Solar Panel Protection System

ECE 445 - Team #3

Douglas J. Lee (dlee242)

Dillon Vadgama (dvadga2)

Sachin Reddy (ssreddy2)

Problem

- 60 research solar panels
- None are in use
- They do not have <u>ANY</u> protection systems in place currently

Solar Panels Without Protection Systems

- Walmart sued Tesla due to solar panel failures.
 - Seven roof fires at different locations.
 - Detecting solar panel failures can help prevent catastrophes

Photo Credit: https://arstechnica.com/tech-policy/2019/08/afterseven-roof-fires-walmart-sues-tesla-over-solar-panel-flaws/

Solution

Solution

Solution

Objectives

- Disconnect the solar panel if failure conditions occur
 - o Over-current
 - Over-voltage
 - Over-heating
- Remote monitoring of system parameters over Ethernet
 - Voltages
 - Current
 - \circ Power
 - Temperatures

Objectives

- Remote configuration of the solar panel
 - Output voltage
 - Failure condition threshold values
- Manual configuration of the solar panel
- Turn off the system if the isolated 12V power supply fails.

Demonstration

High Level Block Diagram

10

Solar Panel Structure

- 128 solar cells per panel
- Three partitions in series
 - o 32 cells 21.4V
 - o 64 cells 42.8V
 - o 32 cells 21.4V
- Four outputs A, B, C, D
- Maximum Open Circuit Voltage 85.6V
- Maximum Short Circuit Current 6.21A

High Level Block Diagram - Switching Subsystem

Σ

12

High Level Block Diagram - Switching Subsystem

Design - Subsystem Requirements

- The switching subsystem must output the configurations shown below
- Default State Not Connected
- Capable of delivering the maximum voltage and current of the solar panel.

Е	F
А	D
В	С
С	D
x	Not Connected

Design - Circuit Schematic

High Level Block Diagram - Voltage/Current Monitoring Subsystem

Σ

16

High Level Block Diagram - Voltage/Current Monitoring Subsystem

Voltage/Current Monitoring Subsystem

- Measurements:
 - Output current of the solar panel
 - Voltage across the three partitions of the solar panel
- Two subsystem outputs:
 - 1. Current/voltage data sent over I2C to the Microcontroller Subsystem
 - 2. Passes power from the Switching Subsystem to the interface box output

Voltage/Current Monitoring Subsystem

- High solar panel voltages are stepped down using voltage dividers
- Four channel 16-bit analog to digital converter (ADC) with an input range of 0-5V was utilized
 - Channels 1-3: Voltage Measurements
 - Channel 4: Current Measurements
- Accuracy prior to calibration
 - Voltages: ±100mV
 - Current: ±150mA

High Level Block Diagram - Thermocouples

Π

20

High Level Block Diagram - Thermocouples

Temperature Monitoring Subsystem

- Used to measure the temperature of various areas of the solar panel
- Must be waterproof
- Powered by the 5V supply
- Only communicates with the Microcontroller Subsystem
- Problem: limited number of I/O ports on the microcontroller
 - Solution: 1-wire digital interface
- Accuracy of ±5°F would be sufficient to detect failure conditions

Temperature Monitoring Subsystem

- Six temperature sensors
- Temperature sensor chosen was the DS18B20
 - Operating range -67°F to +257°F
 - Accuracy of ±2.9°F within range 14°F to 185°F

ocating devices...Found 2 devices. Found device 0 with address: 282ABDE90A000074 Found device 1 with address: 28AA0DE852140189 Cemperature for device: 0 Temp C: 23.69 Temp F: 74.64 Sensor 1 Cemperature for device: 1 Cemp C: 22.31 Temp F: 72.16 Sensor 2 Cemperature for device: 0 Cemp C: 23.69 Temp F: 74.64 Cemperature for device: 1 Temp C: 22.31 Temp F: 72.16 Temperature for device: 0 Temp C: 23.75 Temp F: 74.75 Temperature for device: 1 Temp C: 22.31 Temp F: 72.16 Temperature for device: 0 Temp C: 23.75 Temp F: 74.75 Cemperature for device: 1 Temp C: 22.31 Temp F: 72.16 Temperature for device: 0 Temp C: 23.75 Temp F: 74.75 Cemperature for device: 1 Cemp C: 22.31 Temp F: 72.16 Temperature for device: 0 Cemp C: 23.75 Temp F: 74.75 perature for device.

Temperature Monitoring Subsystem

High Level Block Diagram - Microcontroller Subsystem

Σ

25

High Level Block Diagram - Microcontroller Subsystem

Photo Credit: https://www.component7.com/

Microcontroller Subsystem

- Central processing unit of the interface box
- Powered by the 5V supply
- ATmega328P was chosen
- Operates at 16 MHz
- 6 pin programming header
 - Allows programming without removing the IC from the board

High Level Block Diagram - Ethernet Interface

Σ

28

High Level Block Diagram - Ethernet Interface

Ethernet Interface

- Communication between the Server/PC and the microcontroller
- Allows remote monitoring and control of the system
- Using the WizNet W5500 Ethernet Controller
 - Easily connect to a microcontroller SPI bus
 - Ethernet controller used in the Arduino Ethernet Shield 2
 - Libraries for Arduino are accessible

High Level Block Diagram - LED's and Manual Configuration Switches

Π

31

Manual Configuration Interface - LEDs

- LED's show status of:
 - Ethernet connection
 - Output connection
 - Interface box power

• Controlled by the Microcontroller and Power Subsystems

Manual Configuration Interface - Switches

- Controls the configuration of the solar panel and can shut off the system entirely
- Power Switch
 - \circ $\,$ Toggles the 12V supply to the box $\,$
- Output Configuration Slide Switch
 - Configures the output of the box
- Output Enable Switch
 - Enables the output of the box according to the Output Configuration Switch

High Level Block Diagram - Power Subsystem

Σ

34

Power Subsystem

- Generates 5V and 3.3V supplies
- Supplied with an isolated 12V power supply
- Max System Current Draw ~ 0.150A.

ECE ILLINOIS

Ι

Firmware

- Collects and computes sensor data
 - \circ Voltage
 - Current
 - \circ Temperature
- Autonomous
 - Disconnects output when threshold is breached
- Sends and receives data over Ethernet
 - Packet of JSON objects

Software - Graphical User Interface (GUI)

- Responsible for remotely monitoring and configuring the interface box
- Running three threads:
 - Send/Receive thread
 - Command thread
 - Monitor/GUI thread
- Database for storing monitored data
- IP scanner to get all devices on the network

Conclusion

- Project was a success!
 - Customer was more than satisfied
- Tentative plans for 60 units to be installed next Spring

Conclusion (Future Work)

- Hardware:
 - Higher rated relays
 - Solid state switching subsystem
 - Memory space
 - Processor vs. Microcontroller
- Firmware:
 - Optimize libraries
 - Optimize power consumption (i.e. sleep state, active state, reserve state)
 - Multithreading
- Software:
 - Visual grid of solar panels and active boxes
 - Improved GUI visuals
 - Handle multiple users
 - Cleaning code base

Questions?

