
Power Quality Monitor and Sub Meter System

ECE 445 Design Document - Spring 2024
__

Team #30
Nicole Viz

(nviz2@illinois.edu)
Soham Manjrekar

(sohammm2@illinois.edu)
Roshan Mahesh

(roshanm2@illinois.edu)

TA: Surya Vasanth
Professor: Jonathon Schuh

May 1, 2024

mailto:nviz2@illinois.edu
mailto:sohammm2@illinois.edu
mailto:roshanm2@illinois.edu

Abstract

This document provides details, diagrams, and schematics for the design and implementation of
our project, which is a power quality monitor and sub meter system. Beyond our design and
implementation, we provide information on the parts we used, the total cost, the requirements for
each subsystem along with how we verified it, a weekly schedule of when we completed each
part of the project, and an analysis of the safety and ethics of our project.

Table of Contents

1 Introduction.. 1
1.1 Problem...1
1.2 Solution... 1
1.3 High-Level Requirements...2
1.4 Subsystem Overview...3

2 Design.. 3
2.2 Physical Design.. 3

2.2.1 Design Procedure..3
2.2.2 Design Details and Decisions... 4

2.3 Power Supply Subsystem..4
2.3.1 Design Procedure..4
2.3.2 Design Details and Decisions... 5
2.4.1 Design Procedure..5
2.4.2 Design Details and Decisions... 6

2.5 Control Unit Subsystem... 6
2.5.1 Design Procedure..7
2.5.2 Design Details and Decisions... 8

2.6 Database Subsystem..8
2.6.1 Design Procedure..9
2.6.2 Design Details and Decisions... 10

2.7 Verification... 11
3 Cost & Schedule... 14

3.1 Cost Analysis..14
3.1.1 Parts/Materials.. 14
3.1.2 Estimated Hours of Development...14
3.1.3 External Materials and Resources.. 15
3.1.4 Total Estimated Cost..15

3.2 Schedule.. 16
4 Conclusion..17

4.1 Accomplishments.. 17
4.2 Uncertainties.. 17
4.3 Future Work... 18
4.4 Ethical and Safety Considerations.. 18

References..20
Appendices...21

Appendix A - Figures.. 21
Appendix B - Tables..29

1

1 Introduction

In this section, we explain the problem that we are attempting to solve, and we highlight its
relevance in the field of power electronics today. We also illustrate our solution to the problem,
our visual aid, and our high-level requirements along with its relation to the project so that others
can understand our planning and design process. Finally, we introduce an overview of our
subsystems along with a high-level block diagram.

1.1 Problem

In the rapidly evolving field of power electronics and energy technologies, maintaining
consistent and high-quality power distribution and energy usage is critical for residential and
commercial buildings. Using submeters can create energy savings, lower operating costs,
increase building efficiency and reliability, and improve occupant comfort. However, devices
today can be cost-inefficient, complex to operate and to read, and they may lack real-time
insights. These shortcomings lead to difficulty in meeting recent sustainability efforts, and as
such, an innovative solution is needed.

For example, a common residential electrical submetering product is from Byram Labs. It’s a
single phase submeter that costs $420, doesn’t provide prior electrical usage data, doesn’t
provide a way to perform data analysis, and doesn’t monitor power quality or notify owners of
poor power quality for the following metrics: large voltage changes/irregularities, power outages,
harmonic disturbances. This can cause many problems, especially for large commercial
applications such as hospitals. In Japan, there was a study done on 13 pieces of medical
equipment and found that voltage dips caused 7 devices to stop for about 0.5 seconds, which
caused some of the 7 devices to start an automatic reboot. Without having the electrical submeter
also measure for power quality, medical equipment could get damaged or patients could suffer
from ineffective medical care.

1.2 Solution

For our project, we designed and constructed an improved device that monitors power quality
and acts as a submeter to its loads – a device that is cost-effective, and has high-fidelity and
real-time data acquisition. Our project solves the problems listed above by combining a power
quality monitor along with a submeter in a cost-effective manner that stores real-time data and
loads the data to a database that can be accessed through a website. The website also allows users
to be alerted of power quality issues, provide access to prior data, and showcase voltage and
power waveforms.

Over the course of the build process, we produced a prototype that analyzes voltage, current, and
power from an outlet and examines the power usage of a connected load. To do this, the device

2

connects into an outlet, then steps down the voltage and current to be sensed proportionally with
the ICs, and sends measurements through the microcontroller to the database. The control unit of
the device is powered by a converter circuit with a linear regulator, and in backup cases, with a
battery subsystem. We encased all circuitry and hardware within a box to showcase a formal
final product. A visual representation along with our finalized product can be found in Appendix
A, Figure 1.1 and 1.2.

1.3 High-Level Requirements

For our project to be considered successful, there are various high-level criteria that must be met.
Our device should be able to perform the following tasks:
I. Sample a single-phase input for its voltage and current (within 10% accuracy).
II. Use a microcontroller to process the voltage and current samples and calculate apparent

and real power. Store data points to a cloud database (once every 10 seconds).
Instantaneous waveforms will also be displayed on a screen.

III. Notify the user (within 5 seconds) of any disturbances in measurements outside of a set
tolerance (5%) and of any failures.

The high-level project functionalities are intricately interconnected with the overarching purpose
of providing comprehensive monitoring, analysis, and notification capabilities for electrical
systems. By accurately sampling voltage and current from a single-phase input within a 10%
accuracy threshold, the device can spot problems like overloading. We must sample a
single-phase input for its voltage and current because it forms the foundation for understanding
and analyzing the electrical system's behavior. The microcontroller is also integral to our project
as it enables us to process data from the ICs, perform calculations, and send the data to a
database. Without a microcontroller, interpreting the data would be impossible.

Additionally, storing data points in a cloud database every 10 seconds ensures its availability and
integrity for later review, enabling users to track trends and identify potential issues. Displaying
waveforms on-screen helps users visualize and interpret the data in real-time, enhancing their
understanding of the electrical system's performance. Furthermore, a notification system for
failures is essential, as it alerts users to power outlet issues promptly. This is crucial for
preventing potential damage to equipment that relies on wall power, ensuring uninterrupted
operation and minimizing downtime. Successfully implementing these three high-level
requirements will yield a rapid, functional, and advanced solution for power quality monitoring
and submetering, providing users with actionable insights and prompt alerts to maintain system
reliability and efficiency.

3

1.4 Subsystem Overview

As shown in our top-level diagram in Appendix A, Figure 2, we have four subsystems: step
down, control unit, power supply, and database. We start off with getting the single phase mains
power from the wall outlet. We take this 120V AC to both the power supply and step down unit.
In the Power Supply, this AC waveform is fed to a transformer that converts the voltage to a
lower one, subsequently, full wave diode rectifier followed by a large capacitor to convert the
voltage to a near DC waveform. After the capacitor a 5V linear regulator keeps the voltage a
constant 5V. From there the 5V is used to power the battery charging circuit, or is further
converted down by yet another linear regulator to 3.3V which is sent to the Control Unit to
power the measurement ICs and the microcontroller.

In the Step Down Subsystem, a transformer is in parallel with the wall to down convert the
voltage, following the voltage transformer, a voltage divider made of two resistors is present to
further take the voltage down to meet our requirements. Another transformer in the Step Down
Subsystem shorts across the hot terminal, this is the current transformer, it steps current down
from a maximum of 15A to a safe value (defined in our RV table) for measurement . The output
of the Step Down Subsystem goes to our power quality and power metering IC in the Control
Unit. The power quality IC is an ADE9430, which measures dips and swells, interruptions,
magnitude, harmonics, and much more. The power metering IC is an ADE7953, which measures
active power, reactive power, apparent power, sampled current, and RMS voltage. The signals
that are outputted from these 2 ICs are sent to the ESP32 via Serial Peripheral Interface (SPI).

SPI is a communication protocol that the ESP32 uses to take in information for processing. We
then connect the ESP32 to Wi-Fi, calculate apparent and real power, then send the data to our
database subsystem via HTTP requests. The database subsystem consists of a MySQL database
that is hosted by Google Cloud Platform. The data that is held in the database is then graphed
and put onto a website. The data is sent from the database to the backend web server via Query
requests, and the data is then sent to the frontend via websockets. Once the data is at the
frontend, we use the Chart.js library, which is a JavaScript library, to graph the data in real-time.

2 Design

2.2 Physical Design

2.2.1 Design Procedure

To house the hardware of our device, we chose a simple aluminum 200 mm by 300 mm project
box, shown in Appendix A, Figure 1.2. This was chosen for its lightweight nature and durability,
and because it was open on one side, allowing us to easily connect and disconnect components
when needed. To make sure everything fit snugly, we 3D printed rails for our two PCBs to snap
into, then used command strips to adhere them to the box, along with a battery pack and one

4

transformer that we were unable to fit onto a PCB. For safety, we also made sure to connect the
earth ground of the wall outlet to the earth ground pin of our panel-mounted power inlet port, and
then to multiple contact points on our enclosure.

2.2.2 Design Details and Decisions

a) Interfaces
i) Wall Outlet

1) For input, we panel-mounted a three-pronged female power inlet port on
the side of our box and used a male-to-female power cable to connect
from the wall outlet to this port. For output, we panel-mounted a typical
wall outlet configuration, which could receive any basic power cable.

b) Design Decisions
i) All decisions regarding our enclosure were made with the utmost concern for

safety. This included frequently checking continuity between all earth ground
contacts, as well covering all points that may carry wall voltage with electrical
tape or shrink wrap.

2.3 Power Supply Subsystem

The power supply unit lays the groundwork for the functionality of the rest of our device;
without power, none of the other subsystems would work. Its main purpose is to take in wall
voltage and current and output 3.3 V to the necessary components of the control unit, and to run
on battery power in the event of wall power failure. To do this, it consists of a 5 V DC converter,
a battery pack, a battery charging circuit, a diode-OR circuit, and a 3.3 V linear regulator.

2.3.1 Design Procedure

Since wall power was being directly fed to this unit, all components were chosen with specific
attention to maximum voltage and current ratings. To begin, the ST-4-12 power transformer was
chosen due simply to its ability to handle wall voltage 120 V AC at its input and output at a level
around 12 V. The remaining components in the 5 V AC-DC converter were chosen based on our
existing familiarity with their operation from other courses (namely ECE 469) and their
immediate availability through self-service. All together, this converter block consisted of the
aforementioned transformer, a full wave rectifier with power diodes, a bulky output capacitor,
and an LM309H 5 V regulator. We also included banana jack test points at the secondary of the
transformer, at the output of the rectifier, and at the output of the regulator to ensure easy
debugging.

After a discussion with TAs, we chose to use two 18650 3.2 V lithium iron phosphate batteries in
series, which were desirable for their safety compared to typical lithium ion batteries. We
considered two different battery charging ICs, and we ended up ordering both of them at the
beginning of the semester. Eventually, we chose the MCP73831T chip because we found its

5

datasheet to be more helpful, straightforward, and easy to understand. We then used a diode-OR
circuit consisting of two Schottky diodes (for their low forward voltage drop) to choose between
wall power and battery power. For this step, we had seen that a group from a previous semester
had used a more complicated selection circuit consisting of many more switches and logic, but
after some initial testing, we found that our two diodes worked fine as long as battery voltage
remained equal to or less than 5 V. For our purposes, this was suitable, and it allowed us to
maintain our desired level of simplicity. Finally, we selected a LM3940IT 5 V to 3.3 V regulator
to provide our final output voltage because it was readily available in the lab. In hindsight, we
realized this regulator got hot after prolonged use of our device, and likely could have performed
better if we had additionally added a heat sink. No safety issues were encountered, though, and it
performed sufficiently well to achieve our requirements.

2.3.2 Design Details and Decisions

a) Interfaces
i) Wall Outlet

1) The power supply unit connects to the wall outlet through a female
3-prong power inlet port mounted on the side of the enclosure. It steps
down this voltage as described in the previous section using a transformer,
a voltage converter, a rectifier, and various regulators.

ii) Control Unit
1) The ESP32, Power Quality IC, and Power Metering IC all require 3.3 V to

be powered and functional.
b) Detailed circuit diagrams for each section of the power supply unit can be found in

Appendix A in Figures 3.1 and 3.2. The resistor and capacitor values were mainly chosen
from datasheet recommendations and requirements.

2.4 Step Down Subsystem

The Step Down Subsystem plays a critical role in the overall functionality of the project by
converting voltage and current from the wall outlet to levels compatible with the metering and
monitoring ICs, namely the ADE7953 and ADE9430. It comprises two main components: a
Voltage Divider circuit, which steps down the voltage to <3.4V, and a Current Transformer
(B82801B0925A200), which reduces the current to <75mA. These components are designed to
accommodate potential current limits, although the ICs' only limitation is on voltage. Despite
this, the Current Transformer still serves to provide an isolated current input to the measurement
ICs, allowing for accurate current measurements using the onboard PGA.

2.4.1 Design Procedure

Originally, the design of this subsystem involved the utilization of resistors, a current divider,
and a voltage divider to transmit stepped-down waveforms to the Control Unit. However, this
approach encountered significant challenges, particularly in managing power distribution. Under

6

high-load conditions, where substantial current flowed across the resistor, power consumption
soared, reaching nearly 1.8 kW. Implementing such a design necessitated the acquisition of bulky
and costly resistors, rendering it impractical. In response to these challenges, we opted for an
isolated approach, leveraging current and voltage transformers. This transition to an isolated
approach also addressed concerns regarding the direct connection to the wall outlet, enhancing
overall safety and reducing potential risks of electrical hazards. By utilizing current and voltage
transformers, we were able to effectively isolate the electrical signals, ensuring that the
measurement and monitoring ICs received accurate and reliable input data without exposing the
control unit to high-voltage environments.

Furthermore, the adoption of transformers enabled us to achieve a more compact and
cost-effective design compared to the initial resistor-based approach. By leveraging the inherent
characteristics of transformers, we could efficiently step down voltage and current levels while
maintaining signal integrity and minimizing power dissipation. This not only optimized the
performance of the Step Down Subsystem but also contributed to the overall efficiency and
reliability of the project.

2.4.2 Design Details and Decisions

a) Interfaces
i) Wall Outlet

1) Direct input 120V AC from the outlet to the subsystem to be stepped
down

ii) Control Unit Subsystem
1) Directly to VAN-VAP and IAN-IAP
2) Should deliver less than 3.4V.

b) Design Decisions
i) In summary, the design decisions for the Step Down Subsystem resulted in the use

of an isolated configuration using current and voltage transformers. This decision
not only addressed power-related challenges but also enhanced safety and
contributed to the compactness and cost-effectiveness of the subsystem design.
Detailed circuit diagrams are included in Appendix A, Figure 4.

2.5 Control Unit Subsystem

The Control Unit subsystem is constructed of the two measurement ICs (ADE7953 and
ADE9430) and the ESP32 Microcontroller (ESP32-S3-MINI-1-N8). The ICs are where the
voltage and current signals are converted into digital signals. Stepped down voltages are
delivered to both measurement ICs which then pass through a PGA and an ADC followed by a
digital block where all pertinent DSP calculations are made. Data then will be passed through to
the Microcontroller via SPI protocols to be outputted to a database. We will leverage the SPI
interface on both the measurement ICs using the MISO pins as an output to stream data out from

7

the ICs, with SCLK and MOSI and CS (Chip Select) being inputs. On the ESP32 these are all
GPIO pins specifically pins 10-13 and pins 23-27 , we will use these to generate a clock signal
(SCLK), stream data from the ESP32 to the ICs (MOSI), stream data from the ICs (MISO), and
enable/disable communication between the two sections of our subsystem. Once on the ESP32,
the data will be sent via Wi-Fi using HTTP requests to the Database subsystem for processing
and delivery to a web app. The ESP32 itself will be powered from the Power Supply subsystem
at 3.3V.

2.5.1 Design Procedure

In our pursuit of deeper insights into power quality and metering, we intentionally veered away
from conventional methods involving hall effect sensors and traditional voltage sensing circuits.
Instead, we opted for cutting-edge ICs, namely the ADE7953 and ADE9430. These ICs are
specifically designed for submetering and power quality analysis, catering to professional
applications. Despite their advanced capabilities, their interface via SPI—a widely documented
and standard form of communication between ICs and controllers—provided us with confidence
in navigating the unknown. We believed that the potential rewards of the data they could offer
outweighed the risks associated with exploring unfamiliar territory. Detailed block diagrams of
these ICs are included in Appendix A, Figures 5.2 and 5.3, along with the complete design of the
control unit in Figure 5.1 for reference.

The design procedure for the Control Unit subsystem was seemingly straightforward, devoid of
intricate power management complexities aside from the input voltage from the power supply
and the stepped-down voltage and current from the Step Down Unit. Initially, the process
involved meticulous examination of the datasheets for the ICs and microcontroller, ensuring
precise alignment of PCB traces with the correct pinouts, and appropriate strapping or
decoupling of pins. However, a significant oversight in not submitting the PCB within the first or
second wave of orders contributed to the failure of the Control Unit Subsystem. Despite its
seemingly simple design compared to other subsystems, it proved to be the most problematic.

Efforts to debug the board included redesigning the board for the fourth wave of PCB orders
wherein five of the PCBs were sacrificed in an attempt to connect to the microcontroller.
Additionally, attaching wires directly to the pads of the microcontroller surface mount and
running them to the development board on a breadboard were employed, but these efforts also
proved unsuccessful.

Multiple factors could have contributed to the board's failure. It is plausible that excessive
voltage and current from the wall supply led to the microcontroller burning out. Alternatively,
inadequate strapping or decoupling capacitors for stable operation may have been a factor.
However, attempts to replicate the development board microcontroller's setup on the production
board yielded similar challenges. Reflecting on the experience, if given another opportunity, our

8

initial step with this subsystem would involve constructing a digital model to simulate data
signals. The absence of such a model left us without a clear starting point for the debugging
process, making it challenging to pinpoint whether issues lay in the code, the PCB, the hardware,
or intermediary components like resistors and capacitors.

2.5.2 Design Details and Decisions

a) Interfaces
i) Step Down Subsystem

1) Voltage and Current Signals are taken in from the Step Down subsystem
2) SPI Data is passed through via SPI from the ICs to the ESP32

ii) Power Supply Subsystem
1) The 3.3V that powers the ESP 32 and measurement ICs comes from the

Power Supply subsystem

iii) Database Subsystem
1) Data is passed to the Database subsystem over Wi-Fi and HTTP

connection
b) Design Decisions

i) In selecting our current and voltage measurement system, we deliberately opted
for a more costly and complex solution. Our decision was driven by the desire to
explore the advanced capabilities offered by newer IC technology. We anticipated
that these measurement ICs would provide us with a wealth of data that traditional
sensors or circuits may not capture. Importantly, our project scope did not impose
any budget constraints. Consequently, our goal was to develop a device capable of
meeting industry-level submetering and monitoring requirements, and we
believed that these ICs would enable us to achieve precisely that objective.
Moreover, we aimed to package our final device in a sophisticated manner,
aligning with our commitment to delivering a high-quality, professional-grade
solution.

2.6 Database Subsystem

The database subsystem is a full-stack web application that displays graph data, specifically the
voltage and current of the power outlet and the load. The web app also notifies the user when
there are disturbances or failures with the power outlet voltage in real-time so that a building
manager or electrician can fix the problem as early as possible. The backend is written in
JavaScript using Node.js and Express.js libraries to create a server and send Query requests to
the database. The frontend is written in JavaScript as well by using the React.js library to create
an interactive web application. To create real-time graphs, we used websockets to get data from
the backend to the frontend instantaneously and the Chart.js library, which allows us to read and

9

plot data. Lastly, we used a MySQL database hosted on Google Cloud to store the data from the
ESP32. An image of how the data is stored in our database can be found in Appendix A, Figure
6.1. Additionally, a flowchart of how the data is transmitted throughout the system can be found
in Figure 6.2.

2.6.1 Design Procedure

During the course of this project, we immediately knew that we wanted to use JavaScript
libraries and Google Cloud to create the web application and database; however, we weren’t sure
of how to create graphs that would refresh with new data every minute. With prior experience
using Matplotlib, which is a Python library, we considered using it to create the graphs on our
website. Once we finished creating the database table and inserted simulated data, we sent the
data to our Python file to graph it. However, we were unable to get the graph to appear on the
website. After many attempts at debugging and reading documentation online, we found out that
applying a Python library to a JavaScript application can create compatibility issues. From here,
we pivoted to JavaScript libraries, specifically Chart.js, since compatibility wouldn’t be an issue.
After spending some time debugging our new code and understanding how the library works, we
were able to get the graphs for voltage, current, apparent power, and real power to appear on the
website. Another benefit that we didn’t know about this library is that it’s also an interactive
graph, meaning that a user can use their mouse to hover over data points to read the value.

After this, we looked to implement the notifications feature. This feature provides a notification
to the user when there’s a deviation from the standard 120V AC wall voltage by 5% or greater.
Since we wanted this notification to appear within 5 seconds, and to persistently stay on the
website so that the notifications can form a log of prior issues, we decided to have the backend
server query the database for data once every second. Additionally, we decided to use the local
storage that every web browser has built-in to keep the notifications in the notification page
forever. However, we found many issues with these design decisions. First, by querying the
database once every second, we were missing out on data points that should’ve been shown on
the notification page. Second, we were unable to reliably get the notification to persist in the logs
since a user could switch browsers. For example, if the user uses Internet Explorer to go to the
website, but then they switch to Google Chrome, the notifications wouldn’t show up in Google
Chrome since local storage is browser specific. To fix this, we switched from using local storage
to searching the entire database for all faulty voltages. Since this must be done a lot quicker than
once per second, we switched to using websockets which has the ability to get data from the
database at a rate of 5 requests per second. By making these design changes, we were able to get
the notifications page to update instantaneously and have older notifications persist in the form
of a log.

10

2.6.2 Design Details and Decisions

a) Interfaces
i) Control Unit

1) HTTP connection from ESP32 to Google Cloud Platform MySQL
database to receive data

2) SQL Query to get data from the MySQL database to the backend server.
The data arrives to the

3) Websocket to get data from the backend server to the frontend so that the
data can get graphed or put in notifications page

A clear flowchart in Appendix A, Figure 6.2 shows the movement of data and how that was
accomplished. A few other notes about all the interconnections is that the data from the ESP32
gets correctly put into MySQL columns. These columns are data id, outlet name, load name,
measurement time, voltage, current, apparent power, and real power. The data is put into the
correct column due to the SQL statement that is used to send the data from the ESP32: INSERT
INTO PowerData (data_id, outlet_name, load_name, measurement_time, voltage, current,
apparent_power, real_power) VALUES (%d, %s, %s, %s, %d, %d, %d, %d). In this statement,
we state the column names and insert the data in the right order. Additionally, PowerData is the
name of the MySQL database table. Another item to note is that when the backend server gets
the data from the database, it’s in the form of an array. The backend server makes the following
query: SELECT ‘voltage’ FROM PowerData. The server then gets all the voltage data from the
database, which looks like this: voltage: [120.45, 117.89, 122.21]. Since we get the data as an
array, all we have to do is iterate through it to get all the data points.

b) Design Decisions
i) When looking at alternative approaches to the design, there are many different

ways to create a full-stack web application and there are many different database
providers. For example, web applications can also be made using Python libraries
and platforms such as Django, using PHP, or using C#. These are all options that
are commonly used in industry practices as well. For database providers, there’s
many different options available as well such as AWS, Oracle, and MongoDB.
For graphing the data, there’s also plenty of libraries available. For example,
Python has the Matplotlib library for easy graphing using minimal code, and it has
plenty of documentation online.

ii) Despite all these options, we chose to use JavaScript for the website, specifically
using Node.js, Express.js, and React.js as the libraries, MySQL through Google
Cloud Platform for the database, and Chart.js library to graph the data. We made
these design choices since one of our group members has experience using
JavaScript and Google Cloud to create full-stack web applications through
personal projects, internships, and CS411. None of us had any experience with

11

Chart.js; however, we chose to use it since integrating another JavaScript library
with a JavaScript project would be a lot easier. Additionally, there’s plenty of
documentation online on how to use the library. By using technology that our
group was already familiar with, we knew that we would have the website and
database working by the demo deadline. Due to this time constraint, these
technologies became desirable to use.

2.7 Verification

2.7.1 Power Supply

Table 1.1 in Appendix B displays the necessary requirements and verification steps associated
with the power supply unit. All of these requirements were met and shown during our final demo
(three of them physically in real time, and one of them discussed mathematically). Most
importantly, Figure 7.1 in Appendix A shows the achievement of our first requirement: an output
of 3.3 V DC (green waveform). This was verified using multimeter probes at the output of our
power board. Our second requirement was verified again simply by unplugging our device from
the wall and ensuring that 3.3 V DC was still available at the output.

The third requirement, which involved ensuring the device could run on battery power for at
least 10 hours, was not verified physically due to safety concerns. In order to test this, we would
have had to let our device run for 10 hours while someone constantly monitored it, which was
just not realistically feasible. Instead, we demonstrated mathematically that it should be possible.
Our battery pack has a capacity of 1500 mAh, so we simply needed to show that the battery
discharge current was less than or equal to 150 mA.

1500 𝑚𝐴ℎ
150 𝑚𝐴 = 10 ℎ𝑜𝑢𝑟𝑠

Using a current probe, we found that the discharge current was typically on the order of 70 mA,
ensuring that if need be, our device could run for at least ten hours off of battery power. It is
important to note here, however, that this is something that should only occur when absolutely
necessary, as such deep discharges of LiFePo batteries are not recommended to be frequently
performed

Our final requirement involved ensuring that our charging circuit would not charge our battery
pack past 80% state-of-charge, again for safety reasons. We verified this by connecting the pack
to the charging circuit for at least an hour, and probing the battery terminals every fifteen
minutes to ensure that the voltage was within the accepted range:

0. 8 × (2 × 3. 2 𝑉) = 5. 12 𝑉

12

Appendix A, Figure 7.2 shows the battery voltage at several points in time during this
verification procedure, proving that it was maintained at about 4.6 V to 4.7 V (well within our
requirement).

2.7.2 Step Down

The verification process of our Step Down Subsystem is relatively straightforward. Under the
condition of no additional load connected to the box besides powering itself, we observe specific
waveforms as shown in the accompanying figure. Among these waveforms, the first three
demonstrate the fulfillment of our requirements as outlined in the verification tables shown in
Appendix B, Table 1.2. The yellow waveform represents the input voltage, measured at 120V
RMS, while the purple waveform depicts the output of the step-down voltage transformer,
measured at 1.6V. The blue waveform illustrates the signal inputted to our current transformer.

The first requirement, pertaining to voltage step-down, is evidently met, as the purple waveform
clearly falls below the 3.4V threshold specified in our requirements. However, the second
requirement warrants further explanation. In our setup, the current transformer is shorted across
the input, and the observed blue waveform represents the input current. Due to the absence of
proper probe points, a limitation discussed in our design procedure, we are unable to directly
measure the current output. Nevertheless, leveraging the known 1:200 turns ratio of the current
transformer, we can infer that the current on the transformer secondary is approximately 250uA,
given the observed input current of ~50mA in the absence of extra load. This deduction is based
on the principle that current on the transformer secondary is divided by 200 from the primary
current due to the transformer's turns ratio.

2.7.3 Control Unit

We were unable to meet this requirement. As outlined in our design procedure we faced
challenges and potential design limitations that would prevent us from meeting this requirement.
Despite the Step Down Subsystem functioning as intended and current flowing through the
device, we faced significant issues with the microcontroller. Attempts to program the
microcontroller using the D+ and D- pins connected to probe points proved unsuccessful.
Surprisingly, the microcontroller was not even recognized as a device by our computers,
thwarting our efforts to program the chip. This technical hurdle significantly hindered our ability
to accurately transmit voltage and current data from the measurement ICs to the ESP32,
ultimately leading to the inability to meet the specified requirement, shown in Appendix B, Table
1.3.

13

2.7.4 Database

For the database subsystem, we had 3 requirements: the database must store new data once every
10 seconds from the ESP32, the website must show a notification within 5 seconds when there’s
any wall voltage disturbances greater than 5% of 120 V AC, and the website must show graphs
of voltage and current data that is refreshed once every minute. Based on these requirements, we
had a set of verification procedures that we ran to ensure that the requirements were met. These
requirements and verification procedures can be found in a table at Appendix B, Table 1.4.

For the first requirement, we had to improvise the verification procedure since we couldn’t get
the ESP32 to work. So, we inserted data straight into the database from the Google Cloud Shell
using the following SQL statement: INSERT INTO PowerData (data_id, outlet_name,
load_name, measurement_time, voltage, current, apparent_power, real_power) VALUES (%d,
%s, %s, %s, %d, %d, %d, %d). We then started a clock to see how quickly the data would show
up in the database. The data was inserted into the database in 0.08 seconds and all data points
that we inserted showed up in the database correctly. This time is significantly faster than the 10
seconds that we were aiming to get. While this isn’t coming from the ESP32, we can also
theoretically guarantee that the data will reach the database much faster than 10 seconds. By
setting the baud rate to 9600, sending the data within a loop, and accounting for a slight delay of
messages over HTTP connection, we know that we can store at least 5 data points into the
database from the ESP32 every second, which still satisfies the requirement.

For the second requirement, we set up a similar test to the first requirement, but we were instead
checking to see how fast the notification appears on the website. When we input a voltage of
140.00 V into the database, we were able to get the notification to pop up in 0.14 seconds.
Essentially, we’re able to get the notification on the website to appear instantaneously, which is
again much faster than the 5 seconds in our requirement.

For our last requirement, we wanted to have the graphs refresh once every minute. Since we
were able to use the same websocket technology that we used for the notification, we were also
able to get the graph to refresh instantaneously. By setting up a similar test to the notifications,
except this time we input 10 sets of data, all the voltage, current, and power graphs updated
within 0.23 seconds. While we were hoping to get the graphs to refresh once every minute since
we wanted to account for messaging delay, we were able to use industry standard technology to
get the data sent and visualized instantly.

14

3 Cost & Schedule

3.1 Cost Analysis

3.1.1 Parts/Materials

Component Price (per Unit) Units

ESP32 Microcontroller $3.10 1

Step Down XFMR $11.67 1

Current Sense XFMR $2.94 1

Battery Charging IC $0.76 2

Battery Charging IC $0.23 5

Voltage Regulator 3.3V $0.00 1

Voltage Regulator 5V $1.28 1

Power Quality IC $22.40 1

Submetering IC $5.19 1

Li-Polymer Batteries 18650 $5.32 2

Fuel Gauge IC $3.37 1

Voltage Transformer $10.59 1

BOOST IC $2.33 1

Total $90.18

3.1.2 Estimated Hours of Development

An average UIUC EE and CE graduate has a starting salary of $87,769 and $109,176
respectively. For the sake of simplicity, and since we have two electrical engineers and one
computer engineer in our group, we will take the mean annual salary of our group to be:

(2/3)($87, 769) + (1/3)($109, 176) = $94, 904. 67

Considering a 40-hour work week for 48 weeks of the year, this is equivalent to a wage of
$49.43/hour. We estimate that we have each worked on this project for roughly 10 hours every
week, for a total of 10 weeks in the semester. Therefore we can estimate the total cost of labor
for this project as follows:

$49. 43/ℎ𝑜𝑢𝑟 × 10 ℎ𝑜𝑢𝑟𝑠/𝑤𝑒𝑒𝑘 × 10 𝑤𝑒𝑒𝑘𝑠 × 3 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 × 2. 5 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝑓𝑎𝑐𝑡𝑜𝑟
= $37, 072. 50

15

3.1.3 External Materials and Resources

Machine Shop:
In addition to the parts listed in Figure 9, we assembled our finished project in an enclosure with
the necessary input and output connections. We purchased an existing enclosure (waterproof and
suitably electrically rated) and simply had the machine shop put everything together. After
perusing various offerings from Amazon, Home Depot, and other retailers, we feel a reasonable
estimate for the enclosure is roughly $50 and $30, respectively. After speaking to Machine Shop
personnel, we were informed that our project should be doable within a couple business days, so
to be safe, we will estimate on the high side and calculate Machine Shop hours needed to be 4
hours a day for a whole week, or 20 hours total. Considering an hourly rate for the shop to be
$60 (assuming comparability to the Physics Machine Shop since we are unable to find figures for
the ECE shop), this would come out to:

$50 + $30 + ($60/ℎ𝑜𝑢𝑟)(20 ℎ𝑜𝑢𝑟𝑠) = $1, 280

Senior Design Lab Resources:
In addition to the parts and resources we have listed above, we used the parts and equipment
available to us at no cost in the senior design lab. This includes (but is not limited to) soldering
equipment, oscilloscopes, multimeters, and commonplace resistors and capacitors as needed.

3.1.4 Total Estimated Cost

All things considered, the total estimated cost for this project is shown below.

Cost

Parts $59.25

Labor $37,072.50

Machine Shop $1,280.00

TOTAL $38,411.75

16

3.2 Schedule

WEEK OF TASK TEAMMEMBER(S)

2/26/2024 Prepare for design review Everyone

Create firmware to connect ESP32 to Wi-Fi and set up
Google Cloud database

Roshan

Start PCB design + parts should begin arriving Everyone

3/4/2024 Simulate hardware subsystems and finalize PCB design Soham, Nicole

Determine layout, dimensions, and all other necessary
specifications for Machine Shop order

Soham, Nicole

Create firmware to connect ESP32 to Google Cloud
using HTTP connection

Roshan

Design 2 subsystems (step down and control unit),
PCB 1st wave will be missed

Everyone

3/11/2024 Spring Break

3/18/2024 Create the basic frontend design without the graphs for
the web app

Roshan

Breadboard power supply and control unit Soham, Nicole

Finish Designing PCB for Step Down and Control
Unit, PCB 2nd wave will be missed

Soham, Nicole

3/25/2024 Get notifications working on web app Roshan

Finish Designing Power Supply, Redesign Control Unit
Board

Soham, Nicole

Submit third wave PCB order Everyone

4/1/2024 Get graphs working for power outlet input Roshan

Submit improved fourth wave PCB order Everyone

4/8/2024 Get graphs working for load Roshan

Soldering and testing available PCBs Everyone

Debug Control Unit Soham, Nicole

4/15/2024 Mock demo Everyone

Resolder Control Unit, systematically step through the
design, going over each potential failure point and
fixing as best as possible

Everyone

17

4/22/2024 Final demo Everyone

Mock presentation Everyone

4/29/2024 Final presentation Everyone

Final report (due Wednesday) Everyone

4 Conclusion

4.1 Accomplishments

By the end of the project, we successfully got ¾ of the subsystems to work as intended when
looking at the requirements and verification table, and we got 2.5/3 of the high-level
requirements to work as well. Specifically, the step down, power supply, and database
subsystems all work. The only high-level requirement and subsystem that doesn’t work is the
control unit, specifically the ESP32. We will dive deeper into these issues in the Uncertainties
section next. With the step down subsystem, we were able to step the wall voltage down from
120V AC to 3.3V, and we were able to step the current down from 15A to roughly 75mA. With
the power supply subsystem, we were able to switch between wall powered and battery powered
modes, we were able to charge the battery to 80% to accomplish charging circuit protections, and
mathematically we are able to run the system for 10 hours on just battery power. Lastly, for the
database subsystem, we have the capability to store data into the database at least once every 10
seconds, we are able to display notifications when there’s disturbances within 5 seconds, and we
have graphs on the frontend that display voltage and current data. Overall, we believe that the
project was relatively successful, and we are very proud that the portions of the project that we
have a background in, which is power and software, worked.

4.2 Uncertainties

There’s 2 main uncertainties we had with our project: the control unit didn’t work and we
weren’t able to demo the website in person due to the Wi-Fi blocking Google Cloud connections.
Regarding the latter, we realized the Wi-Fi issue about a week prior to the final demo when we
tried to run the website at the ECE building. The backend server gave a timeout error when it
tried to get data from the database, which didn’t happen when we worked on a different Wi-Fi
network. To look further into this, we contacted professors in the CS department such as
Professor Alawini to get an understanding of what could cause the issue, which is when we were
told that IllinoisNet Wi-Fi blocks the connection to Google Cloud. To work around this issue, we
took a video of our website working to showcase the functionality during the demo.

For the control unit, when we powered our PCB, housing both the Step Down Subsystem and
Control Unit, using an external lab power supply, we hit a snag. Trying to load code to the

18

ESP32 by connecting the D+ and D- connections of a USB from our laptops failed. Our device
drivers didn't recognize any connected device. Realizing this issue just one day before the mock
demo (a week before the final demo), we tried reseating the microcontroller on its surface mount
contact pads. We thought maybe incorrect soldering, possibly due to our first-time use of a
stencil and oven, was the problem. But even after doing that, the behavior of our control unit
stayed the same. We then turned to the development board, hoping to establish a connection via
D+ and D-. While we knew this wouldn't give us full PCB functionality, we hoped it would let us
complete the project. Unfortunately, our efforts were in vain. We couldn't load code to the
development ESP32 using only the D+ and D- pins. We tried other troubleshooting steps like
adding an RC filter and using different cables and development boards, but nothing worked. In
the end, we could only load code and send data to the database when connecting via the
micro-USB connection on the development board. Looking back, we think having a micro-USB
connection point on our PCB explicitly designed to power and program the microcontroller
would have helped us understand the issue better.

4.3 Future Work

Now that we’ve finished our final project, there’s plenty of future improvements that we
identified that we could’ve made with more time or other groups in the future can make on our
work. When looking at the website, we know that it’s not visually appealing enough to release it
to the public. For the project, we focused on functionality, so the appearance of the website was
sacrificed. We know that this is important for users since people are more likely to use something
that catches their eye. Additionally, we would like to implement security features for the website
before releasing it to the public since there’s a lot of data that is measured in this project that
should be encrypted.

For the control board, we would need to completely redesign it. Specifically, we would add
probe points for better and easier testing, we could potentially look into using a different
microcontroller for easier use, and we would utilize through hole mounts for SMT ICs so that it’s
easier to solder and debug. The pads on our PCBs were extremely small since the components
weren’t through hole mounted, which could’ve definitely resulted in our control unit PCB not
working properly.

Lastly, we would look to replace the regulator that we used or add a heat dissipation system. In
our design, the regulator heated up very quickly since we didn’t use a bigger regulator or add in
heat dissipation, which could very easily lead to issues in our PCB if we left it on for too long.
Since we caught this issue earlier, we were able to work around it for now, but it’s something that
should be dealt with in the future.

19

4.4 Ethical and Safety Considerations

In terms of ethics, we foresaw a few ethical issues that could arise during the development of our
project as well as the misuse of our prototype. For example, during the development of our
project, we could have poor teamwork, alienate group members, or stop participating in the
project. Additionally, we could copy the designs of other submeters or power quality monitors on
the market. In terms of the misuse of our prototype, the data that is collected is private data for
the users and must be protected. There are people that could try to access other people’s data,
which is a violation of laws and regulations.

Our group committed to maintaining the highest ethical standards throughout the course of this
project by following the IEEE Code of Ethics, such as upholding the highest standards of
integrity, treating everyone equally and with respect, and making sure that the Code of Ethics is
followed by the entire group. We avoided these ethical breaches and followed the
aforementioned Code of Ethics through the following:

1. We set up a group chat through iMessage where we consistently communicated our
schedules, when we could work, and what we planned to work on. This allowed us to
split the workload well and finish our work on time while ensuring high quality. We also
set up a Google Drive folder for all our ECE 445 documents so that we could stay
organized and stay on the same page.

2. We held each other accountable to make sure all of the work we do is of high quality and
is original. If questions or uncertainties arose, we made sure to contact and consult with
experts in the field such as Surya (our TA), Jason (another TA), Professors, Machine
Shop Technicians, or our mentor Mr. Jack Blevins.

3. Since this project isn’t planned to be released to the public, we didn’t address data
privacy since having secure encryption could take months to create. However, if we were
to sell the product, we would have all data be encrypted and password protected so that
there is data privacy.

In regards to safety, we identified lithium-ion batteries and working with wall voltage to be the 2
main safety concerns. We worked around this in many ways. First, we used LiFePo batteries
since the chemistry in the battery is less likely to cause a fire or other safety hazards. Second, we
marked the device as a potential safety hazard due to high voltage. Lastly, we used adequate lab
safety equipment while working in the lab such as safety goggles to protect ourselves.

20

References
“1910.137 Electrical Protective Equipment Standards.” Occupational Safety and Health

Administration, 11 Apr. 2014,
https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.137.

“18650 Batteries - High Quality Rechargeable Lithium-Ion Batteries.” 18650BatteryStore.Com,
https://www.18650batterystore.com/collections/18650-batteries?pf_rs2_discharge_curren
t_amps=4.90%3A4.90. Accessed 8 Feb. 2024.

“1MHz Step-Up PWM Converter with 2A Switch Current.” Perfect Microelectronics Co., Ltd.
FP6291, https://file2.dzsc.com/product/17/08/05/1125865_100842357.pdf. Accessed 8
Feb. 2024.

Communications, Grainger Engineering Office of Marketing and. “Machine Shop.”
Physics.illinois.edu, physics.illinois.edu/research/facilities/machine-shop
#:~:text=Prices%20Professional%20products%20%2460.00%2Fhour%20plus%20cost%
20of%20materials. Accessed 22 Feb. 2024.

Grainger Engineering Office of Marketing and Communications. “Salary Averages.”
Ece.illinois.edu, ece.illinois.edu/admissions/why-ece/salary-averages. Accessed 22 Feb.
2024.

“High Efficiency 1.2MHz 2A Step Up Converter.” AEROSEMI,
https://www.olimex.com/Products/Breadboarding/BB-PWR-3608/resources/MT3608.pdf.
Accessed 8 Feb. 2024.

“How to Build a 18650 Lithium Battery Charger and Booster Module.” Circuit Digest -
Electronics Engineering News, Latest Products, Articles and Projects,
https://circuitdigest.com/comment/31902#comment-31902. Accessed 8 Feb. 2024.

JKElectronics. “Esp32 Max Current Output - General Electronics - Arduino Forum.” Arduino
Forum, Arduino Forum, 6 Nov. 2022,
https://forum.arduino.cc/t/esp32-max-current-output/1050205.

Staff, Editorial. “Insight Into ESP32 Sleep Modes & Their Power Consumption.” Last Minute
Engineers, Last Minute Engineers, 23 Dec. 2018,
https://lastminuteengineers.com/esp32-sleep-modes-power-consumption/#:~:text=ESP32
%20Active%20Mode,-Normal%20mode%20is&text=Since%20everything%20is%20alw
ays%20active,and%20Bluetooth%20are%20used%20simultaneously.

21

Appendices
Appendix A - Figures

Figure 1.1: Visual Aid

Figure 1.2: Project Enclosure

22

Figure 2: High Level Block Diagram

Figure 3.1: Power Supply 5V Converter Circuit Diagram

23

Figure 3.2: Power Supply Battery Charger and 3.3V Regulator Circuit Diagram

24

Figure 4: Step Down Subsystem Circuit Diagram

Figure 5.1: Control Unit Subsystem Circuit Diagram

25

Figure 5.2: ADE 7953 Block Diagram

Figure 5.3: ADE 9430 Block Diagram

26

Figure 6.1: Database Stored Data Format

Figure 6.2: Database Flowchart

27

Figure 7.1: 4 Major Waveforms: Wall voltage (yellow), Step Down Unit voltage (purple),
Wall current under no load (blue), Power Supply DC output voltage (green)

28

Figure 7.2: Battery charging limited to 80% state-of-charge

29

Appendix B - Tables

Requirements Verification

Convert 120 V AC to 3.3 V DC and deliver to
Control Unit

● Use a multimeter to probe test points
on Power Supply, supplying
intermediate voltages (testing 120 V
AC last) to ensure safety.

Switch between wall powered and
self-powered modes in the event of a blackout
without loss of operation

● Simulate a blackout by removing wall
power and validate that 3.3 V is still
being delivered to some load at the
output of the supply

In self-powered mode, system should run for
>10 hours

● Fully charge battery and run system
powering an analog bit adder counter
circuit. Verify that the battery operates
for more than 10 hours.

Charging circuit protections: charging battery
to 80%, at rated current maximum

● Probe Battery voltage and current
every 15 minutes when charging from
low voltage (<4 V). Verify voltage
does not exceed 80% of rated value.

● Optionally integrate fuel gauge IC
onto PCB to display battery
percentage.

Table 1.1: Power Supply RV Table

Requirements Verification

Step Down Voltage from 120 V RMS to <3.4
V since the ICs cannot handle a voltage
higher than that

● Send an AC waveform smaller than
the wall voltage through the divider
with some load across the resistor and
observe that it steps down to 3.4 V ±
2%

Step Down Current from <15 A to ~<75 mA ● Send an AC waveform smaller than
the wall voltage through the
transformer with max load of 15 A
across the secondary and observe that
the current steps down to 75 mA ±5%

Table 1.2: Step Down Subsystem RV Table

30

Requirements Verification

Original Voltages and Currents (pre Step
Down) should be sent to the ESP32 from the
measurement ICs and be accurate to ± 5%

● Send a small AC waveform directly to
the ICs and record the data directly to
On-Chip Memory as a calibration test.

● Give 3.3 V to VDD and Vin for the
ICs and ESP32 respectively and use
the wall as a source testing the Step
down and Control unit subsystem at
the same time, under no load and low
load condition

Table 1.3: Control Unit Subsystem RV Table

Requirements Verification

The database must store new data once every
10 seconds from the ESP32.

● Set up ESP32 Wi-Fi connection and
establish HTTP connection with
Google Cloud database. Set the ESP32
at least 50 meters away from the
laptop running the database.

● Write firmware code in ESP32 to send
fake time (Unix epoch time), voltage,
and current data once every 10
seconds for 5 minutes. This comes out
to a total of 30 sets of data being sent.
We would send fake data at first just
for testing purposes to verify that we
can satisfy this requirement.

● Use “SELECT *” statement in Google
Cloud terminal to see all the data. For
success, we would need at least 29/30
data sets to be correctly present in the
database.

The system must show a notification on the
frontend when there’s any disturbances, such
as voltage fluctuations outside of a set
tolerance by 5%, or power failures. This
notification must appear within 5 seconds.

● Write firmware code in ESP32 to send
fake time (Unix epoch time), voltage,
and current data with the voltage set at
5% above a set tolerance, then the
voltage set at 5% below a set
tolerance, then repeated for the
current. We are using fake data to
simulate data for verification
purposes.

● We will then repeat the prior step but

31

set the voltage to 0 V to simulate a
power failure.

● After sending the data from the
ESP32, we will then start a stopwatch
to count the time it takes for the
notification to show up.

● For each of the 5 instances, we must
see a notification pop up on the
frontend of the web application within
5 seconds of sending the data from the
ESP32.

The frontend must have a graph that shows
voltage and current data that is refreshed at
least once per minute.

● Write firmware code in ESP32 to send
fake time (Unix epoch time), voltage,
and current data that is the exact same
for 55 seconds. We are using fake data
to simulate data for verification
purposes.

● Then, we will change the data that is
sent from the ESP32 for the next 55
seconds.

● For every 1 minute, we must see the
graph changing to reflect the correct
data.

Table 1.4: Database Subsystem RV Table

