

Bluetooth Burner

Shaunak Fadnis, Varun Kowdle, Navin Ranganathan

Team #63

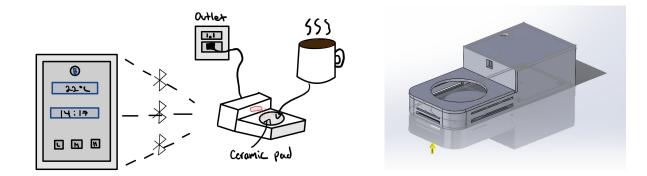
04/30/2024

Agenda

Introduction & Objective Design Conclusion Future Considerations Questions

Introduction & Objective

Objective

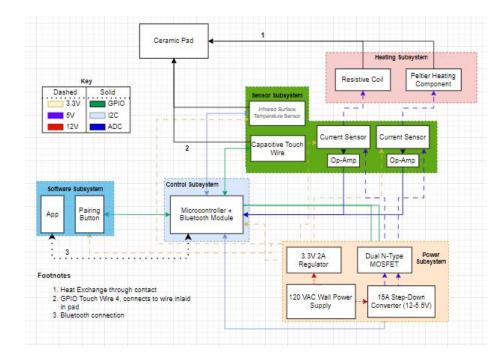

- People commonly face the challenge of keeping coffee, tea, and soup at the ideal temperature
- Traditional methods of reheating can degrade the quality of the drink or food
- Current beverage warmer market is polarized

Introduction

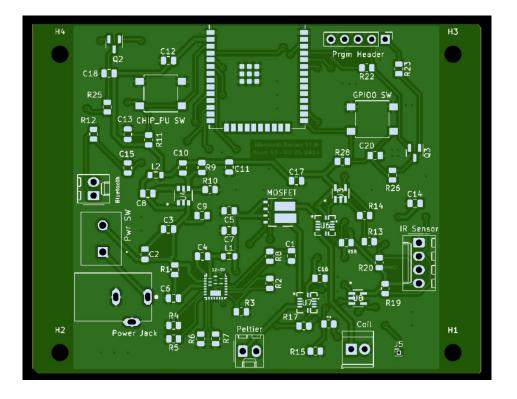
- Bluetooth capabilities for temperature control at four different settings
- Energy efficient, durable, and smart-touch detection for shutdown
- Ceramic pad with sensors to accommodate varying cup/bowl sizes

Design

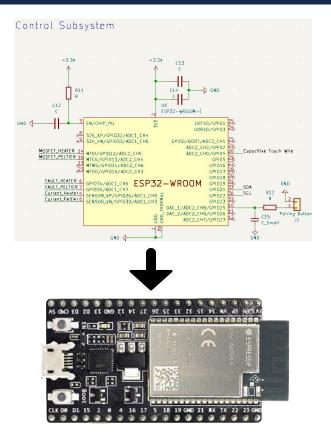
ELECTRICAL & COMPUTER ENGINEERING


High Level Requirements

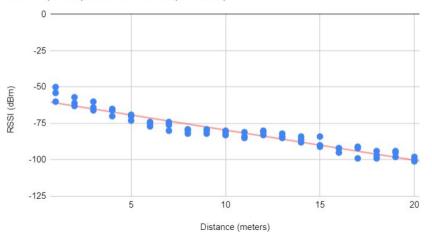
- The heating pad should have temperature capabilities of 30-60 °C for heating and reach at least -10 °C for cooling.
- The infrared sensor observing the heating pad should be able to identify pad temperature within at most 1 °C
- The device should communicate and receive information such as change in temperature via a phone application within a range of at least 10 20 meters.



Block Diagram



PCB Design



Control Subsystem

Overview

- ESP32-WROOM w/Bluetooth Module to communicate with mobile device
- Reads data from IR sensor and sends data to mobile device
- Adjust power relay based on temperature settings
- Calculate PWM cycle and control P-type
 mosfet output

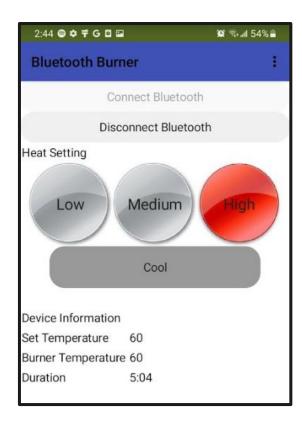
RSSI (dBm) vs. Distance (meters)

Received Signal Strength Indicator Verification

Successes

- Able to connect to mobile device within a range of 20 meters
- Transmit data from IR sensor to mobile device
- Determine power cycle for power subsystem
- Implement capacitive touch wire on GPIO pin

Challenges


- Determining bluetooth library: BLE or bluetooth serial
- Housing ESP32 on breadboard with limited space

Software Subsystem

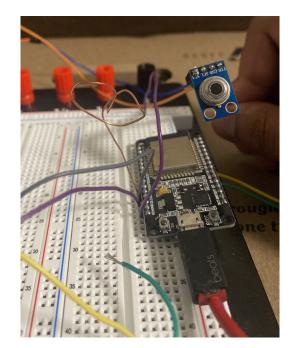
Overview

- Software app that users can use to control bluetooth burner.
- Utilizes bluetooth channels to transmit and receive data for temperature and duration
- Sends signals to adjust temperature based on user input

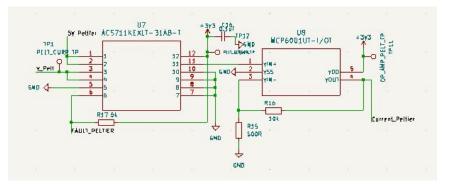
Successes

- Application with user-friendly interface
- Display shows accurate temperature reading
- Bluetooth Connect/Disconnect button
- Buttons to control MOSFET for Low/Med/High

Challenges


- Bluetooth enablement in Swift (iOS)
- Duration setting configuration
- Device Information display

Software Verifications


Sending Temperature:	22.99C
Sending Temperature:	23.39C
Sending Temperature:	23.35C
Sending Temperature:	23.33C
Sending Temperature:	23.33C
Heat Change to: 45C	
Sending Temperature:	23.35C
Sending Temperature:	23.33C
Sending Temperature:	23.39C
Heat Change to: 60C	
Sending Temperature:	23.33C
Sending Temperature:	23.29C
Sending Temperature:	23.33C
Heat Change to: 30C	
Sending Temperature:	23.35C
Sending Temperature:	23.35C
Heat Change to: -10C	
Sending Temperature:	23.29C
Sending Temperature:	23.53C
Sending Temperature:	

Overview

- MLX90614 IR Temperature Sensor
 - Object & Ambient
- Capacitive Touch Wire
- Current Sensors
 - Op-Amp for ESP32 ADC pins

	10000	and the state					
Sent	Value:	Ambient:	20.47	c,	Object:	20.39	С
Sent	Value:	Ambient:	20.51	c,	Object:	20.61	С
Sent	Value:	Ambient:	20.79	c,	Object:	29.45	С
Sent	Value:	Ambient:	21.25	c,	Object:	28.77	С
Sent	Value:	Ambient:	21.35	с,	Object:	22.19	С
Sent	Value:	Ambient:	21.55	c,	Object:	31.49	С
Sent	Value:	Ambient:	21.89	с,	Object:	29.77	С
Sent	Value:	Ambient:	22.57	c,	Object:	27.91	С
Sent	Value:	Ambient:	22.47	c,	Object:	21.63	С

🔽 value 1	🔽 value 2		Interpolate 🔵	STOP 🚈
80				
70				
60				
50				
40				
30				
20				
10				\sim
0 128	140	152	164	177
	140	152	164	177

Successes

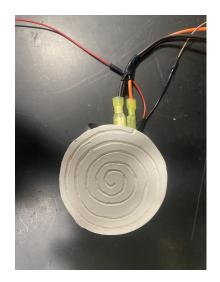
- IR Sensor accurately sends data, to the hundredths place
- Capacitive touch wire detects contact past a threshold for cutting power to heating subsystem

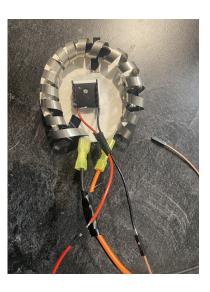
Challenges

- Integrating with power subsystem components
- Soldering
 - QFN packages
- IR Sensor FOV & ambient readings

Heating Subsystem

Overview

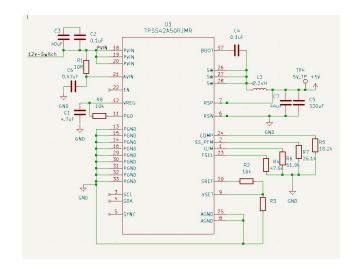

- Ceramic Pad
- Nichrome Wire Coil
- Peltier Module w/Heatsink



MODEL NO.	LENGTH (mm)	WIDTH (mm)	THICKNESS (mm)
CP40136	15 ±0.3	15 ±0.3	3.6 ±0.1
CP40236	20 ±0.3	20 ±0.3	3.6 ±0.1
CP40336	30 ±0.3	30 ±0.3	3.6 ±0.1

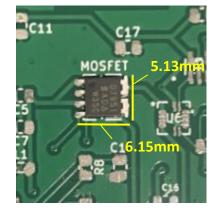
CP40 Series Peltier Module Model Dimensions

Heating Subsystem


Successes

- Ceramic pad with spiral groove
- Coil and peltier module connected to pad with wiring for PCB

Challenges


- Forming and binding coil to shape
- Attaching heating elements to pad

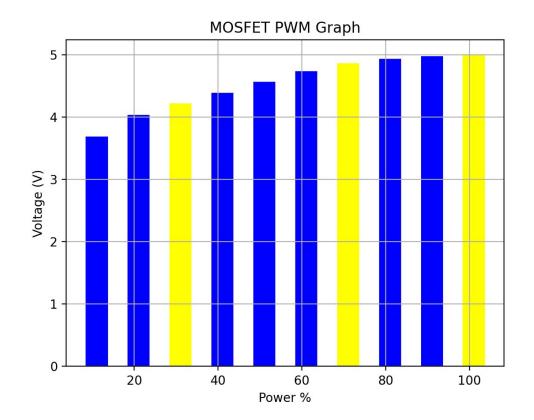
Power Subsystem

Overview

- TPS542A50RJMR 5V-15A Buck Converter
 - Input from 12V Wall Adapter
- AP62200WU 3.3V Buck Converter
- Dual P-Type MOSFET
 - Changed from N-Type
 - PWM Switching for temperature control

Power Subsystem

Successes


- Provided 12V inputs to both buck converters
- Regulated power through MOSFETS

Challenges

- Soldering
 - 5V & 3.3V were QFN Package
 - 3.3V Converter shorted
- Passive Components

Power Verifications

Conclusion

ELECTRICAL & COMPUTER ENGINEERING

Results

- Subsystems functional on breadboard, not on PCB
 - Lacking resources compared to SMD components
- Two of our three high level requirements satisfied expectations
- Ceramic pad and enclosure finished

Things to Do Differently

- Utilize peltier module for heating
- Incorporate high current amplifiers
- Test/Break PCBs early

Future Considerations

Further Work Recommendations

- Allow for broader temperature range in phone application
- Enlarge ceramic pad for extended heating
- Pairing button on product rather than application
- Data logging and analytics

Questions

ELECTRICAL & COMPUTER ENGINEERING