

ELECTRONIC BETTING SYSTEM FOR
POKER

By

Umang Chavan

Anand Giridharan

Varun Pitta

Final Report for ECE 445, Senior Design, Spring 2019

TA: Nicholas Ratajczyk

01 May 2019

Project No. 62

ii

Abstract

This paper outlines the motivation, design and testing process that went into the creation of a

fully electronic and chip-free betting system for poker. The final product is meant to have all

the capabilities of a normal poker game such as raising, folding, checking, and calling, allowing

for a fully functional game of poker in both in-home and professional settings. The final system

consists of N-player devices and one central hub device, both of which are integral to the

system to work as intended.

iii

Contents

1. Introduction ... 1

1.1 Objective .. 1

1.2 Background ... 1

1.3 High Level Requirements ... 2

2 Design.. 3

2.1 Block Diagram .. 3

2.1.1 Central Unit Diagram .. 3

2.1.2 Player Device Diagram .. 3

2.2 Physical Design... 4

2.3 Functional Overview .. 5

2.3.1 Power Supply .. 5

2.3.2 Voltage Regulator ... 5

2.3.3 Microcontroller ... 5

2.3.4 Power Button .. 6

2.3.5 Call Button .. 6

2.3.6 Raise Button .. 6

2.3.7 Up and Down Button .. 6

2.3.8 Fold Button ... 6

2.3.9 Central Hub Display .. 7

2.3.10 Player Device Display .. 7

2.3.11 RFID Tag .. 7

2.3.12 RF Transceiver ... 8

2.3.13 RFID Reader .. 8

2.4 Software – Setup and Game State Logic ... 8

2.5 Memory ... 10

3. Design Verification ... 12

3.1 Mechanical Design ... 12

3.2 Software Modules .. 12

3.2.1 Setup Logic .. 12

iv

3.2.2 Game State and Transition Logic .. 13

3.2.3 Memory Management .. 13

4. Costs ... 14

4.1 Parts ... 14

5. Conclusion .. 15

5.1 Accomplishments ... 15

5.2 Uncertainties.. 15

5.3 Ethical considerations .. 16

5.4 Future work.. 16

5.4.1 Physical Design.. 16

5.4.2 Communication Method... 17

5.4.3 Error Handling ... 17

References ... 18

Appendix A Requirement and Verification Table ... 19

Appendix B Schematics ... 25

Appendix C Real-World Images .. 26

Appendix D Code Snippets .. 28

1

1. Introduction

1.1 Objective

Texas Hold’em is a variant of the card game of poker. Each player in the game is dealt two cards

face down and the dealer goes through three rounds of community betting flipping over 5 cards

in total. Each player then makes bets on each round based on the strength of their hand. Each

player in the game starts with the same amount of money to use while betting. The money is

represented using poker “chips,” which are small discs that are often made of plastic or clay.

Without these chips, playing poker becomes very difficult.

If a group of people wish to play poker, they would need a deck of cards and a poker chip set.

The issue is that not everyone owns a poker chip set and those who do only have a limited

amount of chips. This restricts the number of people that can play and how much money can be

bet. Poker sets can be rather expensive and sometimes if the chips are made from authentic

clay, they can chip and break easily. The problem statement that we are addressing is to see if

there is a more effective way of playing poker for cheap without worrying about chips.

Our proposed solution is an electronic betting system that completely eradicates the need of

physical poker chips. The idea is to have a centralized unit where all betting happens, and each

player can see the community pot. Each player will also have their own device that allows them

to see their own money and make poker actions such as raising the bet or calling the bet. By

taking away the need to use poker chips, everyday people can play poker without having to

worry about the financial restraints and the game restraints.

1.2 Background

The idea of removing accessories from games and using an electric alternative has been around

for a while. Monopoly Electronic Banking Edition by Hasbro eliminated the need for paper cash

that is normally used in games. Instead they created a debit card system, where each player

swipes a machine to perform all transactions with the bank or with other players. The purpose

of this was to remove the hassle of having so much paper laying around. All the math and

counting is done by the middle unit and the player only has to know what action they want to

take. The debit cards in this game use magnetic strips to take care of player identification

Our goals are similar to this, but we also wanted to add the feature where each player knows

the amount of money they hold as well as the community pot. Instead of using magnetic strips,

our player identification will be handled with RFID readers. The hope for the end-product is that

2

it will be efficient enough to eliminate poker chips, be affordable, and still provide enjoyment to

the game.

1.3 High Level Requirements

• Player should be able to join the game at any time and see the amount of money other
players have as well as the amount of money in the community pot.

• Players should be able to raise, call, or fold from their device, and the central hub should
display the chosen action.

• All devices including the central display must be powered with a battery pack. The
battery pack must last the duration of the game

3

2 Design

2.1 Block Diagram

2.1.1 Central Unit Diagram

Figure 1: Block Diagram of Central Unit

2.1.2 Player Device Diagram

Figure 2: Block Diagram of Player Device

4

2.2 Physical Design

Figure 3: Physical Layout of Full System

Our physical design consists of essentially a main display device and the remote(s) for each

player. On the main display we plan to display:

1) Each Players Total Money
2) Total Pot Money
3) Current Player

The main display will also contain a power button to turn the device on and off. For the

remote(s) we plan to display:

1) Player’s total money

We will also have various buttons and indicators such as:

5

1) Call push button
2) Raise push button
3) Up push button (to increase amount you’d like raise by)
4) Down push button (to decrease amount you’d like to raise by)
5) Power button

2.3 Functional Overview

2.3.1 Power Supply

We require a power supply for nearly all our units. We will be using a battery pack with four AA

batteries for our power supply. The power supply unit will be the same in both the player

device and the central hub. In both cases, the output of the power supply will be 6V. The reason

why we went with the decision of using 4 batteries was because we needed the circuit to have

a minimum amount of 1A flowing so that the transceiver and reader can use the

microcontroller at the same time. We also needed to make sure the game lasted at least 2.5

hours which is the approximate duration of a poker game.

2.3.2 Voltage Regulator

We are using two voltage regulators, one for our RF transceiver and one for our

microcontroller/LCDs. This is necessary to be able to step down our 6 V input (4 batteries) to

3.3 V max for our RF transceiver (STMicroelectronics LD1117AV33), and 5 V max for our

microcontroller and LCDs (Sparkfun L7805). The 3.3V regulator was also necessary for the RFID

reader which had the same approximate operating voltage as the transceiver. In order to keep

the regulation consistent, we connected capacitors in parallel to minimize the noise in the

circuit. If the voltage is not consistent, then there could be problems with the way our modules

operated.

2.3.3 Microcontroller

We are going to use an ATmega328p microcontroller in order to manage storing data and data

transfer, as well has handle signals from various control buttons (raise, call, power buttons).

The microcontroller will be programmed via Arduino which uses UART and will read/write

signals from the RF module via SPI. This is arguably the most important component of the

design because all the microcontroller is responsible for communication, I/O, memory, and

game state. Without a properly programmed and functional microcontroller, no parts of the

design would work. It is important to note that each player device and the central hub all use

their own microcontroller. In total, there are 4 microcontrollers used in the whole apparatus

and each one uses its own memory. Instead of soldering the microcontroller to the PCB, we

soldered a microcontroller socket to the board. This made it easier to program the

ATmega328p because we wouldn’t need to solder and unsolder it, all we needed to do was pop

it out and plug it into the Arduino for new code pushes.

6

2.3.4 Power Button

Even though we call this a power button, it’s really a switch that keeps the device either on or

off. All the player devices and the central hub have these switches. The switches connect the

power supply with the voltage regulators and begin the process of sending power to the rest of

the circuit. This was the only button/switch that didn’t have any use case in the software.

2.3.5 Call Button

This button will only be on the player device, and it will be used to send a signal to the central

hub display via the RF module. The central hub display will then automatically update the call

amount to the community pot. What’s important to note for this button and the remaining

buttons is that the buttons are only active when it is your turn in the game state. The player can

tell if it is their turn by checking to see if the green LED on their player device is lit up. If it is,

then their button inputs are taken into account. Otherwise, no amount of button presses will

register anything. The call button will match what the highest bid in the current round is. It will

subtract it from the player’s total pot and start the process of sending the message to the

central hub. Ideally, we would want this button and all the buttons to be on top of the encasing

of the entire player device. However, since we did not get to the casing of the device, we

soldered the buttons directly to the PCB, but in a fashion where it resembles the look of a

controller.

2.3.6 Raise Button

This button will only be on the player device, and it will be used to send a signal to the central

hub display via the RF module. The central hub display will then automatically update the call

amount to the community pot. Very similar functionality to the call button, only difference is

that instead of just subtracting the amount of the highest bid, this button is responsible for

setting the highest bid. The game logic has it so that the player cannot raise below a certain

“min bid” value, which is in line with the actual rules of poker

2.3.7 Up and Down Button

These buttons will only be on the player devices, and they will be used to control how much the

player wants to increase or decrease the current bet. The up and down functions themselves

increase and decrease the bid amount in increments of 0.25. The up button will not work if the

bid amount the player chooses is greater than their available pool. The down button also

ensures that the bid cannot go below 0.00.

2.3.8 Fold Button

This button will only be on the player device, and it will be used to send a signal to the central

hub display via the RF module. The player remote will be disabled for the rest of the round,

where round is when N-1 players have folded. This button is also extremely important in

determining who wins the pot. When N-1 players have folded, there is only one player

7

remaining and they receive the winnings at the end of the round. One the winnings have been

dispersed, then the next round begins. In the case that there is a standoff at the end of the

round between two players, the winning player would have to wait until the losing player

presses the fold button in order to get the winnings.

2.3.9 Central Hub Display

The central display device will contain three LCD displays, with two of them containing the

current players, their current chip amounts. The third one will contain the community pot, the

current player and the last move. The data being displayed on the LCD screens will be coming

from the microcontroller storage. Each LCD display can use the same bus and pins for the

incoming data. The enable pin of each LCD is the differentiating factor in determining what

messages are being shown on the different screens. Initially, we were concerned that we

weren’t going to have enough pins on the microcontroller to connect all the LCD’s. So, we

implemented decoder and NAND logic to determine which screen is going to display certain

information. After testing and verifying the logic components and ensuring that they worked,

we soon realized that since the enable pin was the only differing pin across all the LCD’s, we

only needed 3 different pins on the microcontroller. Because of this, we scrapped the idea of

having the logic circuits. Another design decision that we made was to not use a Serial

operation in the code because these operations would interfere with the data transfer to the

LCD’s and would print random characters.

2.3.10 Player Device Display

The player device will have one LCD screen so that the user can see how much money he/she

has left and how much money he/she wants to raise for the current turn. The data being

displayed on the LCD screen will be coming from the microcontroller storage. The LCD displays

on the player devices were easier to use because there was only one pin to worry about on the

microcontroller for the enable.

2.3.11 RFID Tag

Our initial thoughts were to attach the RFID tag to the player device. However, since there was

no encasing, we decided to give each player an RFID tag. The tag will be used to allow a player

to successfully join the game and begin the mode of communication between the central hub

and the player device. To join the game the player must scan his or her RFID to the RFID reader

on the central hub. After the central hub gets all 3 tags saved in memory, it begins transmitting

the ID to the players in the order that they tapped into the system. The tags are important for

the communication between the player devices and the central hub because the ID’s are used

in the messages between both parts of the system.

8

2.3.12 RF Transceiver

The RF Transceiver is necessary for communication between the Player Device and Central Hub,

as we must pass data to be displayed almost every I/O action. The model we will be using is the

NRF24L01. This has a transmit power of 12mA and operates at a 1.9 - 3.6 V range. The

frequency bandwidth in which this transceiver operates is 2.4 GHz. The amount of baud (how

many times the signal changes per second) ranges from 250 Kbps to 2 Mbps. We chose this

transceiver because it has all the qualities that we need in a communication module. The

maximum distance of communication is 100 meters which is far more than what we need for a

game of poker. The transceiver also allows communication with up to 6 other transceivers, or in

our case, one central hub and 3 player devices. In addition to all of this, these transceivers were

one of the cheapest RF options in the market. Finally, there is a really easy to use Arduino

library that lets us incorporate the transceiver in code. This library is very abstracted with its

hardware implementation and this is important because it led us to some critical design

decisions for the RFID reader (see section 2.3.13). The transceiver module itself utilized the SPI

bus of the microcontroller which eliminated another 3 pins on the microcontroller. Since this

component is one of the most important, we figured this should have priority for real estate on

the microcontroller.

2.3.13 RFID Reader

The RFID Reader serves the purpose of reading the individual player’s RFID tags and allows

them to enter the game. This will only be on the Central Hub and will only be used once by each

player then the software will keep the rotation/turns of each player going. The RFID reader, like

the transceiver, also connects to the SPI bus of the microcontroller. This led to one of our issues

when we tested the reader and the transceiver together. Since both were using the same bus,

when one was active, the other module wouldn’t work and vice versa. Since we need both to

work simultaneously, we had to come up with some changes in our design. So, in our software,

we used manual enables and disables to either turn on or off the reader when we needed it.

Another thing we needed was a large enough current so that both devices could work together.

When we were testing the devices, we used the power coming out of the Arduino board. But

when hooked up to a stronger current source, we noticed that both the reader and transceiver

worked together. This ultimately led us to change the way our game state logic worked (see

section 2.4).

2.4 Software – Setup and Game State Logic

While designing our game system, we knew that there were several steps that had to be taken

in the software in order for the game to work. In order to solve the issue of the transceiver and

reader not working concurrently, we changed the game setup so that they are being used

sequentially. So in the game state, we first wait till all the players are tagged in, then we turn off

the reader and let the transceiver take over for the remainder of the game. The flow diagram in

9

Figure 4 shows the game setup code. After the setup is done, then the game starts, and the

rounds start beginning. It’s important to note that there is no way of pathing an entire game of

poker because each round is radically different than the next. But the overall logic of going to

the next player, reading their input and reflecting the changes in the central hub is consistent.

Figure 5 goes into greater detail about how the game state is maintained and the steps that go

into that.

Figure 4: Game Setup Flow Diagram

10

Figure 5: Game Logic Flow Diagram

2.5 Memory

The ATmega328p comes with 32k bytes Flash memory (0.5k is used for the bootloader, 2k bytes

of SRAM, and 1k byte of EEPROM [8]. Flash and EEPROM are non-volatile, therefore they persist

even if power is suddenly turned off [8]. In our game, some player could accidentally turn off

their device, or the device could run out of battery. In this case, we still want to store all the

relevant information on the microcontroller, so that we can access it after the power is on

again.

On the central hub, the important values to keep track off are everyone’s money and their bids,

the amount in the community pot, whose turn is it, and who has folded. The good thing about

the data we are storing is that we can generally assume that the casual player does not play in a

game with over $1000, so our data does not consume a lot of space. The three players will have

11

a max of 3 digits for both their current money and bid, which is a total of 18 bits needed for

those values among 3 players. We will also have three bits for the community pot, safely

assuming that players will not exceed the amount. All players will be identified by a number, so

keeping track of whose turn it is will only be one digit. Our prototype design will be for three

players, so there can be a max two people that fold (according to our game logic) and therefore

two bits for that as well. This brings us to a total of 18+3+1+2 = 24 bits that need to be stored.

Even if we store each number as a character, we have 192 bytes minimum that need to be

stored in the EEPROM out of 1k bytes. Additionally, the microcontroller will need to store the

96 bits of data for the RFID tag, and with three players, this is 288 bits of data, which is 36 bytes

of data. In total, the microcontroller needs to store about 228 bytes of data to persist when the

power turns off. This leaves a lot of room for expansions and even more data storage.

For each player device, the value that need to be stored is like what the central hub has to

store, but it only needs to keep track of its individual money count, bid, whether it’s the current

player’s turn and the RFID tag associated to the device. Therefore, there is significantly less

than 228 bytes of data storage in the EEPROM needed to persist, which allows for more

expansion for other data to be stored (personal names, etc.)

12

3. Design Verification

Many of our individual components that were utilized in our PCBs, both on the player device

and on the central hub, were tested and verified according to the specifications given in the

data sheets. More information about tests and their results can be found in Appendix A. In

addition to single component tests, we also did various modular and integration tests with our

subsystems, which we will go into deeper in the following section.

3.1 Mechanical Design

We envisioned our PCB to serve as a controller for the player device and we designed it as such.

The central hub PCB was designed in a way to enable the most space for the external LCD

displays that we required. We began verifications of the PCB connections one-by-one as we

began integrating individual components. First, we soldered our battery pack and took a

voltage and current reading by the switch on our PCB to ensure at least 6V (+/- 0.5V). Next, we

placed in the voltage regulators and tested the input and output voltages for both. Although we

had done individual tests of both voltage regulators separately via a breadboard, we wanted to

ensure that there was no errant connection in our PCB that was accidentally sending the wrong

voltage to another component. Once those tests were done, we placed in the microcontroller,

LCD display(s) and the transceiver and ran a simple integration test in order to confirm proper

connections. The test we ran was a “Hello World” test, in which we treated one device as a

transceiver and another device as a receiver. We sent over the message and displayed the

message on the LCD and verified proper connections once we saw the “Hello World” message

displayed on the LCD with no errant or extra characters.

3.2 Software Modules

Our software modules required the most verifications due to the large amount of edge cases

that we needed to handle. We ran tests individually for our setup logic, game state and

transition logic and memory management.

3.2.1 Setup Logic

Within the setup phase of the game, the primary thing we had to ensure was proper

communication between the central hub and the individual player devices. The setup flow is

discussed in the software flow diagrams which are in the design section. Our main goal was to

ensure that each player device received a unique id from the central hub, so that is how we set

up our tests. First, we ran a few simple communication tests which dealt with increasing the

number of players in the game. We started out with only one player, and then ran two

additional tests (one with two players and the last one with all three players). Once we

established that communication was working with the central hub and the player devices, we

did our second set of tests. We sent three messages with the three ids from the central hub and

13

tested if the player devices each received one unique id. This condition was satisfied and

completed the verification of our setup logic.

3.2.2 Game State and Transition Logic

All requirements of the Game State and Transition Logic were met and verified. The primary

goals of this phase were to ensure that the communication at any given time was only between

one transmitter and receiver, the player devices that were out of turn were rendered inactive,

the game was able to transition from one player to the next (excluding any players that had

folded), and the correct values would be updated and displayed on the central hub display as

well as the individual player device. We handled edge cases such as disallowing the player to

bet under the minimum bid (unless their total pot was under the minimum bid), to ensure that

the game would follow poker rules and no incorrect values would be sent. Additionally, we

incorporated an LED on each player device that would light up when it was that player’s turn.

For all other players, the LED would not be lit and their buttons would not change any of their

local values, which met our requirements of only one active player at a time and player devices

out-of-turn rendered inactive. When the up or down buttons were pressed on the player device

of the active player, we would update the display to reflect the action pressed (increasing bid

when up arrow is pressed, decreasing bid when down arrow is pressed). We handled the

remaining updates right after a raise, call or fold button was pressed, after which we updated

the display values locally and then sent the information over to the central hub for it to display

the updated values. We ensured that the updated were handled first, before moving on to the

next player or the next round. This met our requirement of displaying the correct values during

the game.

3.2.3 Memory Management

The last component of our Software subsystem was Memory Management. We were able to

meet most of the requirements we set for ourselves in this regard. The types of variables and

values that needed to be stored both for the central hub and the player are described in further

detail in the memory section. The main purpose of having memory management throughout

the game was to ensure that the game could progress even if a player device or the central hub

was discharged or accidentally turned off. We tested this functionality by turning off a device,

or a combination of devices, during various points in our game state. For the most part, when

we turned the devices back on, the game state progressed as expected. We ran into a few

issues if a device was turned off during the setup phase, or during the update display phase.

While we were able to address some of these issues, we were unable to fix all of them in the

time that we had.

14

4. Costs
Since we are expecting to finish the entire project during the duration of the semester, we

don’t need to account for partial work calculations. We estimate our development costs to be

$30/hour, 15 hours/week for 3 people. Therefore, our total development costs will be:

4.1 Parts

Part Cost (Individual) Cost (Project)

LCD Display (HD44780)
$2.71 (16x2)
$5.61 (20x4)

$19.16

Microcontroller
(ATMega328P)

$4.30 $17.20

RF Transceiver (NRF24L01) $1.75 $7.00

RFID Reader (RC522) $12.99 $12.99

Voltage Regulator
$0.95 (L7805)

$0.54 (LD1117AV33)
$5.96

Logic Gates (SN74HC08AN) $0.44 $1.76

Decoder (CD4555BEE4) $0.46 $1.84

Resistors/Capacitors Pack $15.90 $15.90

Battery Pack (4xAA) $1.95 $7.80

Push Buttons $0.25 $4.00

Potentiometer $0.95 $3.80

16 MHz Crystal $0.95 $3.80

Total $101.21

Table 1: Cost per module

We are planning on building only one central hub unit and three player devices, therefore our
total development costs including work hours is $21,701.21.

15

5. Conclusion

5.1 Accomplishments

We successfully were able to make a fully communicative electronic betting system that

incorporated all the rules of poker (specifically Texas Hold’em) into the game logic, smoothly

able to progress between players. We were able to display the correct information for each

specific LCD that we outlined in our design and properly reflect all changes in our displays as

they occurred. We were able to successfully save game state to memory if the devices were

turned off and ensure the information in memory was unique for each device. We were able to

confirm that the devices would last the duration of at least 2.5 hours, which is what an average

game lasts in an at-home setting [11]. Overall, we can confidently say a user of this device

would be able to fully play a game of poker without issue.

5.2 Uncertainties

While many of our functional requirements were met and we were able to play a round of

poker smoothly, we did run into a few errors and uncertainties that we were not able to

address in the time that we had. Potential solutions and alternatives will be discussed in the

Future Works section.

One of the biggest uncertainties that we had was proper communication. The transceiver

module we used in this project is very sensitive; even the slightest disturbance would render

any message being sent as un-receivable. This made debugging this issue fairly hard, since the

transmitter believed it was correctly sending the message, but the receiver had no message to

parse. Although the communication worked properly about 85% of the time, whenever a

message was dropped, our game would halt in the middle of the game state. In this scenario,

we would have to start the game completely from scratch.

Another uncertainty we ran into was the characters being displayed on the LCD. This was a very

minute uncertainty, as we figured out that the garbled display was due to the accidental

contact of wires on our PCB. Once we separated the wires more, we were able to avoid this

issue. It remains as an uncertainty because without encasing, a player can accidentally push

wires together again.

Lastly, an uncertainty that stems off of the previous issue is error handling. Say wires are

pushed together and something was wrong in transmission, or a button was accidentally

pressed, our system has no way of going back a round to fix the issue. In near-perfect

situations, we are able to play the game as expected, but if any of the previous two issues

occur, then we have no way of correcting it.

16

5.3 Ethical considerations

With any electrically heavy product, safety concerns are quite apparent. In our product
specifically, the biggest safety concerns we have are a potential power overload and potential
moisture/water short circuits.

Since we have multiple AA batteries (up to 4) powering our devices, it is possible that we could
have voltage overload, which will eventually lead to a power overload, causing a potential
explosion. We are attempting to regulate the voltage outputted by these batteries using both
using a UBEC [1], which is a universal Battery Elimination Circuit, and the resistive capabilities
available in the PCBs.

We are also concerned with the potential for moisture/water to get within the devices,
whether intentionally or unintentionally. If water gets into the device(s) it will inevitably lead to
a short-circuit as the components will be damaged. Since the product is ideally to be used
indoors, or in an area where water cannot get into the device, a normal casing should be
enough.

The goal of our product is to bring a fun, and fair system to the common or even professional
poker player, by eliminating chips from the game and allowing for a fair system of money
representation. By doing so we eliminate potential cheating from the game which satisfies IEEE
Code of Ethics, #2: “to avoid real or perceived conflicts of interest whenever possible, and to
disclose them to affected parties when they do exist” [2]. Thus, this product serves to not only
allow for more players to participate at once, but also allows for a cheat-free system by getting
rid of the need for physical chips.

While our product is meant to be harmless, as poker is simply a card game, it may aggravate
certain illnesses such as a gambling addiction. This is in violation of IEEE Code of Ethics, #9: “to
avoid injuring others, their property, reputation, or employment by false or malicious action”
[2]. With the potential ease of this product, there is a chance of further aggravation to a
person’s already harmful addiction. We do not have a means to solve such a health issue - we
are assuming that players are playing responsibly and are careful with their money.

5.4 Future work

5.4.1 Physical Design

The physical design needs vast improvement to allow for this product to be mass-produced.

The first and foremost thing that needs to be addressed is the lack of casing. Without casing,

the device and all its electrical components are exposed. Firstly, this is a very unappealing look

for a finished product, but more importantly this can cause functional issues as well. Without

casing there is a strong chance of wire positions being manipulated by the surface that the

device is placed on, and in turn causing them to touch each other since they are in such close

proximity. This leads to disruptions in functionality and display as two different signals touching

17

have the potential of being mixed into one random one. Casing also serves as a way to ensure

that the components are safely away from potential hazards such as moisture as this could

cause short circuits.

5.4.2 Communication Method

For this project the communication was handled through the use of RF. While RF was a good

choice for communication for the most part, there were times where the transmission was

dropped due to interference and other extremities. A different method of communication (such

as Bluetooth or Wi-Fi) and/or a different frequency band (such as 5 GHz) might have allowed

for a stronger connection between the devices and thus allows for the ability to complete a

game without the worry of a potential transmission signal drop. Communication is a huge

foundational piece of this project and getting the proper one is essential to its future success.

5.4.3 Error Handling

Functionally, all of the buttons were able to do exactly what they were expected to do on press,

but there were times where an accidental tap of a button occurred (pressing Call instead of

Raise etc.). This was mainly due to either human error, or due to the fragility of the device (due

to lack of casing). We lacked a means to correct these errors through either software or an

addition of another button. This needs to be addressed when putting a product like this into

production, as errors such as an unintentional button press are quite likely to happen.

18

References
[1] N/A, N/A. “What Are ESC, UBEC and BEC.” Oscar Liang, 26 Nov. 2016, oscarliang.com/what-

is-esc-uber-bec-quadcopter/.

[2] Publications, IEEE. “IEEE Code of Ethics.” IEEE - Advancing Technology for Humanity,

www.ieee.org/about/corporate/governance/p7-8.html.

[3] ATMega, ATMega. "ATMega628." Sparkfun. N.p., 2016. Web. 21 Feb. 2019.

[4] Igor, Ardunio. "Arduino's ATMega328 Power Consumption." Gadget Makers' Blog. N.p., 14

Dec. 2013. Web. 22 Feb. 2019.

[5] Julius, Bob. "Powerdis." Low Pass Filters. N.p., 2015. Web. 22 Feb. 2019.

N/A, N/A. "What Are ESC, UBEC and BEC." Oscar Liang. N.p., 26 Nov. 2016. Web.

[6] Publications, IEEE. "IEEE Code of Ethics." IEEE - Advancing Technology for Humanity. N.p.,

n.d. Web.

[7] QU1500_US_UL1, QU1500_US_UL1. "QU1500_US_UL1." D2ei442zrkqy2u.cloudfront. N.p.,

2015. Web. 21 Feb. 2019.

[8] Martino, Gianluca. “Memory.” Arduino - Introduction, 2012,

www.arduino.cc/en/tutorial/memory. Web. 4 March. 2019.

[9] Dejan, Dejan. “Arduino Wireless Communication - NRF24L01 Tutorial.” HowToMechatronics,

8 Apr. 2019, howtomechatronics.com/tutorials/arduino/arduino-wireless-communication-

nrf24l01-tutorial/.

[10] Rouse, Margaret. “What Is EEPROM (Electrically Erasable Programmable Read-Only

Memory)? - Definition from WhatIs.com.” WhatIs.com, 2016,

whatis.techtarget.com/definition/EEPROM-electrically-erasable-programmable-read-only-

memory.

[11] NA, NA. “How To Play Texas Hold'em Poker.” PokerNews, 2007,

www.pokernews.com/poker-rules/texas-holdem.htm.

http://oscarliang.com/what-is-esc-uber-bec-quadcopter/
http://oscarliang.com/what-is-esc-uber-bec-quadcopter/
http://www.ieee.org/about/corporate/governance/p7-8.html
https://l.messenger.com/l.php?u=http%3A%2F%2Fwww.arduino.cc%2Fen%2Ftutorial%2Fmemory&h=AT3yCBs917XLRr4rSu3XaLDB26luwioDWCT0vLWgXm-_18zf5QJRzOVWILTgoyyA6uMWbFQGhTueWAtXvZqd6d-ynmLeWWtAYgtpjVoyaeX8oCN6a7npMImJt7ftE_3vODBkyA
http://howtomechatronics.com/tutorials/arduino/arduino-wireless-communication-nrf24l01-tutorial/
http://howtomechatronics.com/tutorials/arduino/arduino-wireless-communication-nrf24l01-tutorial/
http://whatis.techtarget.com/definition/EEPROM-electrically-erasable-programmable-read-only-memory
http://whatis.techtarget.com/definition/EEPROM-electrically-erasable-programmable-read-only-memory

19

Appendix A Requirement and Verification Table

Component

Requirement Verification
Verification

status
(Y or N)

Power Supply

1. Batteries power all
our LCDs and
Microcontrollers

2. Batteries should
last for ~2.5 hours

1. Test this by using a
Multimeter
(Voltmeter
specifically) to see
how much voltage is
outputted from 4
number of batteries
and see if they reach
the minimum needed
to power all the
components (need
~3.3V and ~5V to
power all parts).

2. Test this by keeping
the player devices
and central hub
device on for at least
2.5 hours

Y

Voltage Regulator

1. Must ensure that
the step down from 6
V (+/- 0.3V) to 3.3 V
(+/- 0.3V) is successful
through the use of a
voltage regulator

2. Must ensure that
the step down from 6
V (+/- 0.2V) to 5 V (+/-
0.2V) is successful
through the use of a
voltage regulator

1. Send a 6 V input
voltage through the
voltage regulator and
measure the output
to see if it is 3.3 V
with a +2%/-2%
margin of error as
specified in data
sheet, using a
Voltmeter

2. Send a 6 V input
voltage through the
voltage regulator and
measure the output
to see if it is 5 V with
+4%/-4% margin of
error as specified in

Y

20

the data sheet, using
a Voltmeter

Microcontroller

1. Should be able to
store data 1024 bytes
of data (see Memory
Section for more
details)

2. Should process
user signals and
update game states
within a reasonable
amount of time,
ideally under two
seconds

1. Send simple data
and see if it is able to
reproduce it when it
called

2. Press a button on
the player
device/central hub
and see if it produces
the desired action
(e.g. FOLD, CALL,
RAISE)

Y

Power Button

1. Switch successfully
turns on or off the
console

1. Test the switch for
a set number of trials
(30) and considered
success if all trials
work

Y

Call Button

1. When CALL button
is pressed a HIGH
signal must be
processed by the
microcontroller, else
it will be 0

2. The microcontroller
on player device
should receive a
signal from the CALL
button > 95% of the
time and store it to be
sent to the central
hub by the RF
transceiver

1. Using a Multimeter
we will check if the
current is >0 Amps
when the button is
pressed and 0 if it is
not pressed

2. Press CALL button
100 times and see if a
signal is received at
least 96 times

Y

Raise Button

1. When RAISE button
is pressed a HIGH
signal must be
processed by the
microcontroller, else
it will be 0

1. Using a Multimeter
we will check if the
current is >0 Amps
when the button is
pressed and 0 if it is
not pressed

Y

21

2. The microcontroller
on player device
should receive a
signal from the RAISE
button > 95% of the
time and store it to be
sent to the central
hub by the RF
transceiver

2. Press RAISE button
100 times and see if a
signal is received at
least 96 times

Up Button

1. When UP button is
pressed a HIGH signal
must be processed by
the microcontroller,
else it will be 0

2. The microcontroller
on player device
should receive a
signal from the UP
button > 95% of the
time and store it to be
sent to the central
hub by the RF
transceiver

1. Using a Multimeter
we will check if the
current is >0 Amps
when the button is
pressed and 0 if it is
not pressed

2. Press UP button
100 times and see if a
signal is received at
least 96 times

Y

Down Button

1. When DOWN
button is pressed a
HIGH signal must be
processed by the
microcontroller, else
it will be 0

2. The microcontroller
on player device
should receive a
signal from the
DOWN button > 95%
of the time and store
it to be sent to the
central hub by the RF
transceiver

1. Using a Multimeter
we will check if the
current is >0 Amps
when the button is
pressed and 0 if it is
not pressed

2. Press DOWN
button 100 times and
see if a signal is
received at least 96
times

Y

22

Fold Button

1. When FOLD button
is pressed a HIGH
signal must be
processed by the
microcontroller, else
it will be 0

2. The microcontroller
on player device
should receive a
signal from the FOLD
button > 95% of the
time and store it to be
sent to the central
hub by the RF
transceiver

1. Using a Multimeter
we will check if the
current is >0 Amps
when the button is
pressed and 0 if it is
not pressed

2. Press FOLD button
100 times and see if a
signal is received at
least 96 times

Y

Central Hub Display

1. Should be able to
display characters
with enough
brightness, so user
does not strain to
read the displayed
information; must be
visible to read ~5 ft
radius

1. Try various
potentiometer
settings until reaching
a brightness that is
visible to read from
~5 ft

Y

Player Device Display

1. Should be able to
display characters
with enough
brightness, so user
does not strain to
read the displayed
information; must be
visible to read ~2 ft
radius

1. Try various
potentiometer
settings until reaching
a brightness that is
visible to read from
~2 ft

Y

RFID Tag

1. The tag should be
properly attached to
each player device
and be accessible and
read by the RFID
reader at least 95% of
the time.

1. Test the RFID tag
and reader by
attaching it to an LED
and having it light up
if the RFID is
successfully read; test
this with all the RFIDs
we will have and

Y

23

ensure that at least
95 times of 100, for
each id, is successfully
read

RF Transceiver

1. The transfer of data
from the Player
Device transceiver
and Central Hub
transceiver (and vice
versa), should
consistently be
correct and fast

2. The transfer of data
should occur properly
within a radius of at
least 5 feet

1. Send simple data
between the Central
Hub and Player
Device, both hard-
coded and
dynamically, to be
displayed on the LCD
display. Do this 100
times to ensure the
communication
channels work to our
specified speed (~250
Kbps) and with almost
100% accuracy

2. Go to various
points around the
device (<= 5 feet) and
see if the transfer of
data is still successful
between player
device and central
hub

Y

RFID Reader

1. Ensure the Player
Devices can be read
into the game
through the use of
the RFID reader

2. Ensure the RFID tag
is read on touch (less
than 1 inch distance)

3. Ensure there is at
least 99% accuracy of
the tag being read

1. Test each individual
RFID tag on the
reader and ensure the
reader is able to
identify each
separately and open a
method of
communication
between the Player
Device and Central
Hub. If successful, all
RFID tags will be
saved on the Central
Hub’s microcontroller

2. Move the RFID tag
closer and further

Y

24

from the RFID reader
and see at what
distance the reader
recognizes the RFID
tag

3. Tap the RFID tag on
the reader 100 times
and look for 99+ plus
successes

Table 2: Requirements & Verifications

25

Appendix B Schematics

Figure 6: Central Hub Schematic

Figure 7: Player Device Schematic

26

Appendix C Real-World Images

Figure 8: Central Hub

27

Figure 9: Player Device

28

Appendix D Code Snippets

Figure 10: Example of EEPROM usage in code

29

Figure 11: Sending player decision from player device to central hub

30

Figure 12: Snippet for updating screens on central hub

	1. Introduction
	1.1 Objective
	1.2 Background
	1.3 High Level Requirements

	2 Design
	2.1 Block Diagram
	2.1.1 Central Unit Diagram
	2.1.2 Player Device Diagram

	2.2 Physical Design
	2.3 Functional Overview
	2.3.1 Power Supply
	2.3.2 Voltage Regulator
	2.3.3 Microcontroller
	2.3.4 Power Button
	2.3.5 Call Button
	2.3.6 Raise Button
	2.3.7 Up and Down Button
	2.3.8 Fold Button
	2.3.9 Central Hub Display
	2.3.10 Player Device Display
	2.3.11 RFID Tag
	2.3.12 RF Transceiver
	2.3.13 RFID Reader

	2.4 Software – Setup and Game State Logic
	2.5 Memory

	3. Design Verification
	3.1 Mechanical Design
	3.2 Software Modules
	3.2.1 Setup Logic
	3.2.2 Game State and Transition Logic
	3.2.3 Memory Management

	4. Costs
	4.1 Parts

	5. Conclusion
	5.1 Accomplishments
	5.2 Uncertainties
	5.3 Ethical considerations
	5.4 Future work
	5.4.1 Physical Design
	5.4.2 Communication Method
	5.4.3 Error Handling

	References
	Appendix A Requirement and Verification Table
	Appendix B Schematics
	Appendix C Real-World Images
	Appendix D Code Snippets

