


Abstract

The Smart Stick System (TripleS) is an innovative lacrosse performance tracking device that leverages 
advanced sensor technology and cloud integration to provide real time feedback on shot speed, accuracy, and 
stick form. The system includes three subsystems: LaxSense, a lightweight sensor module mounted on the stick; 
LaxHub, a central processing unit; and a React-based mobile application. TripleS achieved shot speed accuracy 
within ±10 mph, trajectory prediction within ±10 feet, and data transmission to the app in just 1.2 seconds. The 
modular design significantly helped  integrate components and assisted during development, while AWS 
architecture opened up possibilities for scalability and reliability. This end to end solution successfully solves a 
relatively unaddressed gap in lacrosse training by allowing players to monitor and improve their performance 
with actionable insights, meeting all project objectives and requirements.
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1. Introduction
The sport of Lacrosse has been missing the sophisticated performance analysis tools available in other athletic 
sports. Traditional training methods rely heavily on subjective observation, which is not very consistent. No 
tools such as those available for other sports like baseball, golf, soccer, etc are available to monitor and improve 
lacrosse form and accuracy, especially when a player is training alone. The lack of real-time, actual data focused 
feedback on metrics such as shot speed, accuracy, and stick form has meant that both novice and experienced 
players do not have a  reliable method to track their progress and refine their skills.

Our Smart Stick System (TripleS) addresses this critical need in the lacrosse community. By leveraging sensor 
technology and data analytics, TripleS provides players and coaches with insights into lacrosse performance. The 
system gives immediate feedback and analysis, meaning users can now make data informed choices to enhance 
their gameplay. The end product is very user friendly and fits a completely exclusive niche in the world of sports 
performance tracking [1], [4], [5]. 
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2. Outline

2.1 Introduction
Our TripleS solution integrates three critical subsystems—LaxSense, LaxHub, and the TripleS 

Application—to deliver a comprehensive and robust technological ecosystem, as shown in Figure 1. This 
integrated approach ensures seamless data collection, centralized management, and user-friendly interaction 
across our product.

 Figure 1: Initial Smart Stick System (Triple S) Block Diagram

Our initial TripleS solution emerged as an innovative proof-of-concept to transform lacrosse 

performance tracking through an integrated hardware-software ecosystem. The initial LaxHub prototype serves 

as our central processing unit, featuring a custom PCB, microcontroller, LCD screen, and camera with a 
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Bluetooth 5.0 module. As our first-generation design, this component was conceptualized to provide a compact, 

rechargeable central hub for data collection and intermediate processing, establishing a low-power Bluetooth 

connection with the LaxSense subsystem and facilitating cloud backend communication via a Kinesis client. 

The LaxSense subsystem represents our initial attempt to instrumentalize the lacrosse stick, integrating a 

microcontroller, accelerometer, and gyroscope to capture fundamental performance metrics. This early-stage 

design aimed to track critical parameters like shot speed, stick angle, and form through a compact, 

stick-mounted device powered by a modest battery system. Our TripleS application—the initial software 

interface—was developed as a React-based mobile platform leveraging AWS Amplify. This first-iteration design 

focuses on translating raw performance data from the microcontroller, stored in DynamoDB, into intuitive, 

actionable insights for athletes and coaches.

2.2 High-Level Requirements
1.​ Real-Time Performance Tracking: Deliver comprehensive swing feedback within 30 seconds, 

capturing shot speed, accuracy, and stick form with minimal latency from data collection to cloud 

transmission and application visualization. 

2.​ Precise Performance Metrics: Ensure ball speed measurement accuracy within ±10 mph and 

trajectory within 10 feet, enabling athletes to track and understand their skill progression with 

data-driven insights. 

3.​ Minimally Invasive Design: Engineer the LaxSense unit to weigh under 3 ounces, preserving stick 

mechanics and ensuring the device does not interfere with the player's natural movement and 

performance.

2.3 Changes to Block-Level Diagram
While our core system architecture remained fundamentally consistent, we strategically optimized our 

approach to meet our high-level requirements. We transitioned from Bluetooth to WiFi with MQTT clients, 

providing a more robust and scalable communication protocol between subsystems. The LaxSense and LaxHub 

modules remained structurally unchanged. However, we significantly enhanced the TripleS application's 

backend infrastructure by replacing Kinesis with AWS IoT Things and implementing certificate-based 

authentication for the ESP32 microcontroller. This shift to a pub/sub MQTT communication model 

streamlined our data transmission. The foundational technology stack—including DynamoDB, Lambda, 

React, Cognito, and Amplify—remained consistent, ensuring a seamless and secure application experience.
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3. Design

3.1 Design Procedure

3.1.1 LaxHub Subsystem

The LaxHub is a communication hub unit with other hardware supplementing it with user 

accessibility. The ESP32-S3 microcontroller is used as the central processing unit [2]. Though alternatives like 

NodeMCU ESP32-S and STM32 were similarly used, the ESP32-S3 seemed like the best choice due to its low 

power performance, integrated WiFi, and processing power perfectly suited to our performance tracking 

requirement.

We considered many battery options, including smaller Li-ion batteries and USB-powered options, 

ultimately selecting the B0143KH9KG 3.7V-2600mAh Battery Pack. We looked for an option with extended 

battery life, a consistent 500mA power supply, and rechargeability as these are essential factors for a portable 

performance tracking device.

We also compared multiple camera sensors, weighing options with higher resolutions and different form 

factors. The 2MP OV2640 Sensor was the perfect compromise as it offered a compact form factor while being 

able to capture 1080p video at 30 ±12 fps [3]. This balanced approach ensures performance tracking capabilities 

without unnecessarily bulky hardware.

Rather than defaulting to I2C screens or larger displays, we chose the ST7735R LCD with an SPI 

interface. This decision prioritized faster data transfer and the ability to quickly display critical performance 

information, since we required that players receive near-instantaneous feedback.

        

     Figure 2: LaxHub Unit                                                   Figure 3: LaxHub Circuit Unit
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Figure 2 above depicts the general design of our full LaxHub unit. The 3D printed shell encloses our 

PCB and components, leaving areas for user interaction. More specifically, the LCD screen, camera, and battery 

percentage LEDs show through, and the user can access power on/off buttons directly on the PCB. Figure 3 

shows a much more detailed version of our circuit schematic on the PCB. The bottom area shows a power 

system centered around the IP5306 chip which is configured to step up voltage as well as read battery 

percentage. SMD LEDs in this section display battery percentage, and if the system is powered on or off. The 

bottom right bumper connection along with one of the top left buttons is used as a method to program our 

ESP32. Finally, we include ample space to wire up the LCD screen and ESP32 microcontroller itself. 

Another essential component of LaxHub processing is to predict the trajectory of the ball that would 

be released from a similar pass. We were able to use the gyroscope and accelerometer to calculate the angular 

velocity and acceleration of the shot, mainly due to the pivoting nature of the lacrosse shot. Using linear release 

speed and angle measured using the gyro, we predicted the final trajectory with the trajectory equation. We use 

x = (v₀cosθ)t and y = (v₀sinθ)t - (1/2)gt² (1)

to correspondingly calculate the predicted distance and height trajectory values, and record/display them on the 

LaxHub unit.

3.1.2 LaxSense Subsystem 

The LaxSense subsystem is an engineered solution for capturing lacrosse performance metrics, designed 

to provide motion tracking without compromising stick dynamics. Our sensor selection process explored 

multiple tracking options before deciding on the MPU-9250 sensor unit [7]. Alternatives like the LSM9DS1 

and BMI160 were considered, but the MPU-9250 was best as it integrated a 3-axis accelerometer, gyroscope, and 

magnetometer in one. The configurable acceleration and angular velocity ranges (±2g to ±16g and ±250° to 

±2000°/s) gave exceptional flexibility in capturing nuanced stick throwing motions as every player may be 

different. 

We also looked through several microcontroller options on the LaxSense.. While options like 

NodeMCU ESP32-S and Adafruit Feather Huzzah ESP8266 again had similar features, the LOLIN D1 Mini 

with ESP-8266EX was  the optimal choice [6]. Its low power consumption, compact form factor, and WiFi 

capabilities aligned perfectly with our performance tracking objectives. The ability to maintain a stable 1 ± 0.5 

Mbps data transmission rate within a 10-meter range ensures real-time performance feedback without system 

latency. 
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Power management is another critical design consideration. We chose the 500mAh Li-ion battery after 

evaluating various power solutions, offering a balance between operational duration and minimal weight. This 

power system ensures reliable performance by delivering a consistent 3.7 ± 0.75 V output and supporting five 

hours of continuous operation. Finally, by maintaining a total weight under 3 ounces and utilizing low-power 

components, the LaxSense integrates seamlessly with the lacrosse stick, keeping the player's natural mechanics 

while providing performance tracking.

      

              Figure 4: LaxSense Unit                                                   Figure 5: LaxSense Circuit Unit

Figure 4 above shows a model of the 3D printed enclosure and PCB for the LaxSense subsystem. The shape of 

the bottom of the enclosure is carefully measured to act as a substitute for the rubber stop on the ends of 

Lacrosse sticks, meaning this entire unit can slot into a Lacrosse stick perfectly. Figure 3 shows the overall circuit 

design for the LaxSense. This subsystem is very simple as it only connects the ESP8266 module with the MPU 

sensor array and a battery connection at the left. The PCB is shaped in a smaller rectangular prism to fit in the 

Lacrosse stick including the battery. 

As part of development, we also analyzed accuracy of our sensor and LaxSense subsystem based on the 

following:

1.​ Gyroscope sensitivity: 131 LSB/(°/s) for ± 250 °/s full range scale

2.​ Gyroscope total root-mean-square noise 0.1 °/s

3.​ Typically a lacrosse shot takes approximately 0.2 seconds

4.​ Typically lacrosse shot speed ranges between 70-100 mph

Listed below are the steps and calculations to show the subsystem feasibility.

Step 1: Calculate the angular velocity of a typical shot, assuming a 90° rotation

ω = 90° / 0.2s = 450°/s
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Step 2: Calculate the gyroscope output for ω

450°/s * 131 LSB/(°/s) = 58,950 LSB

Step 3: Calculate the error due to gyroscope noise

Error ω = 0.1°/s * 0.2s = 0.02° 

Error in rotational measurement = 0.02° / 90° = 0.022%

Step 4.1: Translate rotational error to linear velocity error, assuming stick length of 1.016 m

v = ω * r

v = ω * r = (450°/s * π/180) * 1.016 m = 80.1 m/s (179 mph)

Step 4.2: Translate rotational error to linear velocity error in a realistic scenario

v = ω * r * transfer efficiency = (450°/s * π/180) * (1.016 * 0.75) * 0.60 = 36.1 m/s (80.7 mph)

Step 5. Calculate the error in linear velocity 

80.7 mph * 0.022% = 0.0178 mph

To make this calculation more robust, we can take additional errors into consideration:

Temperature drift: 0.75%

Calibration error: 1.25%

Step 6: Calculate the total error via the additional errors

Total error = √(0.022²+0.75²+1.25²) = 1.46%

80.7 mph * 1.46% = 1.18 mph error

The calculated error of 1.18 mph is within our high-level requirement of ±10 mph accuracy for shot speed 

measurement and the 80.7 mph falls within the 70-100 mph for a typical lacrosse shot. 

3.1.3 TripleS Subsystem

The TripleS application uses a modern cloud-native architecture with a React-based frontend deployed 

through AWS Amplify. While our initial design considered Amazon Kinesis for data streaming, we ultimately 

chose AWS IoT Core as a more suitable solution for our IoT device integration. This alternative approach uses 

MQTT protocol with pub/sub messaging, which provides several advantages over Kinesis streams. Instead of 

setting up Kinesis clients and managing stream shards, the ESP32 microcontroller connects directly to AWS IoT 

Core using X.509 certificates for secure authentication. This certification-based approach provides stronger 

security and simplified device management compared to managing Kinesis credentials. The MQTT pub/sub 

model allows for more efficient bi-directional communication between devices and the cloud, which is a good 

option for IoT applications. The AWS IoT Core implementation is largely better than Kinesis for our use case 
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because it has built-in device management, lower latency, and reduced complexity. While Kinesis would require 

managing shard limits and dealing with potential throttling issues, AWS IoT Core instead allows automatic 

scaling and dedicated IoT-optimized message routing. The pub/sub architecture eliminates the need to worry 

about streaming limits of 1MB per second or 1000 messages per second that would have constrained our Kinesis 

implementation. 

Data from the ESP32 is published to specific MQTT topics, which trigger Lambda functions through 

IoT Rules. These rules can directly route messages to DynamoDB, simplifying our architecture by removing the 

need for intermediate stream processing. User authentication still occurs through Amazon Cognito, and API 

Gateway handles REST HTTPS communication, but the data ingestion path is more streamlined. The AWS 

IoT Core architecture maintains our requirement for real-time performance tracking and analysis, easily 

achieving sub-30-second latency. The MQTT protocol is specifically designed for IoT devices, offering lower 

overhead and better reliability for intermittent connections compared to Kinesis streams. Additionally, the 

serverless components (Lambda and DynamoDB) remain unchanged, allowing for  efficient data processing. 

The new architecture also keeps data consistent by enforcing message formats through IoT Core's registry and 

rules engine, rather than relying on matching Lambda function implementations. This provides a more 

complete solution for ensuring data format consistency between device publishing and database storage. The 

overall design choice of AWS IoT Core over Kinesis streams results in a more efficient, secure, and scalable 

solution that better serves our IoT application needs while maintaining all core functionality requirements.

3.2 Design Details

The motion tracking system operates using an MPU9250 sensor on the LaxSense to calculate shot 

metrics. It begins with sensor initialization and calibration through our calibrate_imu() function, which takes 

100 samples from the accelerometer and gyroscope, calculates their offset values by averaging these samples, and 

stores the offsets for compensating raw sensor data later. For motion detection, the system monitors the 

acceleration magnitude, calculated as shown below.

acceleration =  - 9.81𝑎𝑐𝑐𝑒𝑙
𝑥
2 +  𝑎𝑐𝑐𝑒𝑙

𝑦
2 + 𝑎𝑐𝑐𝑒𝑙

𝑧
2

A shot is detected when this value exceeds the threshold of 15.0 m/s². When a shot is detected, the 

system calculates velocity using the following equations:

 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
𝑓𝑖𝑛𝑎𝑙

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
0
 +  𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛△𝑡

= 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦△𝑡
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Our calculate_trajectory() function then determines the parabolic path of the shot, using the launch 

angle, which is calculated below.

Θ =  𝑡𝑎𝑛−1(
𝑎𝑐𝑐𝑒𝑙

𝑦

𝑎𝑐𝑐𝑒𝑙
𝑥

)

 The function additionally calculated the trajectory equation, shown below.

𝑦 =  𝑎𝑥2 + 𝑏𝑥 + 𝑐

In this equation, a, b, and c are derived from the shot's speed, distance, and gravity. In the main loop, 

the system continuously reads sensor data, applies calibration offsets, monitors shot events, and updates speed 

and distance in real-time. Once a shot is completed, the results are published via MQTT. The system uses 

interrupt-driven data acquisition through the isr_imu() function to ensure timely sensor readings and precise 

calculations. The LaxHub then receives these calculations and uses SPI, Serial Peripheral Interface, to display 

these metrics on the TFT display screen, as shown in Figure 6  [8]. This same data is then sent to AWS, which 

then processes the data, creates graphs, stores the images in S3 buckets, and the data itself in the DynamoDB 

table. The TripleS App makes calls to this table to display the images in a user-friendly manner as shown in 

Figure 6.

       Figure 6: Correlation of Data Between TFT Display on LaxSense and TripleS Application 
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4. Verification 
The verification process for our Smart Stick System focused on ensuring that all high-level requirements 

were met and that the system performed reliably under real-world conditions. Below, we summarize the testing 

and verification of each major requirement. A comprehensive Requirements and Verifications table for each 

subsystem is included in Appendix A for detailed reference.​

The first high-level requirement for our system was to achieve real-time tracking by transmitting data 

from the sensor array to the cloud within 30 seconds. To test this, we used a stopwatch to measure the time from 

when a lacrosse swing was detected to when the data appeared in the TripleS application. The system 

consistently completed this process within 1.2 seconds, far exceeding our requirement. The significant speed 

improvement can be attributed to the use of AWS Kinesis for efficient data streaming and processing, as well as 

optimized communication protocols such as MQTT Pub/Sub over Bluetooth and Wi-Fi. These technologies 

allowed for minimal latency in data transfer and processing, even under varying network conditions.​

The second high-level requirement was to predict ball distance with an accuracy of ±10 feet. We tested 

this manually by throwing a lacrosse ball across measured distances and comparing the actual distance with the 

predicted values displayed on the LCD screen. Over ten trials, the system achieved an average error of ±4.6 feet, 

which is well within our specified tolerance. This level of accuracy was achieved through careful calibration of 

the gyroscope and accelerometer in the LaxSense unit, as well as physics focused trajectory calculations using 

angular velocity and acceleration data.​

The third high-level requirement specified that the LaxSense unit must weigh less than 3 ounces to 

avoid interfering with the natural balance of the lacrosse stick. Using a digital scale, we measured the total weight 

of the unit (including its 3D-printed housing, PCB, sensors, and battery) at 2.7 ounces, successfully meeting this 

requirement. This was especially crucial to us considering we did not want a difference in swing feel for players 

between practice and in game; ultimately we achieved this by carefully planning ahead and adding predicted 

weight values to keep our unit under the threshold.

The R&V tables from our design document provided a structured framework for testing all system 

components against their respective requirements. Each subsystem was verified separately with these 

verifications before integrating them into the final product. On the LaxHub, several of our requirements 

included printing log messages to the LCD screen when issues happened (disconnection with LaxSense, battery 

low) or when data was successfully passed to the cloud application. This was verified simply through observation 

and testing, and helped significantly with further development as well. Another requirement was for our 
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LaxSense to LaxHub connection to reconnect quickly after a failure, and this was also simple to implement 

using our Pub-Sub model. We added a heartbeat metric that simply made sure the other system was alive, and if 

not rebooted its connection to the relevant MQTT broker. Here we were able to verify by using a stopwatch to 

measure how long it takes for a reconnect to happen if one system is rebooted, and it falls within our threshold. 

All our requirements were verified successfully without any need for modifications or adjustments to tolerances. 

For further details on specific tests and their results, please refer to the R&V tables in Appendix A.
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5. Costs

5.1 Parts

Name Description Quantity Cost Total

1 ESP32-S3 Microcontroller

 ESP32-CAM Camera WiFi + 
Bluetooth Module 4M PSRAM 
Dual-core 32-bit CPU Development 
Board with OV2640 2MP Camera 
Module Support Image WiFi Upload

1 $12.99 $12.99

2
2MP OV2640 Camera 
Sensor (Comes with ESP32)

OmniVision 2MP camera sensor for 
capturing images

1 $8.99 $8.99

3 ST7735R LCD Screen

HiLetgo 2.2 Inch ILI9341 SPI TFT 
LCD Display 240x320 ILI9341 LCD 
Screen with SD Card Slot for Arduino 
Raspberry Pi 
51/AVR/STM32/ARM/PIC​

1 $14.49 $14.49

4
B0143KH9KG Li-ion 
Battery Pack

Voice Amplifier Replacement Battery 
B0143KH9KG 3.7V 2600mAh 
Rechargeable Lithium-ion Battery, 
with XH2.54mm Connector​

1 $12.69 $12.69

5
LOLIN D1 Mini 
Microcontroller

LOLIN mini Wi-Fi microcontroller 1 $14.99 $14.99

6 MPU-9250 Sensor Unit

MPU9250 GY-9250 9-Axis 9 DOF 16 
Bit Gyroscope Acceleration Magnetic 
Sensor 9-Axis Attitude 
+Gyro+Accelerator+Magnetometer 
Sensor Module IIC/SPI 
MPU9250/6500​

1 $14.29 $14.29

7 Li-ion Battery Charger Adafruit charger for Li-ion batteries 1 $5.99 $5.99

8 FTDI 1232

3PCS FT232RL Mini USB to TTL 
FTDI Adapter Module, 3.3V 5.5V 
FT232R Breakout FT232RL USB to 
Serial Converter Adapter Board​ 1 $8.99 $8.99

9
EEMB 3.7V LiPo Battery 
500mAh

EEMB 3.7V Lipo Battery 500mAh 
403048 Lithium Polymer ion Battery 
Rechargeable Lithium ion Polymer 
Battery with JST Connector Make Sure 
Device Polarity Matches with Battery 
Before Purchase!!!​ 1 $7.90 $7.90
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10 Ximimark SOIC8

Ximimark SOIC8 SOP8 to DIP8 IC 
Programmer Socket Converter Adapter 
Module 150mil 200mil For 25xx 
Eeprom Flash​ 1 $7.99 $7.99

11
CRCW08052R00DKEAH
P

2 ohm resistors
10 $0.387 $3.87

12 LS M676-P2R1-1-Z Red 633nm LED 10 $0.286 $2.86

13 ERJ-UP6D20R0V​ 200 ohm resistors 10 $0.261 $2.61

14 BDQQ00201210R33MPA 330 nH inductor 10 $0.172 $1.72

15 Breakaway pins

Exclusive! 2.54mm 1x42pin/2x42pin 
Gold-Plated Hand Breakaway Female 
Pin Header Strip (Single Row x 42 
pin*10 pcs 1 $9.98 $9.98

16 IP5306 SOP8
Integrated 7 protocols for fast charging 
protocol ICs for USB ports. 1 $3.00 $3.00

17 JST XH Connectors

JST XH 2.54 mm Pitch 2-Pin JST 
Wiring Connecting IC Male Plugs, 
Female Sockets Housing and T-Shaped 
Crimp Terminal Connector Kit. 50 
Sets/200 Pieces JST XH Connector 
Adapter Cable Assembly.​ 1 $5.99 $5.99

18 Amazon Kinesis Client SDK
Amazon's real-time streaming data 
service SDK

N/A $0.00 $0.00

19 DynamoDB Database Amazon NoSQL database service N/A $0.00 $0.00

20 AWS Lambda Amazon's serverless compute service N/A $0.00 $0.00

Total $139.34

5.2 Labor
The total cost for parts, as seen in the Bill of Materials above, is $139.34 before shipping. A 5% shipping 

cost adds an additional cost, bringing the total to $146.31. In Champaign County, a 9% sales tax on the parts 
cost adds to the final cost, resulting in a total of $158.85 for the components. For labor costs, calculated at 
$40/hr for 3 hours per day over 40 days, the total salary per team member comes to $4,800. Multiplying this by 3 
team members results in a total labor cost of $14,400. Adding the labor cost to the total parts cost gives us a 
comprehensive total of $14558.85. Therefore, the overall total cost for this project, including materials, 
shipping, sales tax, and labor, amounts to $14558.85.
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6. Conclusion

6.1 Accomplishments

The Smart Stick System (TripleS) project successfully achieved its primary objectives, meeting all 
high-level requirements and demonstrating its ability to provide accurate and real-time performance tracking for 
lacrosse players. The system was able to integrate hardware and software components well to deliver reliable data 
on player performance. The communication pipeline between the LaxSense unit, LaxHub, and the TripleS 
application performed particularly well, achieving results faster than anticipated. The system’s ability to process 
and transmit data efficiently highlights the effectiveness of its design and implementation. 

Additionally, the project showcased strong adaptability when taking on challenges during testing. The 
system’s modular design allowed for easy troubleshooting and testing of individual subsystems and even 
components, ensuring reliability in the final product. Using AWS cloud services for data storage and analysis 
allowed for scalability and security and made the system practical for a larger deployment. These 
accomplishments highlight the project’s success in addressing an ignored need in lacrosse training technology.

6.2 Uncertainties

Despite the project’s successes, certain uncertainties remain that could impact TripleS in specific 
scenarios. Our reliance on stable network connectivity for data movement has a limitation, especially in 
environments with restricted or unreliable Wi-Fi networks, such as university facilities where some features like 
MQTT Pub-Sub were restricted. Additionally, the MPU-9250 sensor occasionally produced noisy data, which 
could affect accuracy under less controlled conditions. Even though this did not significantly impact overall 
results during testing, more refinement of data filtering techniques may be useful for more user value. Finally, 
due to delays in receiving hardware components, the LaxSense subsystem was tested and displayed using a 
breadboard instead of the custom PCB design. While this workaround allowed for successful testing, it 
introduced minor inefficiencies that could be resolved with the intended PCB implementation.

6.3 Ethical considerations

The development of TripleS closely followed ethical principles outlined in the IEEE Code of Ethics by 
prioritizing user safety, data privacy, and transparency. To ensure safety, the LaxSense unit was designed to be 
lightweight and securely attached to the lacrosse stick to minimize risks during use. We made sure that the unit 
was able to physically adhere to the lacrosse stick to make sure it could not fly out in any way. Electrical safety 
was also considered by always enclosing batteries in some kind of housing and using low-voltage components 
where possible. Regarding data privacy, only essential performance metrics were collected and securely stored on 
AWS servers with user authentication protocols in place. Users keep full control over their data with options for 
deletion of their account. Transparency was another focus for us. Users were clearly told about system 
capabilities and limitations within the application itself, including potential inaccuracies in trajectory 
predictions due to sensor noise. By always keeping these ethical concerns in mind through development, TripleS 
ensures it is both safe and respectful of user rights while keeping trust among its users.
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6.4 Future work

In the future, we would like to enhance the functionality and user experience of TripleS using lessons we learned 
now. First, we would like to transition from Wi-Fi-based communication to Bluetooth which solves connectivity 
issues in restricted network environments while keeping relatively reliable data transmission. Additionally, 
implementing a Kalman filter or using a more advanced sensor could reduce noise in motion data and improve 
accuracy for trajectory predictions. Another option for improvement is adding real time physical feedback such 
as audio or haptics to notify users about swing quality or performance metrics during training. Finally, 
expanding the system’s capabilities to support other sports or activities requiring motion tracking could open it 
up as a very useful tool for athletes and have a larger societal impact. These advancements would help solidify 
TripleS as an innovative tool for athletic performance tracking.
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Appendix A: Requirement and Verification Tables

1. LaxHub Requirements and Verification Table

      Requirements       Verification Verification 
Status

●​ When the hub system is 
active and detects that a 
swing has happened, it 
should complete 
internal processing and 
display basic output on 
the LCD screen within 
10 seconds of receiving 
data

●​ First confirm the LaxHub and LaxSense 
subsystems are both active and connected 
(look for a “connected” status on screen)

●​ Once in range and in frame of the 
LaxHub, do a test swing

●​ Wait to see a processing message on the 
screen

●​ Confirm that predictions are outputted 
within 10 seconds

Yes

●​ If any communication 
failure occurs between 
the LaxHub and 
LaxSense device 
subsystems when they 
are active in a waiting 
state, the LaxHub 
should let the user 
know through the LCD 
screen within 5 seconds 
of losing the 
connection, and 
attempt to reconnect 
automatically 
afterwards

●​ Initially confirm the LaxHub and 
LaxSense subsystems are both active and 
connected (look for a “connected” status 
on screen)

●​ Temporarily turn off the LaxSense 
subsystem,possibly by disconnecting its 
battery

●​ Wait for 5 seconds and check to see a 
disconnected message on the LaxHub 
LCD screen

●​ Now reconnect the LaxSense battery and 
make sure it turns on

●​ Wait and check for a reestablished 
connection (back to a “connected” status 
on the screen)

Yes

●​ If the battery 
percentage of the 
LaxHub system falls 
below 15%, the 
LaxHub should detect 
this and display a low 
battery warning on the 
LCD screen

●​ First connect a new fully charged battery 
to the system and turn it on for standard 
use

●​ Calculate approximately how long the 
battery should take to get to 15% by 
looking at overall current draw

●​ Wait for this amount of time, and expect 
to see a battery warning message on the 

Yes
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screen
●​ Calculate approximately how long the 

battery should take to run out with 15% 
left

●​ Wait for this amount of time, and make 
sure the system dies from battery loss

●​ When the system is alive 
and ready to use the 
camera, it should 
display a “Camera On” 
indicator on the LCD 
screen; In addition if 
the Camera is obscured 
or not reading frames it 
expects to, it should 
display a camera error 
to the screen within 5 
seconds

●​ Initially confirm the LaxHub and 
LaxSense subsystems are both active and 
connected (look for a “connected” status 
on screen)

●​ Ensure the LaxHub unit is turned on and 
the LCD display initially shows a 
“Camera On” status

●​ Cover the camera temporarily with a 
screen or cover so it is unable to see the 
lacrosse player

●​ Wait 5 seconds and make sure we see a 
“Camera error” message on the screen

Yes

●​ When the LaxHub has 
received and 
transmitted data to the 
cloud, display a message 
to show the data has 
been sent for 
processing, ultimately 
routing the user to a 
more detailed 
breakdown in the 
application

●​ Initially confirm the LaxHub and 
LaxSense subsystems are both active and 
connected (“connected” status)

●​ Demonstrate a normal use of the system 
by doing a practice swing

●​ Expect to see a “Data sent to cloud” 
message on the LCD screen

●​ Later check the TripleS application has 
updated with more data

Yes
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2. LaxSense Requirements and Verification Table

      Requirements       Verification Verification 
Status

●​ If the bluetooth BLE 
connection is lost when 
the subsystems are in 
use, the system should 
attempt to reconnect 
within 5 seconds

●​ Establish a BLE connection between 
LaxSense and LaxHub.  

●​ Turn off the LaxHub momentarily, 
turn it back on, and verify that the 
system reconnects automatically 

Yes

●​ Only when the 
LaxSense detects a shot, 
denoted by rapid 
acceleration, 15 ± 3 
m/s2, it must log and 
transmit the data to the 
LaxHub within 10 
seconds. This is to 
prevent any unnecessary 
logging. 

●​ Simulate a shot by moving the stick 
in a fast, forward motion  

●​ Confirm that LaxHub received the 
data transmitted by LaxSense within 
10 seconds (timer) by observing the 
logs on LaxHub.

●​ Additionally, move the stick lightly 
and verify that no log has been sent to 
the  LaxHub unit

Yes

●​ If there is a critical 
miscommunication 
between the LOLIN 
D1 Mini and the 
MPU-9250 sensor, the 
subsystem must stop 
transmitting data and 
log an error on the 
LaxHub

●​ To simulate a failure, we can 
interrupt the I2C connection by 
disconnecting the sensor unit from 
the microcontroller.

●​ Make sure that the system stops 
transmitting data once the 
communication error is detected - 
this is needed so that LaxHub does 
not receive false readings

●​ Verify that an error is logged on 
LaxHub to maintain the integrity of 
data

Yes

●​ The system must log a 
warning on the 
LaxHub if the voltage 
drops below 3.7 volts

●​ Simulate low battery conditions by 
using a variable power supply

●​ Confirm that a warning is logged on 
the LaxHub when the voltage falls 
below 3.7 volts

Yes
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3. TripleS App Requirements and Verification Table

      Requirements       Verification Verification 
Status

●​ The end data should be 
sent to Amazon Kinesis 
Streams in JSON 
format within 30 
seconds from creation 
time (readings from 
LaxSense)

●​ Simulate data from LaxSense, and track 
to see the time it takes for the data to 
travel from one subsystem to another  

●​ Confirm data transfer through logs sent 
to the microcontroller

●​ Once the data reaches the cloud, verify it 
has been reached within 30 seconds since 
the shot start time

No

●​ Ensure that the 
Lambda function 
transmits data to 
DynamoDB that does 
not exceed 2 MB / per 
second per shard to 
avoid throttling.

●​ Deploy a temporary, test Lambda 
function that sends messages to 
DynamoDB  

●​ Configure AWS Cloudwatch on the 
Lambda function

●​ Use the AWS Cloudwatch console to 
monitor the throughput and metrics and 
see if it is below the 2MB limit

Yes

●​ The format of the data 
sent from the Lambda 
functions to 
DynamoDB and 
retrieved from 
DynamoDB has to be 
consistent to prevent 
any data errors for 
calculations

●​ Conduct tests where data is sent to 
DynamoDB and also retrieved  

●​ This can be done by hard coding values 
via the LaxHub microprocessor to be 
sent to the Kinesis Streams

●​ Validate that the data retrieved (client 
side mobile application) matches what is 
being sent

Yes
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Appendix B: Subsystem Schematics
1.1. Schematic for LaxHub Subsystem: Main Skeleton

1.2. Schematic for LaxHub Subsystem: Connections
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2. Schematic for LaxSense Subsystem
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