
Antweight Battlebot Design
Document

Deepika Agrawal
Megha Esturi

Ishanvi Lakhani

Final Report for ECE 445, Senior Design, Fall 2024
TA: Surya Vasanth

10th December 2024
Project No. 37

Abstract
This project presents the design and development of an antweight battle bot divided into four
primary subsystems: power, control, drivetrain, and a destabilizing ramp. The power subsystem
utilizes a 9V battery with step-down converters to supply stable voltage to the motors, motor
drivers, and ESP-32 microcontroller. The control subsystem enables wireless operation via
Wi-Fi, ensuring precise communication between the bot and a user’s PC. The drivetrain
subsystem facilitates smooth mobility through carefully calibrated motors and motor drivers.
Initially conceived as a flipper arm, the destabilizing subsystem was refined into a steep ramp
capable of flipping or destabilizing opponent bots upon impact, providing a robust and simplified
solution. Throughout the semester, each subsystem was optimized to meet functional
requirements, resulting in reliable voltage regulation, enhanced communication responsiveness,
and effective destabilization performance. This cohesive integration ensures the bot achieves its
intended functionality and competitive goals.

Contents
1. Introduction..4
2. Design..5

2.2.1 Block Diagram.. 5
2.2.1 Design Procedure.. 5
2.2.2 Design Details...6

2.2.2.1 Hardware..6
2.2.2.2 Software... 9

2.2.3 Verification..12
2.2.3.1 DriveTrain Subsystem..12
2.2.3.2 Power Subsystem...13
2.2.3.3 Destabilizing Subsystem...14
2.2.3.4 Control Subsystem...14

3. Cost..15
3.1 Parts..16
3.2 Labor..19

4. Conclusion.. 19
4.1 Accomplishments...19
4.2 Uncertainties.. 20
4.3 Ethical Considerations... 20
4.4 Future Work... 20

5. References...21
6. Appendix...22

Schematic...22
Arduino Code...23
Website Code... 28
Requirements and Verification Tables... 33

1. Introduction
Our passion for robotics inspired us to take on the challenge of designing a battlebot, combining
creativity and technical skills to build a competitive, functional robot. This project aims to create
a remote controlled battlebot capable of competing in an arena while adhering to strict
competition guidelines. The bot is designed to be agile, durable, and equipped with offensive and
defensive mechanisms. We designed and built a battlebot entirely from PLA plastic, weighing
under 2 pounds. The bot connects wirelessly to a PC via Wi-Fi for seamless control. Its defense
mechanism features a ramp at the front, designed to destabilize and potentially flip opponent bots
during combat. The bot is highly maneuverable, capable of navigating forward, backward, and
turning left or right with precision. By focusing on lightweight construction, strategic
functionality, and reliable connectivity, our battlebot embodies agility and innovation, making it
ready for competitive performance.

2. Design

2.2.1 Block Diagram

Figure 1. Block diagram containing each subsystem of the battle bot.

2.2.1 Design Procedure

Our design decisions for each subsystem were guided by functionality, stability, and efficiency.

For the drivetrain subsystem, we initially started with a two-wheel design, placing the wheels at
the back of the bot. During testing, we discovered that this configuration left the bot unbalanced
and unable to carry its weight effectively. To address this, we added two additional wheels,
creating a four-wheel design that significantly improved the bot’s stability and ensured that it
could handle its weight without compromising mobility.

The destabilizing subsystem was originally designed to include a flipper arm capable of lifting
and flipping opponent bots. However, we realized that generating sufficient torque for this
functionality would require a stronger motor, which would exceed the bot's 2 lb weight limit. As
a result, we changed our design to include a steep ramp attached to the bot. This ramp takes
advantage of the opponent bot’s speed, causing it to destabilize or flip when it contacts the ramp.

This solution not only simplifies the design but also keeps it lightweight and within the weight
constraint while achieving a similar strategic outcome.

For the power subsystem, we selected a 9V battery as our power source due to its affordability
and availability. The design includes multiple step-down converters to regulate the voltage for
different components. For instance, the ESP-32 requires a 3.3V input, while the motor driver can
take up to 9V. Stepping down the voltage in stages—from 9V to 7.4V, then to 5.4V, and finally to
3.3V—minimizes heat generation and prevents the chips from overheating. For example, directly
stepping down from 7.4V to 3.3V could result in significant heat, potentially exceeding the
temperature threshold of the chip. This staged approach ensures efficient and safe power delivery
to all components.

Finally, for the control subsystem, we implemented a client-server Wi-Fi communication system.
The PC acts as the client, sending control signals to the ESP-32, which is connected via Wi-Fi.
This setup allows for precise, wireless control of the bot, ensuring responsiveness and ease of
operation during use.

By exploring alternative approaches and iterating on our design, we developed a system that
balances performance, stability, and simplicity while staying within project constraints.

2.2.2 Design Details

2.2.2.1 Hardware

The hardware design incorporates multiple step-down converters and an L298N motor driver.
For the power subsystem, we chose a 9V battery. The design features step-down converters to
regulate the voltage for various components. For example, the ESP-32 requires a 3.3V input,
while the motor driver can handle up to 9V. Voltage is stepped down in stages—from 9V to 7.4V,
then to 5.4V, and finally to 3.3V. This staged approach reduces heat generation and helps prevent
the chips from overheating. Stepping down directly from 7.4V to 3.3V could generate excessive
heat, potentially surpassing the chip's temperature tolerance.

We decided to use the AZ1117D-ADJ chip since it was easily available in the Electronic Services
Shop (E-shop). Looking at the datasheet, this is the set of equations we needed to follow to step
down to the voltage we wanted:

Figure 2. The schematic of a voltage converter from the AZ1117C datasheet. [2]

Using equation Vout = Vref * (1+R2/R1) + Iadj*R2

Vref was typically 1.25V as per the datasheet. Iadj was negligible so we removed that term. We
kept R1 fixed as 1000 ohms as these resistors were also available at the E-shop)

Therefore, the equation essentially became Vout = 1.25(1+R2/1000) + negligible

Therefore R2 = (Vout/1.25 - 1) * 1000

The following is converting from 9V to 7.4V, so R2 = (7.4/1.25 - 1) * 1000 = 6200 ohms

Figure 3. Our voltage converter schematic for 9V to 7.4V

The following is converting from 7.4V to 5.4V, so R2 = (5.4/1.25 - 1) * 1000 = 3320 ohms

Figure 3. Our voltage converter schematic for 7.4V to 5.4V

The following is converting from 5.4V to 3.3V, so R2 = (3.3/1.25 - 1) * 1000 = 1640 ohms

Figure 3. Our voltage converter schematic for 5.4V to 3.3V

Finally, for the L298N motor driver, we found the application circuit on the datasheet and used it
to make our L298N motor driver bridge. We had 2 motor drivers each controlling 2 wheels. [6]

Figure 4. The schematic for our L298n motor drivers.

Additionally, we built a programming circuit for the ESP-32, enabling us to boot the ESP-32 and
upload code to it. To achieve this, we followed the guidelines on the ECE 445 wiki page.

Figure 5. The schematic of of our ESP32

2.2.2.2 Software

The main software platforms used were an Arduino IDE and VS Code. The Arduino code,
written in C for the ESP-32 microcontroller, implements the wireless control system and motor
management for the battle bot.

The ESP-32 is configured to connect to a Wi-Fi network for communication with a PC, which
we used a hotspot to do. An asynchronous web server handles the commands sent over
WebSocket, ensuring low-latency control.

The software is structured into the following key modules:
1. Wi-Fi Connectivity [4]

The ESP-32 operates in station mode, connecting to a specific Wi-Fi network using the
provided SSID and password.

Figure 6. The code that allows us to connect to wifi with the ESP-32

2. Motor Control [1]
For the motor control, we have six GPIO pins that control the four motors via an
H-bridge motor driver. Two pins, per motor set, control each motor’s direction, while an
enable pin regulates the speed using a pulse-width modulation (PWM) signal

3. Commands and Actions [1]
Commands are received via WebSocket and interpreted as single characters representing
actions:

● 'U': Accelerate forward
● 'D': Accelerate backward
● 'L': Turn left
● 'R': Turn right
● 'S': Immediate stop

Each command triggers the corresponding motor control function, ensuring smooth
transitions and precise movements.

The acceleration function occurs when the up arrow is pressed. In order to accelerate
forward function, we needed all the wheels to have a consistent high to low output. We
also made it so that the more the character is pressed, the PWM increases, allowing the
bot to go faster.

Figure 7. The code that shows the function for forwards acceleration

The accelerate backward is also the same as the accelerate forward, however, the motor
pin outputs were revered for high and low outputs.

Figure 8. The code that shows the function for backwards acceleration

The turn right and turn left are essentially the same, but they allow for only one set of
wheels, either right or left, to run at a time. This includes making sure that only one set of
wheels and one pin in that set is put as high output.

Figure 9. The code that shows the function for left and right acceleration

The immediate stop function was put in to make sure that the bot would be able to not hit
walls if it was in line to hit one. For this function, all motor outputs needed to be low to
turn off motors.

Figure 10. The code that shows the function for stopping

4. Failsafe Mechanism

A failsafe mechanism ensures that the motors all stop if no command is received within a
1-second timeout. This makes it so that no motions that were not intended would stop
occurring so a new command can be passed in. The system also regularly checks the
Wi-Fi connection, automatically reconnecting if the connection drops.

On the client side, we created a website to interface with the ESP-32 microcontroller. The bot
controller is a web-based interface designed to send directional commands to an ESP-32
microcontroller via WebSocket communication. Key features include:

1. Responsive Interface + Visual Feedback
We created a visually appealing layout styled with CSS, featuring a gradient background
and interactive buttons for directional controls. When a user presses a button, the
appearance of the button changes, providing immediate user feedback and visual
confirmation.

2. WebSocket Communication [3]
The WebSocket establishes a persistent connection with the ESP-32, supporting real-time
command transmission. It also automatically attempts to reconnect in case of a
connection loss.

3. Command Mapping
Since there are multiple commands, buttons trigger specific commands to be sent to the
arduino code, which then processes what to do on its side. The keyboard support enables
intuitive control using arrow keys and the ‘S’ key for Stop.

4. Feedback Mechanisms
By incorporating logging and error messages, we were able to troubleshoot and debug
easier.

Figure 11. The website that acts as a remote control for our battle bot

The software design complements the hardware subsystem, allowing for real-time,
wireless operation of the battle bot.

2.2.3 Verification
For testing the completed project and its major subsystems, we evaluated each subsystem to
ensure it met the design goals. Below are the testing methodologies, data, and results for each
subsystem.

2.2.3.1 DriveTrain Subsystem

The drivetrain subsystem had two primary requirements:

1. The motors and motor drivers must operate efficiently with a 9V battery.
2. The wheels must enable the robot to achieve an RPM of approximately 50–460.

To test the first requirement, we used a multimeter in the lab to measure the voltage across
various components under different operating conditions. We observed stable voltage levels
throughout the system, confirming that the motors, motor drivers, and other components
functioned efficiently with a 9V power supply.

To test the second requirement, we calculated the actual RPM of the motors by conducting a
speed test. The battlebot was made to travel a distance of 10 meters, and the time taken was
recorded. Using the wheel diameter of 48 mm (0.048 meters), we calculated the wheel's
circumference and applied the following formulas to derive the actual RPM:

Circumference= π × Diameter= π × 0.048m ≈ 0.1508m
Speed= Time / Distance

Rotations per Second = Circumference / Speed
RPM = Rotations per Second × 60

By applying these calculations to our recorded data, we compiled the following table comparing
the theoretical and actual RPM values:

Table 1. Theoretical vs. actual RPM values for our wheels

Weight Added Distance
(meters)

Time (sec) RPM
(Theoretical)

RPM (Actual)

None 10 22.1 450 180

1.8lbs 10 49.74 450 80

2.2.3.2 Power Subsystem

For the power subsystem, the primary requirement was:

1. The 9V battery must power the bot effectively for 3–5 minutes, which we estimated to be
the typical duration of a battle.

To verify this, we conducted a test where the battlebot was run continuously, and we monitored
the voltage supplied by the battery over time. Using a multimeter, we measured the voltage drop
during operation and observed a specific pattern as the battery discharged. A critical voltage
threshold of 6V was set, as this is the ideal voltage required for the motors to function optimally.
The goal was to ensure that the battery could maintain a voltage above this threshold for the
entire duration of the expected battle time.

Figure 12. A graph showing the discharge of our 9V battery over a period of 25 minutes

From the data recorded during testing, the battery demonstrated the ability to supply at least 6V
for a sufficient period, confirming its suitability for the competition. The graph of voltage over
time clearly shows that the power subsystem will sustain the bot's performance during a 3–5
minute match, meeting the requirements effectively.

2.2.3.3 Destabilizing Subsystem

For the destabilizing subsystem, the primary requirement was:

1. Generate sufficient destabilizing force to unbalance and potentially flip the opponent
robot.

This was critical to ensure the bot could effectively disrupt the movement of opposing bots
during a match.

To test this requirement, we experimented with various objects, including a Lego car, our ECE
110 car, and other objects weighing 2 lbs or slightly more. As demonstrated in our final video
submission, the ramp consistently destabilized these objects upon contact, causing them to lose
balance or skid. The results confirmed that the flipper subsystem successfully meets the
requirement of destabilizing objects weighing 2 lbs or more, making it an effective part of the
bot's design.

2.2.3.4 Control Subsystem

1. The battlebot should stop operating if the Wi-Fi connection is lost as a safety precaution
(kill switch).

2. The battlebot should be able to receive commands and execute them up to a distance of
8.48 feet.

3. The latency should be between 50–100 tenths of a second for responsive control.

To meet the first requirement, we implemented a stop button that allows the bot to halt
operations manually without losing Wi-Fi connection. Additionally, we tested the system by
disconnecting the bot from Wi-Fi, which resulted in the bot immediately ceasing movement. This
confirmed that the kill switch worked effectively as a safety feature.

For the second requirement, the minimum communication distance was calculated to be 8.48
feet, based on the arena size of 6 feet by 6 feet. To ensure reliability, we tested the bot's
communication capability up to 10 meters. The bot successfully received and executed
commands at this distance, demonstrating that it exceeded the required range. This functionality
was also captured in our final video submission.

Finally, for the third requirement, we measured command latency by printing it on the web
interface. For each command (straight, left, right, and back), we recorded latency values six
times, collecting 24 data points in total. The average latency was calculated to be approximately
58 tenths of a second, which is well within the required range of 50–100 tenths of a second.
These results confirm that the control subsystem meets all specified requirements.

Figure 13. A graphical representation of the latencies measured between various different PC commands
and movement of the battle bot

3. Cost
For this project, we used the $150 budget provided by the ECE department. However, due to
multiple design changes, we purchased additional parts out-of-pocket. Electronics components

were obtained free of charge from the Eshop, and the metal wheel connectors were sourced at no
cost from the Machine shop.

If the project were to be commercially viable, bulk-purchasing parts could significantly reduce
costs. For example, components like motors and connectors, if bought in bulk, could lower the
per-unit cost. This could reduce the overall production cost, making the design more scalable for
mass production. By estimating costs in both a project-specific and commercial context, we
gained insights into the economic feasibility of the design.

3.1 Parts

Table 2. A table showing the cost breakdown of all the parts we ordered

Part Quantity Manufacturer Cost Per ($) Cost Total ($)

Connectors 1 Amazon 5.98 5.98

USB Uart 1 Amazon 9.78 9.78

Resistor - 332
ohms

(311-332LRCT-N
D)

2 DigiKey 0.10 0.20

Resistor - 360
ohms

(RMCF1206JT36
0RCT-ND)

2 DigiKey 0.10 0.20

Resistor 324
Kohms

(311-324KCRCT-
ND)

10 DigiKey 0.02 0.15

Capacitor - 4.7pF
(311-1624-6-ND)

10 DigiKey 0.03 0.26

Step Down
Convertor

(AZ1117D-ADJT
RE1DICT-ND)

10 DigiKey 0.41 4.06

22 uF Polarized
(493-6180-1-ND)

5 DigiKey 0.41 2.05

Step Down
Convertor

2 Digikey 0.54 1.08

220 ohm 2 DigiKey 1.06 2.12

1.64 kOhms
resistor

(2019-RN73R1E
TTP1641B25CT-

ND)

3 DigiKey 0.19 0.57

3.32 kOhms
(RMCF0402FT3

K32CT-ND)

3 DigiKey 0.09 0.27

4.9 kOhms
(541-3072-1-ND)

3 DigiKey 8.08 8.08

LED surface
mount

(UHD1110-FKA-
CL1A13R3Q1BB

QFM3CT-ND)

3 DigiKey 0.09 0.27

22 uF capacitor
(1276-1100-1ND)

3 DigiKey 0.11 0.33

ESP32-WROOM-
32E-4MB

(1965-ESP32-WR
OOM-32E-N4CT-

ND)

 2 DigiKey 2.50 5

Motor Chip
(497-1395-5-ND)

2 DigiKey 10.61 21.22

10 uF capacitor
(732-8295-1-ND)

5 DigiKey 0.19 0.95

Step Up
Convertor

(LT1615ES5#TR
PBFCT-ND)

5 DigiKey 0.10 0.50

Resistor - 1M
ohms

(311-1.00MLRCT
-ND)

5 DigiKey 0.10 0.50

Capacitor - 10 uF
(1276-1096-1-ND

50 DigiKey 0.04 1.75

)

Step Down
Convertor

(AZ1117D-ADJT
RE1DICT-ND)

10 DigiKey 0.36 3.64

Step Up
Convertor

(LT1615ES5#TR
PBFCT-ND)

10 DigiKey 7.69 76.90

Resistor - 100
Ohm

(311-100LRCT-N
D)

10 DigiKey 0.01 0.09

Resistor - 332
Ohms

(311-332LRCT-N
D)

5 DigiKey 0.10 0.50

Capacitor - 4.7 pF
(311-1624-1-ND)

10 DigiKey 0.03 0.29

PLA Filament
1.75mm

1 Amazon 13.99 13.99

Gear Motors 3 Amazon 17.59 52.77

9-Volt Battery
Duracell

5 Target 4.80 24.00

URGENEX
2000mAh 7.4 V
Li-ion Battery

1 Amazon 19.99 19.99

150Pcs 1N5819
Schottky Diode

1 Amazon 7.99 7.99

Century Spring
C-143

1 Amazon 6.66 6.66

2Pcs DC 12V
2000RPM GA12

N20 High
SpeedMotor

1 Amazon 13.99 13.99

4pcs BOJACK
L298N Motor DC

Dual H-Bridge
Motor Driver

1 Amazon 9.89 9.89

1 Pair Mecanum
Wheels

2 Amazon 9.89 19.78

[4-Pack]
MG996R 55g

Metal Gear
Torque Digital

Servo

1 Amazon 17.99 17.99

TOTAL $333.79

3.2 Labor

Each team member contributed an average 10 hours per week over a 10-week project timeline,
amounting to 100 hours per person. Using an ideal hourly salary of $22, the labor cost for each
partner was calculated using the formula: ideal salary (hourly rate) * actual hours spent * 2.5.
For one partner, the cost would be 22 * 100 * 2.5 = USD $5500. This for three partners is about
USD $16500.

4. Conclusion
To conclude, the design of our battle bot incorporates a lightweight, durable chassis, a reliable
drivetrain, and a ramp-style destabilizing mechanism, all powered by an efficient control and
power system. This project was a rewarding experience where we not only met our goals but also
had a lot of fun and learned valuable skills along the way.

4.1 Accomplishments

We successfully met all the high-level requirements for our bot, including maintaining a total
weight under 2 lbs, operating efficiently within a voltage range of 9 volts, and achieving a Wi-Fi
communication range of 8 to 25 feet with a response time of 50 to 100 tenths of a second.
Additionally, we fulfilled the specific requirements for each subsystem, ensuring stable and
effective performance across all aspects of the bot's operation.

4.2 Uncertainties

There are certain things within our project that did not work as we expected them to. For
example, we were not able to use our PCB for our final product, as we included voltage
converters on it, and they did not properly convert our battery voltage to different voltages.
Therefore, we had to use separate 3.3 volt batteries along with our 9V battery. We could have
worked on our PCB earlier to account for these issues. Additionally, our bot did not move as fast
as we would've liked due to the motors and wheels that we used. Our n20 gear motors moved
fast, but with the weight of the bot and the electrical component within, they were not able to
handle the weight and moved a lot slower. We also used Mecanum wheels which are made for
diagonal movement, which we did not have. This also slowed down the speed of our bot. If we
had used different wheels and bigger motors, the weight of our bot would not have hindered the
speed and movement of our bot.

4.3 Ethical Considerations

There are a few ethical considerations we kept in mind throughout this project. As stated in the
IEEE Code of Ethics, there are several areas of consideration when it comes to lab ethics. These
include safety, conflict avoidance, honesty, respect, privacy, and support. Our main goal was
prioritizing the safety and welfare for all participants and complying with safety standards to
minimize risks. Further, we used sustainable PLA plastic to print our design, and we avoided
potential risks while building our battlebot. We treated all team members and competitors with
respect, avoiding discrimination, harassment, and injury. We also ensured that we had the
necessary skills and sought help when needed in the lab, while making sure that all of our work
was our own, and that we did not unfairly plagiarize others. Finally, our project falls under the
IEEE Code of Ethics 1.2 as we created a project that integrates technologies that we can demo
and compete with [5].

4.4 Future Work

If we were to continue this project, there are a few things we would incorporate for improved
functionality and design. First, we would implement more commands into the wifi code so that
the bot can move in additional directions, such as diagonal. Another consideration would be
adding a boost function or even incorporating a sensor that avoids obstacles. In terms of the build
of the battle bot, we would want to create a stronger offense/defense mechanism. Currently, there
are a lot of ways an opponent can beat us, so we would want to have something that would allow
us to properly defend ourselves, as well as attack an opponent.

5. References
[1] Alan et al., “ESP32 with DC motor - control speed and direction,” Random Nerd Tutorials,
https://randomnerdtutorials.com/esp32-dc-motor-l298n-motor-driver-control-speed-direction/.

[2] AZ1117C, https://www.diodes.com/assets/Datasheets/AZ1117C.pdf.

[3] Droopyboy, “Arduino - websocket: Arduino Tutorial,” Arduino Forum,
https://forum.arduino.cc/t/arduino-websocket-arduino-tutorial/1282126/3.

[4] Duncan et al., “Installing ESP32 in Arduino IDE (windows, mac OS X, linux),” Random Nerd
Tutorials,
https://randomnerdtutorials.com/installing-the-esp32-board-in-arduino-ide-windows-instructions/.

[5] IEEE - IEEE Code of Ethics, https://www.ieee.org/about/corporate/governance/p7-8.html.

[6] L298_H_Bridge.PDF, https://www.sparkfun.com/datasheets/Robotics/L298_H_Bridge.pdf.

https://randomnerdtutorials.com/esp32-dc-motor-l298n-motor-driver-control-speed-direction/
https://www.diodes.com/assets/Datasheets/AZ1117C.pdf
https://forum.arduino.cc/t/arduino-websocket-arduino-tutorial/1282126/3
https://randomnerdtutorials.com/installing-the-esp32-board-in-arduino-ide-windows-instructions/
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.sparkfun.com/datasheets/Robotics/L298_H_Bridge.pdf

6. Appendix

Schematic

Figure 14. Our PCB design schematic

Arduino Code
#include <WiFi.h>

#include <ESPAsyncWebServer.h>

#include <AsyncTCP.h>

const char * ssid = "V30+_6936";
const char * password = "doraboots";
//// motor 1 pins
//int motor1Pin1 = 27;
//int motor1Pin2 = 26;
//int enable1Pin = 14;
//
//// motor 2 pins
int motor2Pin1 = 25;
int motor2Pin2 = 33;
int enable2Pin = 32;
// motor 1 pins
int motor1Pin1 = 18;
int motor1Pin2 = 16;
int enable1Pin = 17;
const int freq = 30000;
//const int pwmChannel1 = 0;
//const int pwmChannel2 = 1;
const int resolution = 8;
int dutyCycle = 0;
const int maxDutyCycle = 240; // capping voltage to motors at 6V
const int accelerationStep = 5;
const int decelerationStep = 5;
int currentDutyCycle = 0;
int turnDutyCycle = 280;
AsyncWebServer server(80);
AsyncWebSocket ws("/ws");
unsigned long lastCommandTime = 0; // Store last command timestamp
const unsigned long commandTimeout = 1000; // 1-second timeout
void onWebSocketEvent(AsyncWebSocket * server, AsyncWebSocketClient * client, AwsEventType
type, void * arg, uint8_t * data, size_t len);
void setup() {
 pinMode(motor1Pin1, OUTPUT);
 pinMode(motor1Pin2, OUTPUT);

 pinMode(motor2Pin1, OUTPUT);
 pinMode(motor2Pin2, OUTPUT);
 pinMode(enable1Pin, OUTPUT);
 pinMode(enable2Pin, OUTPUT);
 Serial.begin(115200);
 connectToWiFi();
 ws.onEvent(onWebSocketEvent);
 server.addHandler(& ws);
 server.begin();
 Serial.println("Started Server");
}
void connectToWiFi() {
 WiFi.mode(WIFI_STA); // Set ESP32 to Station mode
 WiFi.begin(ssid, password); // Connect to hotspot
 Serial.println("Connecting to WiFi...");
 while (WiFi.status() != WL_CONNECTED) {
 delay(1000);
 Serial.print(".");
 }
 Serial.println("\nConnected to WiFi!");
 Serial.println("ESP32 IP Address: " + WiFi.localIP().toString());
}
void accelerateForward() {
 digitalWrite(motor1Pin1, LOW);
 digitalWrite(motor1Pin2, HIGH);
 digitalWrite(motor2Pin1, LOW);
 digitalWrite(motor2Pin2, HIGH);
 if (currentDutyCycle < maxDutyCycle) {
 currentDutyCycle += accelerationStep;
 }
 digitalWrite(enable1Pin, currentDutyCycle);
 digitalWrite(enable2Pin, currentDutyCycle);
}
void accelerateBackward() {
 digitalWrite(motor1Pin1, HIGH);
 digitalWrite(motor1Pin2, LOW);
 digitalWrite(motor2Pin1, HIGH);
 digitalWrite(motor2Pin2, LOW);
 if (currentDutyCycle < maxDutyCycle) {
 currentDutyCycle += accelerationStep;
 }
 digitalWrite(enable1Pin, currentDutyCycle);
 digitalWrite(enable2Pin, currentDutyCycle);
}

void turnLeft() {
 digitalWrite(motor1Pin1, LOW);
 digitalWrite(motor1Pin2, HIGH);
 digitalWrite(motor2Pin1, LOW);
 digitalWrite(motor2Pin2, LOW);
 digitalWrite(enable1Pin, turnDutyCycle / 2);
 digitalWrite(enable2Pin, turnDutyCycle);
}
void turnRight() {
 digitalWrite(motor1Pin1, LOW);
 digitalWrite(motor1Pin2, LOW);
 digitalWrite(motor2Pin1, LOW);
 digitalWrite(motor2Pin2, HIGH);
 digitalWrite(enable1Pin, turnDutyCycle);
 digitalWrite(enable2Pin, turnDutyCycle / 2);
}
void decelerate() {
 if (currentDutyCycle > 0) {
 currentDutyCycle -= accelerationStep;
 }
 digitalWrite(motor1Pin1, LOW);
 digitalWrite(motor1Pin2, LOW);
 digitalWrite(motor2Pin1, LOW);
 digitalWrite(motor2Pin2, LOW);
 digitalWrite(enable1Pin, currentDutyCycle);
 digitalWrite(enable2Pin, currentDutyCycle);
}
void immediateStop() {
 Serial.println("Immediate stop triggered");
 currentDutyCycle = 0; // Reset duty cycle
 digitalWrite(motor1Pin1, LOW);
 digitalWrite(motor1Pin2, LOW);
 digitalWrite(motor2Pin1, LOW);
 digitalWrite(motor2Pin2, LOW);
 // turn off motors
 digitalWrite(enable1Pin, 0);
 digitalWrite(enable2Pin, 0);
}
char currentCommand = 'S'; // Default to 'S' for stop
void onWebSocketEvent(AsyncWebSocket * server, AsyncWebSocketClient * client, AwsEventType
type, void * arg, uint8_t * data, size_t len) {
 if (type == WS_EVT_CONNECT) {
 // check if client connected
 Serial.println("Client connected");

 } else if (type == WS_EVT_DISCONNECT) {
 Serial.println("Client disconnected");
 // check if client disconnected
 } else if (type == WS_EVT_DATA) {
 // if data is received
 if (len > 0) {
 char command = (char) data[0]; // Read only the first character --> for buffer management
 Serial.println("Received command: " + String(command));
 executeCommand();
 lastCommandTime = millis(); // Update last command timestamp
 currentCommand = command;
 }
 }
}
void executeCommand() {
 static char lastCommand = 'S'; // Store the last executed command
 if (currentCommand != lastCommand) {
 lastCommand = currentCommand; // Update the last executed command
 // Execute the function corresponding to the current command
 if (currentCommand == 'U') {
 accelerateForward();
 Serial.println(currentDutyCycle);
 } else if (currentCommand == 'D') {
 accelerateBackward();
 Serial.println(currentDutyCycle);
 } else if (currentCommand == 'L') {
 turnLeft();
 } else if (currentCommand == 'R') {
 turnRight();
 } else if (currentCommand == 'X') {
 decelerate();
 } else if (currentCommand == 'S') {
 immediateStop();
 }
 }
}
void failsafeCheck() {
 if (millis() - lastCommandTime > commandTimeout && currentCommand != 'S') {
 Serial.println("Failsafe triggered: Stopping motors");
 currentCommand = 'S'; // Set to stop
 currentDutyCycle = 0;
 // stop motors
 digitalWrite(enable1Pin, 0);
 digitalWrite(enable2Pin, 0);

 }
}
void loop() {
 ws.cleanupClients();
 failsafeCheck();
 // Non-blocking WiFi reconnection
 static unsigned long lastWiFiCheck = 0;
 if (millis() - lastWiFiCheck > 10000) { // Check every 10 seconds
 lastWiFiCheck = millis();
 if (WiFi.status() != WL_CONNECTED) {
 connectToWiFi();
 }
 }
}

Website Code

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>D.I.M BOT CONTROLLER</title>

 <style>

 body {

 font-family: Arial, sans-serif;

 margin: 0;

 padding: 0;

 min-height: 100vh;

 display: flex;

 flex-direction: column;

 align-items: center;

 background: linear-gradient(to bottom right, #e9d5ff, #fbcfe8,

#fecaca);

 }

 .container {

 text-align: center;

 padding: 2rem;

 }

 h1 {

 font-size: 2.25rem;

 font-weight: bold;

 margin-bottom: 0.5rem;

 animation: color-change 5s infinite;

 }

 .names {

 color: white;

 font-size: 1.125rem;

 }

 .controls {

 display: grid;

 grid-template-columns: repeat(3, 1fr);

 gap: 0.75rem;

 width: 14rem;

 }

 .button {

 width: 100%;

 padding: 1.25rem;

 border-radius: 0.5rem;

 font-size: 1.5rem;

 border: none;

 cursor: pointer;

 transition: background-color 0.2s;

 }

 .arrow {

 background-color: #6366f1;

 color: white;

 }

 .arrow:hover {

 background-color: #4f46e5;

 }

 .arrow.active {

 background-color: #fbbf24;

 color: #1f2937;

 }

 .stop {

 grid-column: 2;

 grid-row: 2;

 padding: 0.5rem;

 background-color: #ef4444;

 }

 .stop:hover {

 background-color: #dc2626;

 }

 @keyframes color-change {

 0% { color: #f472b6; }

 25% { color: #60a5fa; }

 50% { color: #34d399; }

 75% { color: #fbbf24; }

 100% { color: #f472b6; }

 }

 </style>

</head>

<body>

 <div class="container">

 <h1>D.I.M BOT CONTROLLER</h1>

 <p class="names">Ishanvi Lakhani, Megha Esturi, Deepika

Agrawal</p>

 </div>

 <div class="controls">

 <button class="button arrow" id="up">▲</button>

 <button class="button arrow" id="left">◄</button>

 <button class="button stop" id="stop">STOP</button>

 <button class="button arrow" id="right">►</button>

 <button class="button arrow" id="down">▼</button>

 </div>

 <script>

 let ws;

 // Function to connect to the WebSocket

 function connectWebSocket() {

 // ws = new WebSocket('ws://192.168.88.165/ws'); // DEV

BOARD

 ws = new WebSocket('ws://192.168.88.12/ws'); // ESP

CHIP 1

 ws.onopen = () => {

 console.log('Connected to WebSocket');

 };

 ws.onmessage = (event) => {

 console.log("Received message from ESP32: " + event.data);

 };

 ws.onerror = (error) => {

 console.error("WebSocket error:", error);

 };

 ws.onclose = (event) => {

 console.log("WebSocket closed, attempting to

reconnect...");

 setTimeout(connectWebSocket, 1000); // Retry connection

after 1 second

 };

 }

 // Initialize WebSocket connection

 connectWebSocket();

 // Function to send commands via WebSocket

 function sendCommand(command) {

 if (ws.readyState === WebSocket.OPEN) {

 ws.send(command);

 } else {

 console.log("WebSocket not connected. Command not sent:",

command);

 }

 }

 // Button click handlers

 const buttons = document.querySelectorAll('.button');

 buttons.forEach(button => {

 button.addEventListener('mousedown', () => {

 button.classList.add('active');

 const commandMap = {

 up: 'U',

 down: 'D',

 left: 'L',

 right: 'R',

 stop: 'S'

 };

 sendCommand(commandMap[button.id]);

 });

 button.addEventListener('mouseup', () =>

button.classList.remove('active'));

 button.addEventListener('mouseleave', () =>

button.classList.remove('active'));

 });

 // Keyboard event listeners in the desired format

 document.addEventListener('keydown', (event) => {

 console.log('Key pressed:', event.key);

 if (event.key === 'ArrowUp') {

 sendCommand('U');

 } else if (event.key === 'ArrowDown') {

 sendCommand('D');

 } else if (event.key === 'ArrowLeft') {

 sendCommand('L');

 } else if (event.key === 'ArrowRight') {

 sendCommand('R');

 } else if (event.code === 'KeyS') {

 sendCommand('S');

 }

 });

 document.addEventListener('keyup', () => {

 buttons.forEach(button => button.classList.remove('active'));

 });

 </script>

</body>

</html>

Requirements and Verification Tables

DriveTrain Subsystem
Table 3. The requirements and verification table for our drivetrain subsystem

Requirements Verification

The motors and motor drivers must operate
efficiently with a 9V battery.

Measure the voltage supplied to the motor
driver and the motors. Verify that the voltage
is between 6 - 8.5V range during operation.

1. Attach a battery to the system
2. For every 5 minutes, check the voltage

difference for the motors by using
multimeter on the ends of the motors

3. For every 5 minutes, check the voltage
between the motor driver by using
multimeter on the ends of the motors

4. Confirm that the voltage across motors
is greater than 6V

5. Confirm that the voltage across the
motor driver is at least 5V

The wheels must enable the robot to move at
a sufficient speed, achieving an RPM of
approximately 50 - 460 .

Calculate the wheel's circumference using its
diameter, then find the theoretical speed by
multiplying the circumference by the motor's
RPM and converting to meters per second.
Finally, divide the desired travel distance by
the speed to estimate the time required.

1. Find distance travelled by the wheels
in one rotation (circumference)

2. Divide distance needed to be travelled
(10m) with the distance covered by
one rotation to find number of
rotations required to cover distance

3. Record a video to find how many
seconds it takes to get that many
rotations. Find the speed of the wheels
without any weight being added

4. Add the body of the bot which is about
1.2lbs.

5. Run the bot for a distance of 10m and
find out how many seconds it takes to
cover the distance

6. Find the speed and RPM of the bot

Defense Subsystem
Table 4. The requirements and verification table for our defense subsystem

Requirements Verification

Destabilizing Force: The should generate
enough force to destabilize the opponent
robot.

Place a weight equivalent to the opponent
robot on one side of the battle bot. Make the
battle bot run into the opponent and see if it
gets destabilized or flipped.

1. Gather items that can roll, such as duct
tape, water bottle, or another car

2. Make sure at least one item is around
2 lbs

3. Roll items at different speeds and
check if item is destabilized or gets
flipped

Power Subsystem
Table 5. The requirements and verification table for our power subsystem

Requirements Verification

The subsystem must include a 9V battery to
power the bot for about 3-5 minutes which is
what we expect the duration of the battle to
be.

Test the battlebot until it gets to 6V (voltage at
which circuit is not useful) by keeping the
power on and making the bot run around for
the duration of the time and make sure it
doesn’t power down.

1. Get a new battery
2. Connect battery to the circuitry
3. Run the bot constantly
4. Stop every 3 minutes
5. Use multimeter to record the voltage

across the battery
6. Graph the points

Control Subsystem
Table 6. The requirements and verification table for our control subsystem

Requirements Verification

The latency should be between 50-100 tenths
of a second for responsive control.

Measure the time between a button being
pressed and the command being relayed. Test
multiple times with multiple commands to get
average latency across operation.

1. Use stopwatch on phone
2. Click on a singular command (up,

down, left, right)
3. Start timer when clicked
4. When movement of the wheels is

noticed, immediately stop timer
5. Mark time taken to move (use lap

feature)

The battlebot should stop operating if WIFI
connection is lost as a safety precaution (kill
switch)

Turn off wifi, and observe if the battle bot
stops operating

1. Turn on bot
2. Constantly run motors
3. Remove wifi connection
4. Visually check if the motors have

stopped

The battlebot should be able to receive
commands and execute them up to a distance
of at least 8.48ft

Put the battlebot at incremental distances up
to 10ft from the PC and check the operational
condition.

1. Connect the setup of the battlebot
2. Move bot around 9 feet away

a. If bot still runs, the
requirement is met

b. Else, check incremental
distances to see the farthest the
signal goes

	1. Introduction
	2. Design
	2.2.1 Block Diagram
	2.2.1 Design Procedure
	2.2.2 Design Details
	2.2.2.1 Hardware
	2.2.2.2 Software

	2.2.3 Verification
	2.2.3.1 DriveTrain Subsystem
	2.2.3.2 Power Subsystem
	2.2.3.3 Destabilizing Subsystem
	2.2.3.4 Control Subsystem

	3. Cost
	3.1 Parts
	3.2 Labor

	4. Conclusion
	4.1 Accomplishments
	4.2 Uncertainties
	4.3 Ethical Considerations
	4.4 Future Work

	5. References
	6. Appendix
	Schematic
	Arduino Code
	Website Code
	Requirements and Verification Tables

