some types of modulations:
 - BPSK: Binary Phase Shift Keying

- SNR: signal-to-noise ratio
 - High SNR → Lower Bit Error → Use higher order modulation i.e. pack more bits per symbol
 - Some types of modulations:
 - BPSK: Binary Phase Shift Keying
 - QPSK: Phase Shift Keying

- SNR: signal-to-noise ratio
 - High SNR → Lower Bit Error → Use higher order modulation i.e. pack more bits per symbol
 - Some types of modulations:
 - BPSK: Binary Phase Shift Keying
 - QPSK: Quadrature Phase Shift Keying
 - QAM: Quadrature Amplitude Modulation

- SNR: signal-to-noise ratio
 - High SNR → Lower Bit Error → Use higher order modulation i.e. pack more bits per symbol
 - Some types of modulations:
 - BPSK: Binary Phase Shift Keying
 - QPSK: Quadrature Phase Shift Keying
 - QAM: Quadrature Amplitude Modulation

- SNR: signal-to-noise ratio
 - High SNR → Lower Bit Error → Use higher order modulation i.e. pack more bits per symbol
 - Some types of modulations:
 - BPSK: Binary Phase Shift Keying
 - QPSK: Quadrature Phase Shift Keying
 - QAM: Quadrature Amplitude Modulation
 - FSK: Frequency Shift Keying

- SNR: signal-to-noise ratio
 - High SNR → Lower Bit Error → Use higher order modulation i.e. pack more bits per symbol
 - Some types of modulations:
 - BPSK: Binary Phase Shift Keying
 - QPSK: Quadrature Phase Shift Keying
 - QAM: Quadrature Amplitude Modulation
 - FSK: Frequency Shift Keying
 - PAM: Pulse Amplitude Modulation
 - On-OFF Keying

- SNR versus BER tradeoffs
 - given physical layer modulation:
 Higher SNR → Low BER
 - given SNR: choose physical layer that meets BER requirement, giving highest throughput
 - SNR may change with mobility: dynamically adapt physical layer (modulation technique, coding) → rate adaptation

- Given SNR, what is maximum rate that we can achieve?
 - Shannon Capacity Theorem:

$$Capacity = Bandwidth \times \log_2(1 + SNR)$$

important differences from wired link

 interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well

important differences from wired link

 interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well

Signal – to – Interference & Noise Ratio:

$$SINR = \frac{Received\ Signal\ Power\ (P_{Rx})}{Interference\ (I) + Noise\ (N)}$$

MAC Protocols necessary to avoid interference!

important differences from wired link

 multipath propagation: radio signal reflects off objects ground, arriving at destination at slightly different times

$$y(t) = h_1 x(t - \tau_1) + h_2 x(t - \tau_2) + h_3 x(t - \tau_3)$$

important differences from wired link

 multipath propagation: radio signal reflects off objects ground, arriving at destination at slightly different times

$$y(t) = \sum_{k} h_k x(t - \tau_k) = h(t) * x(t)$$

important differences from wired link

 multipath propagation: radio signal reflects off objects ground, arriving at destination at slightly different times

$$y(t) = \sum_{k} h_k x(t - \tau_k) = h(t) * x(t)$$
Paths sum with different phases:
Constructive/Destructive

Multi-tap Channel

Symbols arriving along late paths interfere with following symbols.

Frequency Selective Fading:

Example 2 paths with distance $d_1 = 1m$, $d_2 = 1.06m$:

$$h = h_1 + h_2 = \frac{\lambda}{d_1} e^{j2\pi d_1/\lambda} + \frac{\lambda}{d_2} e^{j2\pi d_2/\lambda}$$

$$@f_1 = 2.5GHz (\lambda = 12 cm)$$
:

$$h = 0.12 e^{j\frac{2\pi}{3}} + 0.113 e^{j\frac{5\pi}{3}} \approx 0.006$$

$$@f_2 = 5GHz (\lambda = 6 cm)$$
:

$$h = 0.06 e^{j\frac{5\pi}{3}} + 0.05 e^{j\frac{5\pi}{3}} \approx 0.116$$

important differences from wired link

 multipath propagation: radio signal reflects off objects ground, arriving at destination at slightly different times

$$y(t) = \sum_{k} h_k x(t - \tau_k) = h(t) * x(t) \Leftrightarrow H(f)X(f)$$

important differences from wired link

- multipath propagation: radio signal reflects off objects ground, arriving at destination at slightly different times
 - Inter-Symbol-Interference

Frequency Selective Fading

important differences from wired link

 multipath propagation: radio signal reflects off objects ground, arriving at destination at slightly different times

Solution:

OFDM: Orthogonal Frequency Division Multiplexing

Idea: transmit symbols in frequency not time.

Orthogonal Frequency Division Multiplexing

Simplified OFDM System Block Diagram

Channel Estimation and Correction

How to estimate and correct for channel?

Send Preamble Bits

Channel Estimation and Correction

$$h \propto \frac{\lambda}{d} e^{j2\pi d/\lambda}$$

$$y(t) = h x(t) + n(t)$$

Preamble Bits: Known bits

$$x(0) = 1$$
 —

$$x(0) = 1$$
 $y(0) = h + n(0)$

$$x(1) = 1$$
 $y(1) = h + n(1)$

$$y(1) = h + n(1)$$

$$x(2) = -1$$

$$x(2) = -1$$
 $y(2) = -h + n(2)$

Estimate channel:
$$\tilde{h} = \sum_{k} \frac{y(k)}{x(k)}$$

Correct channel: $\tilde{x}(t) = \frac{y(t)}{\tilde{\iota}}$

Channel Estimation and Correction

What about multi-tap channel?

OFDM: Send bits in frequency domain

$$h(t) * x(t) \Leftrightarrow H(f)X(f)$$

Channel estimation and correction can be done in frequency domain.

$$\widetilde{H}(f) = \frac{Y(f)}{X(f)}$$

Spread Spectrum

- Problem of radio transmission: frequency dependent fading can wipe out narrow band signals for duration of the interference
- Solution: spread the narrow band signal into a broad band signal using a special code

DSSS (Direct Sequence Spread Spectrum)

- XOR the signal with pseudonoise (PN) sequence (chipping sequence)
- Advantages
 - reduces frequency selective fading
 - Robust to interference
 - Multi-user
- Used in 3G & 802.11b

FHSS (Frequency Hopping Spread Spectrum)

- Discrete changes of carrier frequency
 - sequence of frequency changes determined via PN sequence
- Advantages
 - frequency selective fading and interference limited to short period
 - uses only small portion of spectrum at any time
 - Secure
- Used in bluetooth & military applications

(b) Channel use

important differences from wired link

- decreased signal strength: radio signal attenuates as it propagates through matter (path loss)
- interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
- multipath propagation: radio signal reflects off objects ground, arriving ad destination at slightly different times

.... make communication across (even a point to point) wireless link much more "difficult"

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem

- B, A hear each other
- B, C hear each other
- A, C can not hear each other means A, C unaware of their interference at B

Signal attenuation:

- B, A hear each other
- B, C hear each other
- A, C can not hear each other interfering at B

Advantage of signal attenuation: Spatial Reuse

Problem: A wants to transmit a packet to C

Option 1: A increases its power such that its packet reaches C

Option 2: A sends that packet to B which intern send it to C

Problem: A wants to transmit a packet to C

To double transmission range, we need: 4x more overall power!

To transmit over two hops, we need: 2x more overall power!

Multi-hop wireless networks:

- Increase TX power: increase transmission range by N times, need $N^2 \times$ more power
- Multi-hop links: increase transmission range by N times, need $N \times$ more power

Ad hoc multi-hop wireless networks!

Chapter 6: Outline

- ✓ Introduction
- ✓ Wireless Links
- ☐ Wireless MAC
- ☐ WiFi: 802.11 Wireless LANs
- ☐ Cellular Networks: 3G, LTE
- Mobility

The Channel Access Problem

Multiple nodes share a channel

- Pairwise communication desired
 - Simultaneous communication not possible
- MAC Protocols
 - Suggests a scheme to schedule communication
 - Maximize number of communications
 - Ensure fairness among all transmitters

The Trivial Solution

- Transmit and pray
 - Plenty of collisions → poor throughput at high load

- Transmit and pray
 - Plenty of collisions
 poor throughput at high load
- Listen before you talk
 - Carrier sense multiple access (CSMA)
 - Defer transmission when signal on channel

Can collisions still occur?

CSMA collisions

Collisions can still occur:

Propagation delay non-zero between transmitters

When collision:

Entire packet transmission time wasted

note:

Role of distance & propagation delay in determining collision probability

spatial layout of nodes

CSMA/CD (Collision Detection)

- Keep listening to channel
 - While transmitting

- If (Transmitted_Signal != Sensed_Signal)
 - > Sender knows it's a Collision
 - → ABORT

2 Observations on CSMA/CD

- Transmitter can send/listen concurrently
 - If (Sensed received = null)? Then success
- The signal is identical at Tx and Rx
 - Non-dispersive

The transmitter can DETECT if and when collision occurs

Unfortunately ...

Both observations do not hold for wireless

Leading to ...

Wireless Medium Access Control

Wireless Media Disperse Energy

A cannot send and listen in parallel

Collision Detection Difficult

- Signal reception based on SINR
 - Transmitter can only hear itself
 - Cannot determine signal quality at receiver

Important: C has not heard A, but can interfere at receiver B

Important: X has heard A, but should not defer transmission to Y

Hidden and Exposed Terminal Problems

Critical to wireless networks even today

IEEE 802.11

IEEE 802.11

But is that enough?

RTS/CTS

- Does it solve hidden terminals?
 - Assuming carrier sensing zone = communication zone

E does not receive CTS successfully -> Can later initiate transmission to D. Hidden terminal problem remains.

Hidden Terminal Problem

- How about increasing carrier sense range ??
 - E will defer on sensing carrier → no collision !!!

Hidden Terminal Problem

- But what if barriers/obstructions ??
 - E doesn't hear C → Carrier sensing does not help

Exposed Terminal

- B should be able to transmit to A
 - RTS prevents this

Exposed Terminal

- B should be able to transmit to A
 - Carrier sensing makes the situation worse

Multiplexing

- Multiplexing in 4 dimensions
 - space (s_i)
 - time (t)
 - frequency (f)
 - code (c)

Frequency multiplex

- Separation of spectrum into smaller frequency bands
- Channel gets band of the spectrum for the whole time

- no dynamic coordination needed
- works also for analog signals

Disadvantages:

- waste of bandwidth if traffic distributed unevenly
- inflexible
- guard spaces

Time multiplex

- Channel gets the whole spectrum for a certain amount of time
- Advantages:
- only one carrier in the medium at any time
 throughput high even for many users
 Disadvantages:

 precise synchronization necessary

Time and frequency multiplex

- A channel gets a certain frequency band for a certain amount of time (e.g. GSM)
- Advantages:
 - better protection against tapping
 - protection against frequency selective interference
 - higher data rates compared to code multiplex
- Precise coordination required

Code multiplex

 k_1

- Each channel has unique code
- All channels use same spectrum at same time
- Advantages:
 - bandwidth efficient
 - no coordination and synchronization
 - good protection against interference
- Disadvantages:
 - lower user data rates
 - more complex signal regeneration
- Implemented using spread spectrum technology

Code Division Multiple Access (CDMA)

- unique "code" assigned to each user; i.e., code set partitioning
 - all users share same frequency, but each user has own "chipping" sequence (i.e., code) to encode data
 - allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")
- encoded signal = (original data) X (chipping sequence)
- decoding: inner-product of encoded signal and chipping sequence
- Example codes: Gold Codes, Walsh Codes

CDMA encode/decode

CDMA: two-sender interference

Code Division Multiple Access (CDMA)

• Ideally, need codes to have good:

Auto-correlation properties: $c_i(t) \cdot c_i(t) = 1$

Cross-correlation properties: $c_i(t) \cdot c_j(t) = 0$ for $j \neq i$

$$\left(\sum_{i} h_i d_i(t) c_i(t)\right) \cdot c_i(t) = h_i d_i(t)$$

- Need orthogonal codes: For N users, length of code is exponential in N \rightarrow 2^{N-1}
- Near Far Effect Problem

 need power management

Chapter 6: Outline

- ✓ Introduction
- ✓ Wireless Links
- ✓ Wireless MAC
- ☐ WiFi: 802.11 Wireless LANs
- ☐ Cellular Networks: 3G, LTE
- Mobility

IEEE 802.11 Wireless LAN

802.11b

- 2.4-5 GHz unlicensed spectrum
- up to 11 Mbps
- direct sequence spread spectrum (DSSS) in physical layer
 - all hosts use same chipping code

802.11ad/ay: Millimeter wave

- ■2.4, 5, 60 GHz range
- ■Up to 7 Gbps

802.11a

- 5-6 GHz range
- up to 54 Mbps

802.11g

- 2.4-5 GHz range
- up to 54 Mbps

802.11n: multiple antenna

- 2.4-5 GHz range
- up to 200 Mbps

802.11ac: multiple antenna

- 2.4-5 GHz range
- Up to 1.69 Gbps

802.11 LAN architecture

BSS 2

- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station
 - ad hoc mode: hosts only

802.11: Channels, association

- 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- host: must associate with an AP
 - scans channels, listening for *beacon frames* containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - may perform authentication
 - will typically run DHCP to get IP address in AP's subnet

802.11: passive/active scanning

passive scanning:

- (1) beacon frames sent from APs
- (2) association Request frame sent: H1 to selected AP
- (3) association Response frame sent from selected AP to H1

active scanning:

- (1) Probe Request frame broadcast from H1
- (2) Probe Response frames sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent from selected AP to H1

IEEE 802.11: multiple access

- avoid collisions: 2⁺ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - don't collide with ongoing transmission by other node
- 802.11: no collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1 if sense channel idle for **DIFS** then transmit entire frame (no CD)

2 if sense channel busy then

start random backoff time timer counts down while channel idle transmit when timer expires if no ACK, increase random backoff interval, repeat 2

802.11 receiver

- if frame received OK

return ACK after **SIFS** (ACK needed due to hidden terminal problem)

Avoiding collisions (more)

idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames

- sender first transmits small request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

avoid data frame collisions completely using small reservation packets!

Collision Avoidance: RTS-CTS exchange

802.11 frame: addressing

802.11 frame: addressing

802.11 frame: more

802.11: mobility within same subnet

- H1 remains in same IP subnet: IP address can remain same
- switch: which AP is associated with H1?
 - self-learning (Ch. 5): switch will see frame from H1 and "remember" which switch port can be used to reach H1

802.11: advanced capabilities

Rate adaptation

 base station, mobile dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies

- 1. SNR decreases, BER increase as node moves away from base station
- 2. When BER becomes too high, switch to lower transmission rate but with lower BER

Chapter 6: Outline

- ✓ Introduction
- ✓ Wireless Links
- ✓ Wireless MAC
- ✓ WiFi: 802.11 Wireless LANs
- ☐ Cellular Networks: 3G, LTE
- Mobility

Components of cellular network architecture

MSC

- connects cells to wired tel. net.
- manages call setup (more later!)
- handles mobility (more later!)

cell

- covers geographical region
- * base station (BS) analogous to 802.11 AP
- * mobile users attach to network through BS
- air-interface: physical and link layer protocol between mobile and BS

Cellular networks: the first hop

bands

Two techniques for sharing mobile-to-BS radio spectrum

- combined FDMA/TDMA: divide spectrum in frequency channels, divide each channel into time slots
- CDMA: code division multiple access

2G (voice) network architecture

3G (voice+data) network architecture

- voice network *unchanged* in core
- data network operates in parallel

Gateway GPRS Support Node (GGSN)

3G (voice+data) network architecture

3G versus 4G LTE network architecture

4G: differences from 3G

- all IP core: IP packets tunneled (through core IP network) from base station to gateway
- no separation between voice and data all traffic carried over IP core to gateway

People & Things

Mobile Technologies from 1G – 5G

European

5G: Unified Air Interface

Enhanced Mobile Broadband (eMBB)

- 100+ Mbps avg. throughput
- 10+ Gbps peak throughput

Massive Machine Type Communications (mMTC)

- 10⁶/km² connection density
- Low cost/energy connectivity

Ultra-Reliable, Low-Latency Communications (uMTC)

- 99.999% service availability
- 1 10 ms latency

- Billions of connected devices
- Sensor networks
- IoT / M2M / D2D

- Mobile video and gaming
- Cloud computing and storage
- High speed connectivity

- Tactile Internet
- Natural disaster relief
- E-Medicine and Health care

Mobility: 0km/h ~ 500km/h Frequency: 300MHz-300GHz

Chapter 6: Outline

- ✓ Introduction
- ✓ Wireless Links
- ✓ Wireless MAC
- ✓ WiFi: 802.11 Wireless LANs
- ✓ Cellular Networks: 3G, LTE
- Mobility

What is mobility?

spectrum of mobility, from the network perspective:

Mobility: vocabulary

Mobility: more vocabulary

Mobility: approaches

- *let routing handle it:* routers advertise permanent address of mobile-nodes-in-residence via usual routing table exchange.
 - routing tables indicate where each mobile located
 - no changes to end-systems
- let end-systems handle it:
 - indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote
 - direct routing: correspondent gets foreign address of mobile, sends directly to mobile

Mobility: approaches

- let routing handle it: routers advertise permanent address of mobile not routing table exc scalable
 - routing table to millions of ere each mobile located
 - no changes to mobiles no
- let end-systems handle it:
 - indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote
 - direct routing: correspondent gets foreign address of mobile, sends directly to mobile

Mobility: registration

end result:

- foreign agent knows about mobile
- home agent knows location of mobile

Mobility via indirect routing

Indirect Routing: comments

- mobile uses two addresses:
 - permanent address: used by correspondent (hence mobile location is *transparent* to correspondent)
 - care-of-address: used by home agent to forward datagrams to mobile
- foreign agent functions may be done by mobile itself
- triangle routing: correspondent-home-networkmobile
 - inefficient when correspondent, mobile are in same network

Mobility via direct routing

Components of cellular network architecture

operated by different providers

121

GSM: indirect routing to mobile

GSM: handoff with common MSC

- handoff goal: route call via new base station (without interruption)
- reasons for handoff:
 - stronger signal to/from new BSS (continuing connectivity, less battery drain)
 - load balance: free up channel in current BSS
 - GSM doesn't mandate why to perform handoff (policy), only how (mechanism)
- handoff initiated by old BSS

GSM: handoff with common MSC

- 1. old BSS informs MSC of impending handoff, provides list of 1⁺ new BSSs
- 2. MSC sets up path (allocates resources) to new BSS
- 3. new BSS allocates radio channel for use by mobile
- 4. new BSS signals MSC, old BSS: ready
- 5. old BSS tells mobile: perform handoff to new BSS
- 6. mobile, new BSS signal to activate new channel
- 7. mobile signals via new BSS to MSC: handoff complete. MSC reroutes call
- 8 MSC-old-BSS resources released

Chapter 6: Outline

- ✓ Introduction
- ✓ Wireless Links
- ✓ Wireless MAC
- ✓ WiFi: 802.11 Wireless LANs
- ✓ Cellular Networks: 3G, LTE
- ✓ Mobility

Wireless, mobility: impact on higher layer protocols

- logically, impact should be minimal ...
 - best effort service model remains unchanged
 - TCP and UDP can (and do) run over wireless, mobile
- ... but performance-wise:
 - packet loss/delay due to bit-errors (discarded packets, delays for link-layer retransmissions), and handoff
 - TCP interprets loss as congestion, will decrease congestion window un-necessarily
 - delay impairments for real-time traffic
 - limited bandwidth of wireless links