
 1

Final Paper
Skier’s Helpful Information Tracker – Team 52

Sam Knight, Jack Bay, Ryder Heit

Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

May 2024

 2

Contents
1 Introduction ... 4

2 Problem Analysis .. 5

2.1 High Level Design Goals ... 5

2.2 Tolerance Analysis .. 5

3 Project Design: Hardware .. 6

3.1 Design Overview .. 6

3.2 Considerations ... 6

3.3 Design Justification .. 8

3.4 Hardware Conclusions ... 9

4 Project Design: Firmware ... 9

4.1 Design overview ... 9

4.2 Firmware Design .. 9

4.3 Firmware Conclusions .. 11

5 Project Design: Software .. 12

5.1 Design Overview .. 12

5.2 Design Considerations ... 12

5.3 Static Maps API .. 12

5.4 Python Analysis .. 13

5.5 Data Processing .. 14

5.6 Animation Creation .. 15

5.7 GUI ... 15

5.8 Verification ... 16

5.9 Software Conclusions ... 16

6 Cost and Schedule .. 17

6.1 Cost .. 17

6.2 Schedule ... 17

7 Conclusions .. 19

7.1 Accomplishments ... 19

 3

7.2 Uncertainties .. 19

7.3 Future Work ... 19

7.4 Ethical Considerations.. 19

8 References and links .. 20

 4

1 Introduction

 Our project is a tracker designed to assist waterskiers in their goal of chasing the
perfect slalom pass. Waterski coaching can be expensive and hard to find, especially given
the nicheness of the sport as well as the financial barrier to entry. Our tracker provides a
way to minimize this barrier to entry by making coaching something that can be provided at
a low cost. Slalom is also a very precise sport, with the skier moving very quickly around 6
buoys, and quantitative data is currently impossible to get. Our tracker aims to change that.

The tracker provides two primary functions, collection and analysis. Data is taken
directly on the ski by the device during a run, with sensors running and collecting data that
is then saved to hard storage, an SD card. A skier can record multiple passes for analysis
later. The analysis is done on a separate computer and shows a visualization of all the data
taken to allow the skier to study their runs and improve.

Our well-rounded team of engineers each took responsibility for distinct tasks, allowing
each member to contribute their top skills to the project and create a fleshed-out product
with expertise applied in many areas. Jack Bay, an electrical engineer, was responsible for
the power subsystem and PCB design. Ryder Heit, a computer engineer, was responsible
for firmware creation and PCB design. Sam Knight, a computer engineer, was responsible
for data processing and software design.

Together, all members of our team have combined their diverse specialties to create the
Skier’s Helpful Information Tracker. In this paper, we will talk about the successes, failures,
challenges, and results over the semester and the design process.

 5

2 Problem Analysis

2.1 High Level Design Goals

When formulating the initial design, we chose initial design goals to serve as the target
criteria for the project's completion. Our design goals are as follows. Waterproofness: the
device must be waterproof up to a submersion depth of 10ft. As the device is designed to
be used in the lake, we need it to be waterproof up to the maximum depth we expect it to
reach while attached to a waterski. Accuracy: the accuracy of the device must be within at
least 3m for GPS systems, and within %5 for all other sensors. Without an acceptable
accuracy requirement, we cannot say our device provides useful feedback. Multiple
passes: the device must be able to record 10 passes consecutively without issues. The
device wouldn't be useful if the skier needed to charge and reset it between each pass.

2.2 Tolerance Analysis

The team conducted tolerance analysis for the ski tracker after receiving feedback at the
design review to analyze this component. We needed to make sure that we designed a
board that can withstand the associated g-force of skiing, both staying attached to the ski
and steady within the box. We did tolerance analysis work to determine the maximum g-
force experience by a skier during a pass and determined that while the maximum g’s may
go as high as 6, this is only an instantaneous value and that the sustained g-force on the
device for a meaningful period will only be 3.5g’s. This was well within the force rating on
the Velcro system we chose, but we added redundancy systems as well. The device had no
problems staying attached to the ski during a run.

 6

3 Project Design: Hardware

3.1 Design Overview

The main hardware components for the device are a microcontroller, GPS,
accelerometer, gyroscope, IR receiver, SD card reader/writer and battery. The GPS,
accelerometer, and gyroscope provide us with the location, speed, and orientation data to
be stored on the SD card and analyzed on the external computer. The SD card reader/writer
is the component that allows us to write this data onto a physical SD card after the
microcontroller formats the input data to a usable format in a .CSV. The IR receiver changes
the state of operation when it picks up an IR signal. The battery obviously supplied the
entire board with a consistent 3.3V with a voltage regulator.

3.2 Considerations

KiCAD was used to lay out schematics for the PCB. The main worry when putting the
board together was maintaining a small size without crowding components too closely
together. This was both so the board would fit in the waterproof box that will be attached to
the ski and so the microcontroller will be able to communicate with the accelerometer,
gyroscope, and GPS chips efficiently.

Another large consideration was creating a 3.3V plate on the top of the board and a GND
plate on the bottom. This decision was made based off the CAD assignment from earlier in
the course where we created two GND plates, one above and one below, to make it easier
to give components access to a GND port without crowding the board with wires. We
added the 3.3V plate instead of two GND plates because all our chips operate at 3.3V, so it
makes it much easier to connect them to power and GND if these sources are readily
available at any spot on the board.

A few changes were made during the design process. This includes changing our MCU to
an STM32 for higher processing power. With this change, we had to change the design of
the board due to it having a different pin out from the previous MCU. Also, it was discovered
that the pull-up resistors attached to the SD card reader blocked the SD card from being
inserted and removed, so we decided to remove them from the design. Images of the final
schematic and layout for the PCB are provided in the following figures.

 7

Figure: PCB Schematic

Figure: PCB Layout

 8

3.3 Design Justification

Part Reason Picked Function
6V Battery We originally picked out a 3.7V

battery, but the 3.3V regulator’s
overhead voltage was higher than
anticipated, so we jumped to a 6V
battery.

The battery provides each chip on
the PCB with power for enough
time to successfully record data
from several passes.

STM32F103 MCU Originally picking the ATMEGA
MCU, we switched over to the
STM32 because it was both
easier to obtain and has a higher
processing power.

The MCU controls all our
peripherals (gyroscope, GPS,
accelerometer) and records data
to the SD card.

ADAFRUIT 746 (GPS) This GPS has a sufficient polling
rate (~10MHz) and can operate at
3.3V like the rest of our
peripherals.

The GPS records the skier’s
coordinates as they run through
passes, giving an actual location
to link gyroscope and
accelerometer data to.

MPU-6050(Gyroscope &
Accelerometer)

This chip has both an
accelerometer and gyroscope on
it, which was very advantageous
since these are both sensors we
wanted to use.

The accelerometer measures the
skier’s speed while the gyroscope
measures angles of the skier with
respect to the X, Y, and Z axes.

3.3V Regulator This regulator was both small and
cost effective.

This provides each component in
the collection and storage
subsystems with the 3.3V they
require.

4.2V Regulator This regulator was both small and
cost effective.

This provides the battery with a
maximum of 4.2V when charging
off the USB-C port.

TSOP34 (IR Receiver) This IR receiver was low-cost and
can pick up the IR frequency of
the remote we selected.

This IR receiver can detect IR light
from a remote and close a circuit
when that occurs. This is how we
will control the state of operation
when the box is sealed up.

USB-C Port This port was cost effective and
designed just for charging. USB-C
is also found everywhere
nowadays.

This port was selected to allow us
to charge the battery without
removing it from the device.

Buttons These parts are cheap and easy
to control.

One is a RESET button for the
entire system while the other
replaces our IR receiver in
controlling the state of the
device.

STM32F103 Originally picked an ATMEGA chip
for our MCU. Switched to this for
more efficiency and more
documentation available

This is the MCU of the device. It
provides all the logic and control
for all the devices. It reads from
the sensors and writes to the SD
Card.

 9

3.4 Hardware Conclusions

In conclusion, the hardware portion of this project was a bit more difficult than it was
originally scoped out to me. This was mainly due to the changes that needed to be made
when parts were swapped out and the limited time we had to make those changes. The
design of the PCB is satisfactory but could still use a few tweaks to better fit the parts we
selected. If given the opportunity in the future, we would choose a different IR receiver that
would work with the polling rate of our MCU. This was a large oversight in our design
process that inhibits a very critical part of the device’s operation.

4 Project Design: Firmware

4.1 Design overview

The firmware for our device was written onto an STM32F103 Microcontroller. We used
the HAL library and STM32CubeIDE for physical programming. The library allowed us to
write low-level C code that could directly communicate with the sensors. The firmware was
fairly simple for this device as it mainly acted as a go-between for the sensors and the sd
card. It also controlled device state.

Figure: General Firmware Flowchart

4.2 Firmware Design

The first choice to be made before writing the firmware was what language to program it
in. The two main choices were using the Arduino Library for the STM32 or the HAL Library

 10

with STM32CubeIDE. Arduino is simpler for many purposes and is usually easier to start
with; however, we chose to use the HAL Library because it provided more flexibility and
control over the MCU. Throughout all states of operation, we use different LED states to
give the skier information on skiing.

The first piece of the firmware was getting it to properly read the sensors. For the
Gyroscope and Accelerometer, we have an MPU6050 chip that is connected to the MCU
using I2C. The first step for the MPU6050 is turning it on and calibrating it. Register 0x75 is
the “Who Am I” Register which allows the firmware to verify that the device is operating
correctly. We then write to register 0x6B for power management as well as setting the
modes for the MPU [1]. To read from the device, registers 0x3B to 0x48 contain all the
gyroscope and accelerometer data. Once the device is initialized, we run a function that
takes the running average of the gyroscope and accelerometer data that we save as offsets
so future polls of the MPU will be correctly zeroed. Finally, the main while loop of our
function constantly polls the MPU so that we get current data.

The next sensor to work with was the GPS. The GPS works as a UART interrupt device.
That means, the code will be interrupted whenever the GPS has a new message. These
messages are in the NMEA format, and we wrote simple code to decode these to get the
helpful values, such as latitude and longitude [2]. This was stored in static variables so that
it would still allow us to provide the SD Card with a constant stream of data.

Once I gathered this data, I had to format it and write it to the SD Card. To write to an SD
Card from the MCU we used the SPI protocol and the Fat-FS. We had to create a custom
driver for the Fat-FS file system using the SPI code of HAL. We first had to mount the SD
card to the MCU file system, then write a csv file with the correct information. The first line
of the CSV file is the labels for each column.

Figure: Example CSV Table Values

We initially wanted to use an IR Remote to control the entire system, but we struggled to
get it to work in time. Instead, we used a button to control the state of the system. The
button acts as a recording latch. When you press the button, the system enters a
“recording” state in which every 100ms, it writes the current values to the SD card file.
When the button is pressed again, it closes the file and unmounts the file system.

 11

4.3 Firmware Conclusions

With the firmware, I think that it was mostly successful. If we had more time, I would like
to have gotten the IR receiver working. As far as other things to change, I would like to
potentially do some on chip smoothing for the GPS to make the processing easier. Also, it
would be nice to continue to add more useful data to the csv file. Finally, I would have liked
to improve the status, such as adding an OLED display that has more information.

 12

5 Project Design: Software

5.1 Design Overview

The software design for the project is somewhat demanding. At a high level, we need to
accomplish a few things. First, we need to extrapolate a few pieces of information from the
location data. We need to read the calibration data and use it to calculate the position of
each body, then request satellite images to draw on to represent the skier path. This
requires a lot of math using GPS coordinates, which is difficult due to the curvature of the
Earth needing to be plotted on flat maps. Second, we need to extract and smooth the
speed and orientation data from the gyro and accelerometer. The data is initially very noisy,
so digital signal processing will need to be used to get useful info from the data. Lastly, we
will need to create a tool to visualize this data. The goal of the project is to view all the data
at the same time, so creating a tool to visualize will be imperative to the overall success of
getting useful information for the skier from the data we took!

5.2 Design Considerations

To accomplish the above goals, we need to choose a programming language to support
the tasks we are doing. For creating static map images, I chose to use the Google Maps
Static Maps API. While panning and map interactivity would be a neat feature, embedded
maps must be used in a webpage, and as this project is not web based, I chose the Static
Maps API. This makes the live map animation simpler to construct. For processing sensor
data and creating animations, I chose to use Python3. Python is advantageous for this for a
few reasons. Firstly, the availability of easy-to-use libraries for math and data processing
makes Python a strong choice, as well as the ease of creating animations through data
streams. Secondly, the bundled Tk GUI framework was chosen to create the tool that will
allow us to visualize the data. Lastly, Python has excellent integration with the tool FFmpeg,
which is used for video encoding and output. I had considered using C++ for this project,
but the high-level availability of the necessary tools in Python made it a cumbersome
choice in comparison. Speed is not an important goal for our project, so a fast C++
implementation was not necessary.

5.3 Static Maps API

As the member in charge of the processing subsystem I was responsible for enrolling for
and using the Google Maps Static Maps API. Static Maps are not particularly flexible,
returning simply a still image, but I decided that most of the processing can be done using
Python3 image processing libraries such as Pillow [6] and Matplotlib [7]. Using the satellite
image, we need to be able to draw the skier’s path, as well as relate some information
about the path back to the skier using the visualization. I decided that this would be far

 13

easier using Python to do the brunt of the processing as opposed to making complicated
API calls to Google Maps.

5.4 Python Analysis

The bulk of the analysis of the data was done using Python3 to parse and extract
information from the data. The CSV provided by the device contains many data fields, and
we can use the python bundled CSV reader to get this data from the storage device. After
prompting the user for the location of the data they wish to use, the CSV reader code reads
the data as follows.

After reading the data into our own data structure, we can begin analysis. The first step is
to calculate a series of map images. The coordinate points of the gate bouys are stored at
the head of the CSV file, so the first thing we do is take those gate coordinates and use
them to calculate the positions of the remaining balls. The ski course is always the same
layout and dimensions, so this is achievable with only these two points of information. The
difficulty involved in doing distance calculations and other complicated math was
abstracted by converting the coordinates to XY coordinates relative to the image we already
have. If we know the real size of the area the map captures, and we know where the bounds
of our image line up with real coordinates, we can safely convert between XY and GPS
coordinates. After computing all the course information, we create a map image of the
course by requesting the API for an image of the lake, and then use the Pillow library to
draw the computed points of interest onto the map. Because of the work done to abstract
the conversion between GPS and XY, this is a simple task that is easily accomplished with
the Pillow draw functionality. To create the live animation, we simply move the point
representing the skier around the image, then stitch those images into an animation later. I
will talk about animation creation in a later section.

For the other stats visible in the live animation, we can take a much simpler approach.
Most of the data we are looking for is stored directly in the CSV file, such as pitch, yaw, roll,
and timescale. All that is necessary to move on to the animation step is to read these stats
from the CSV into arrays that we can later direct at an animation function. The speed
requires some calculation, however. The GPS chip chosen did not return speed and course
values correctly, so for the final product we needed to use the GPS readings to calculate
the speed. This is trivial, all we need to do is to calculate the change in distance between
each data point, and then divide by the change in time to get the speed over the course of
those two data points being taken. We also used interpolation to fill in values where the
GPS chip fell behind and failed to take data points. We found that this was a very accurate
method of smoothing the data without making large assumptions or altering the overall
content of the data itself. While the initial plan was to Kalman Filter our data, we found in

 14

the end that this was unnecessary, and some simple DSP would clean and smooth our
data very effectively.

5.5 Data Processing

The Data gathered from the board was initially very noisy. We noticed a lot of problems
from jittering of the device and the ground under the bicycle was not smooth. The first issue
was a high amount of high frequency noise in the Gyroscope data. To fix this, we initially
tried to use a small, naive, box-car window that works as a moving average on the system.
This got out some of the noise but there was still a lot present. To fix this, we applied a
larger Hamming Window that got out the noise but kept the general trends of the data.

Figure: Progression of smoothing Gyroscope data

For the speed data, we noticed a bunch of spikes in the data. These spikes are outliers in
the data. To fix this, we first thought that a median filter would work to reduce the outliers.
This worked to a point, but the data still had some noise problems. To fix this, we applied a
Kaiser window that further reduced the data.

Figure: Progression of Smoothing Speed Data, not the change of axis scale

 15

5.6 Animation Creation

Creating an animation is, in essence, creating a video file from a series of images. While
the naive approach is to do just that – create a gif container of images from our
precomputed image values from above, this is not a sufficient solution for our GUI to be
able to smoothly play and seek later. I chose FFmpeg to be the video writer for our
animations throughout the project. It is a highly flexible video encoder that can convert
between all formats seamlessly and with many options. With this flexibility, we can create
low-volume and efficient encodings with the options we require for the GUI customized to
our liking. I chose AVC to ensure the videos are highly compatible and can be played on any
consumer computer setup. The container was chosen to be MP4, again for high
compatibility.

OpenCV provides a framework for a videocapture object [3] which creates a video object
we can load our images into. For our other stats, it is unnecessary to compute a series of
images beforehand as the Matplotlib library provides us with a method for creating
animations already. It supports blitting, which is the technique that reuses the background
graph and only draws the part of the animation that updates on each frame. So, to animate
our remaining stats, we simply create animation functions to pass into the animation
methods provided by the library and load our arrays into the calls. We again leverage
FFmpeg to encode our videos and output them as MP4.

5.7 GUI

To create the GUI for visualizing the data, I chose to use Tk as I have experience writing Tk
already, and the library comes bundled with many Python3 installations. As well as this,
our goal is relatively simple – display precomputed animation files in sync. With little actual
GUI based functionality, other popular frameworks such as QT or GTK are overkill for this
task. The Tk GUI is simple – we leverage the TkVideoPlayer library to create a video player
instance for each video we want to play, which is the live map, speed data, and orientation
data. Then, we associate a lead video stream, in our case the live map, to the seek bar and
various events provided by the class construction. Because all our videos are the same
length, we have no problem using one video as the master of all streams. Whenever a video
player event is generated, we apply the action to all video streams. This gives the
functionality of playing all streams in sync! Also included in the GUI side of the tool are
interactive file dialogs to ease user experience in using the tool, prompting the user to input
the data they wish to process at each invocation of the tools.

 16

Figure: GUI serving to visualize the data

5.8 Verification

To verify the software portion of the design, we revisit the original verification goals of the
project that we wanted to accomplish in the processing subsystem. The software system
needed to process and filter the data such that we extract a complete and useful picture
from even very noisy data. This was a success, with the filtering being highly effective at
extracting features from the very noisy IMU data. The second goal was to create a live map
of the skiing data using satellite imagery, which was also a success. The final goal was to
display the processed data side-by-side in a visualization tool, which was accomplished
via the Tk GUI. The processing subsystem meets all the goals we set for it.

5.9 Software Conclusions

Overall, I am very satisfied with the software component of this project. All the goals I
had for the design were met, and no major changes were made that added significant
complexity to the design. The data generation tool is flexible and user friendly, and the
visualizer tool very neatly ties it all together. The only things I would change about the
software design are minor implementation differences, such as re-using the same map
instead of requesting many, or tweaking data smoothing to more intelligently remove noise
from the data using AI or other advanced techniques.

 17

6 Cost and Schedule

6.1 Cost

Component Price

Gy-521 MPU-6050 (Gyro +
Accelerometer)

$13.71

SD Card $10

SD Card Reader $9

TSOP93438 (IR Receiver) $1.06

ADAFRUIT746 GPS $12.99

Four AA Batteries $6.79

GPS $31.99

STM32F103 (MPU) $6.49

Clear Waterproof Case $30.00

USB-C Charging Port $7.35

3.3V Regulator $0.99

4.2V Regulator $0.99

$88,000 salary for 3
people over 12 weeks $60,900.00

Total $61,031.37
 Table: Cost Analysis

6.2 Schedule
Week Everyone Jack Ryder Sam

Week 1 of

02/26

Design Check Board Schematic and

finish part selection

Help with Board

Schematic & Bread

Board Testing

Start learning

Maps API and

create mock data

for testing

Week 2 of

03/04

Finalize Design Finish Layout Help with Layout

and Start Firmware

Use Maps API

on mock data

Week 3 of

03/11

Spring Break Spring Break Spring Break Spring Break

 18

Week 4 of

03/18

Discuss hardware

with machine shop

Solder and test board,

revise board design

Work on simple

firmware on board

and help revise

board

Begin Kalman

Filtering on

Mock Data

Week 5 of

03/25

Individual

progress reports

Help with firmware,

revise board again

Work on updating

firmware to link all

subsystems

Using Mock

data, finalize

software

workflow

Week 6 of

04/01

Finalize Finalize Board design

and one last board run

Finalize Firmware

for on board design

Apply Software

to real data

Week 7 of

04/08

Finalize Hardware Firmware Software

Week 8 of

04/15

Mock Demo Mock Demo

Week 9 of

04/22

Final Demo Final Demo

Week 10 of

04/29

Final Presentation Final Presentation

Table: Team Project Schedule

 19

7 Conclusions

7.1 Accomplishments

Our biggest accomplishment is that the entire workflow was successful. From the
operation of the board to the firmware operation to the software processing and GUI. The
product is one that correctly solved the problem of creating affordable water ski coaching.
The Processing subsystem successfully smoothed the data to take the high noise out and
show the curve of the skier. We are also happy with how the GUI turned out as it makes the
data very readable.

7.2 Uncertainties

Our biggest uncertainties were in our sensor data. The GPS was only accurate up to 3m
and had a low polling rate. We would have preferred to have higher GPS accuracy but that
was not feasible with our time and budget. Another issue we had was with our IR receiver.
Due to I/O polling issues on the STM chip, we were unable to get the IR receiver to work.

7.3 Future Work

If we had an infinite budget, the main improvement we would have made if we had more
money would be to change to an RTK GPS System. The current system lacks precise GPS
data due to the low precision of cheap consumer GPS modules, so switching to an RTK
system will help. RTK uses a base station to provide centimeter level accuracy of the GPS.
We would also like to fix the IR receiver issues we had and potentially add more user
feedback such as an LCD screen or a phone app.

7.4 Ethical Considerations

The ACM Code of Ethics section 1.6 discusses respecting privacy. Our product will
make sure to store no information for outside parties to access. While we must store
location information for usage by our processing algorithms, we will not access other users'
data, and all data will be held locally.

 20

8 References and links
[1] “MPU-6000 and MPU-6050 Register Map and Descriptions Revision 4.2 MPU-6000

MPU-6050 Register Map and Descriptions,” 2013. Available:
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-
Map1.pdf

[2] G. Baddeley, “GPS - NMEA sentence information,” Jul. 20, 2001.
https://aprs.gids.nl/nmea/

[3] Reading and writing images and video¶. Reading and Writing Images and Video -
OpenCV 2.4.13.7 documentation. (n.d.).
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_an
d_video.html

https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf
https://aprs.gids.nl/nmea/
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html

