

Abstract

The Smart Stick System (TripleS) is an innovative lacrosse performance tracking device that leverages
advanced sensor technology and cloud integration to provide real time feedback on shot speed, accuracy, and
stick form. The system includes three subsystems: LaxSense, a lightweight sensor module mounted on the stick;
LaxHub, a central processing unit; and a React-based mobile application. TripleS achieved shot speed accuracy
within ±10 mph, trajectory prediction within ±10 feet, and data transmission to the app in just 1.2 seconds. The
modular design significantly helped integrate components and assisted during development, while AWS
architecture opened up possibilities for scalability and reliability. This end to end solution successfully solves a
relatively unaddressed gap in lacrosse training by allowing players to monitor and improve their performance
with actionable insights, meeting all project objectives and requirements.

2

Contents
1. Introduction...4
2. Outline... 5

2.1 Introduction... 5
2.2 High-Level Requirements.. 6
2.3 Changes to Block-Level Diagram...6

3. Design... 7
3.1 Design Procedure..7

3.1.1 LaxHub Subsystem.. 7
3.1.2 LaxSense Subsystem... 8
3.1.3 TripleS Subsystem...10
3.2 Design Details.. 11

4. Verification... 13
5. Costs... 15

5.1 Parts... 15
5.2 Labor... 16

6. Conclusion...17
6.1 Accomplishments.. 17
6.2 Uncertainties..17
6.3 Ethical considerations..17
6.4 Future work... 18

References.. 19
Appendix A: Requirement and Verification Tables... 20
Appendix B: Subsystem Schematics... 24

3

1. Introduction
The sport of Lacrosse has been missing the sophisticated performance analysis tools available in other athletic
sports. Traditional training methods rely heavily on subjective observation, which is not very consistent. No
tools such as those available for other sports like baseball, golf, soccer, etc are available to monitor and improve
lacrosse form and accuracy, especially when a player is training alone. The lack of real-time, actual data focused
feedback on metrics such as shot speed, accuracy, and stick form has meant that both novice and experienced
players do not have a reliable method to track their progress and refine their skills.

Our Smart Stick System (TripleS) addresses this critical need in the lacrosse community. By leveraging sensor
technology and data analytics, TripleS provides players and coaches with insights into lacrosse performance. The
system gives immediate feedback and analysis, meaning users can now make data informed choices to enhance
their gameplay. The end product is very user friendly and fits a completely exclusive niche in the world of sports
performance tracking [1], [4], [5].

4

2. Outline

2.1 Introduction
Our TripleS solution integrates three critical subsystems—LaxSense, LaxHub, and the TripleS

Application—to deliver a comprehensive and robust technological ecosystem, as shown in Figure 1. This
integrated approach ensures seamless data collection, centralized management, and user-friendly interaction
across our product.

 Figure 1: Initial Smart Stick System (Triple S) Block Diagram

Our initial TripleS solution emerged as an innovative proof-of-concept to transform lacrosse

performance tracking through an integrated hardware-software ecosystem. The initial LaxHub prototype serves

as our central processing unit, featuring a custom PCB, microcontroller, LCD screen, and camera with a

5

Bluetooth 5.0 module. As our first-generation design, this component was conceptualized to provide a compact,

rechargeable central hub for data collection and intermediate processing, establishing a low-power Bluetooth

connection with the LaxSense subsystem and facilitating cloud backend communication via a Kinesis client.

The LaxSense subsystem represents our initial attempt to instrumentalize the lacrosse stick, integrating a

microcontroller, accelerometer, and gyroscope to capture fundamental performance metrics. This early-stage

design aimed to track critical parameters like shot speed, stick angle, and form through a compact,

stick-mounted device powered by a modest battery system. Our TripleS application—the initial software

interface—was developed as a React-based mobile platform leveraging AWS Amplify. This first-iteration design

focuses on translating raw performance data from the microcontroller, stored in DynamoDB, into intuitive,

actionable insights for athletes and coaches.

2.2 High-Level Requirements
1.​ Real-Time Performance Tracking: Deliver comprehensive swing feedback within 30 seconds,

capturing shot speed, accuracy, and stick form with minimal latency from data collection to cloud

transmission and application visualization.

2.​ Precise Performance Metrics: Ensure ball speed measurement accuracy within ±10 mph and

trajectory within 10 feet, enabling athletes to track and understand their skill progression with

data-driven insights.

3.​ Minimally Invasive Design: Engineer the LaxSense unit to weigh under 3 ounces, preserving stick

mechanics and ensuring the device does not interfere with the player's natural movement and

performance.

2.3 Changes to Block-Level Diagram
While our core system architecture remained fundamentally consistent, we strategically optimized our

approach to meet our high-level requirements. We transitioned from Bluetooth to WiFi with MQTT clients,

providing a more robust and scalable communication protocol between subsystems. The LaxSense and LaxHub

modules remained structurally unchanged. However, we significantly enhanced the TripleS application's

backend infrastructure by replacing Kinesis with AWS IoT Things and implementing certificate-based

authentication for the ESP32 microcontroller. This shift to a pub/sub MQTT communication model

streamlined our data transmission. The foundational technology stack—including DynamoDB, Lambda,

React, Cognito, and Amplify—remained consistent, ensuring a seamless and secure application experience.

6

3. Design

3.1 Design Procedure

3.1.1 LaxHub Subsystem

The LaxHub is a communication hub unit with other hardware supplementing it with user

accessibility. The ESP32-S3 microcontroller is used as the central processing unit [2]. Though alternatives like

NodeMCU ESP32-S and STM32 were similarly used, the ESP32-S3 seemed like the best choice due to its low

power performance, integrated WiFi, and processing power perfectly suited to our performance tracking

requirement.

We considered many battery options, including smaller Li-ion batteries and USB-powered options,

ultimately selecting the B0143KH9KG 3.7V-2600mAh Battery Pack. We looked for an option with extended

battery life, a consistent 500mA power supply, and rechargeability as these are essential factors for a portable

performance tracking device.

We also compared multiple camera sensors, weighing options with higher resolutions and different form

factors. The 2MP OV2640 Sensor was the perfect compromise as it offered a compact form factor while being

able to capture 1080p video at 30 ±12 fps [3]. This balanced approach ensures performance tracking capabilities

without unnecessarily bulky hardware.

Rather than defaulting to I2C screens or larger displays, we chose the ST7735R LCD with an SPI

interface. This decision prioritized faster data transfer and the ability to quickly display critical performance

information, since we required that players receive near-instantaneous feedback.

 Figure 2: LaxHub Unit Figure 3: LaxHub Circuit Unit

7

Figure 2 above depicts the general design of our full LaxHub unit. The 3D printed shell encloses our

PCB and components, leaving areas for user interaction. More specifically, the LCD screen, camera, and battery

percentage LEDs show through, and the user can access power on/off buttons directly on the PCB. Figure 3

shows a much more detailed version of our circuit schematic on the PCB. The bottom area shows a power

system centered around the IP5306 chip which is configured to step up voltage as well as read battery

percentage. SMD LEDs in this section display battery percentage, and if the system is powered on or off. The

bottom right bumper connection along with one of the top left buttons is used as a method to program our

ESP32. Finally, we include ample space to wire up the LCD screen and ESP32 microcontroller itself.

Another essential component of LaxHub processing is to predict the trajectory of the ball that would

be released from a similar pass. We were able to use the gyroscope and accelerometer to calculate the angular

velocity and acceleration of the shot, mainly due to the pivoting nature of the lacrosse shot. Using linear release

speed and angle measured using the gyro, we predicted the final trajectory with the trajectory equation. We use

x = (v₀cosθ)t and y = (v₀sinθ)t - (1/2)gt² (1)

to correspondingly calculate the predicted distance and height trajectory values, and record/display them on the

LaxHub unit.

3.1.2 LaxSense Subsystem

The LaxSense subsystem is an engineered solution for capturing lacrosse performance metrics, designed

to provide motion tracking without compromising stick dynamics. Our sensor selection process explored

multiple tracking options before deciding on the MPU-9250 sensor unit [7]. Alternatives like the LSM9DS1

and BMI160 were considered, but the MPU-9250 was best as it integrated a 3-axis accelerometer, gyroscope, and

magnetometer in one. The configurable acceleration and angular velocity ranges (±2g to ±16g and ±250° to

±2000°/s) gave exceptional flexibility in capturing nuanced stick throwing motions as every player may be

different.

We also looked through several microcontroller options on the LaxSense.. While options like

NodeMCU ESP32-S and Adafruit Feather Huzzah ESP8266 again had similar features, the LOLIN D1 Mini

with ESP-8266EX was the optimal choice [6]. Its low power consumption, compact form factor, and WiFi

capabilities aligned perfectly with our performance tracking objectives. The ability to maintain a stable 1 ± 0.5

Mbps data transmission rate within a 10-meter range ensures real-time performance feedback without system

latency.

8

Power management is another critical design consideration. We chose the 500mAh Li-ion battery after

evaluating various power solutions, offering a balance between operational duration and minimal weight. This

power system ensures reliable performance by delivering a consistent 3.7 ± 0.75 V output and supporting five

hours of continuous operation. Finally, by maintaining a total weight under 3 ounces and utilizing low-power

components, the LaxSense integrates seamlessly with the lacrosse stick, keeping the player's natural mechanics

while providing performance tracking.

 Figure 4: LaxSense Unit Figure 5: LaxSense Circuit Unit

Figure 4 above shows a model of the 3D printed enclosure and PCB for the LaxSense subsystem. The shape of

the bottom of the enclosure is carefully measured to act as a substitute for the rubber stop on the ends of

Lacrosse sticks, meaning this entire unit can slot into a Lacrosse stick perfectly. Figure 3 shows the overall circuit

design for the LaxSense. This subsystem is very simple as it only connects the ESP8266 module with the MPU

sensor array and a battery connection at the left. The PCB is shaped in a smaller rectangular prism to fit in the

Lacrosse stick including the battery.

As part of development, we also analyzed accuracy of our sensor and LaxSense subsystem based on the

following:

1.​ Gyroscope sensitivity: 131 LSB/(°/s) for ± 250 °/s full range scale

2.​ Gyroscope total root-mean-square noise 0.1 °/s

3.​ Typically a lacrosse shot takes approximately 0.2 seconds

4.​ Typically lacrosse shot speed ranges between 70-100 mph

Listed below are the steps and calculations to show the subsystem feasibility.

Step 1: Calculate the angular velocity of a typical shot, assuming a 90° rotation

ω = 90° / 0.2s = 450°/s

9

Step 2: Calculate the gyroscope output for ω

450°/s * 131 LSB/(°/s) = 58,950 LSB

Step 3: Calculate the error due to gyroscope noise

Error ω = 0.1°/s * 0.2s = 0.02°

Error in rotational measurement = 0.02° / 90° = 0.022%

Step 4.1: Translate rotational error to linear velocity error, assuming stick length of 1.016 m

v = ω * r

v = ω * r = (450°/s * π/180) * 1.016 m = 80.1 m/s (179 mph)

Step 4.2: Translate rotational error to linear velocity error in a realistic scenario

v = ω * r * transfer efficiency = (450°/s * π/180) * (1.016 * 0.75) * 0.60 = 36.1 m/s (80.7 mph)

Step 5. Calculate the error in linear velocity

80.7 mph * 0.022% = 0.0178 mph

To make this calculation more robust, we can take additional errors into consideration:

Temperature drift: 0.75%

Calibration error: 1.25%

Step 6: Calculate the total error via the additional errors

Total error = √(0.022²+0.75²+1.25²) = 1.46%

80.7 mph * 1.46% = 1.18 mph error

The calculated error of 1.18 mph is within our high-level requirement of ±10 mph accuracy for shot speed

measurement and the 80.7 mph falls within the 70-100 mph for a typical lacrosse shot.

3.1.3 TripleS Subsystem

The TripleS application uses a modern cloud-native architecture with a React-based frontend deployed

through AWS Amplify. While our initial design considered Amazon Kinesis for data streaming, we ultimately

chose AWS IoT Core as a more suitable solution for our IoT device integration. This alternative approach uses

MQTT protocol with pub/sub messaging, which provides several advantages over Kinesis streams. Instead of

setting up Kinesis clients and managing stream shards, the ESP32 microcontroller connects directly to AWS IoT

Core using X.509 certificates for secure authentication. This certification-based approach provides stronger

security and simplified device management compared to managing Kinesis credentials. The MQTT pub/sub

model allows for more efficient bi-directional communication between devices and the cloud, which is a good

option for IoT applications. The AWS IoT Core implementation is largely better than Kinesis for our use case

10

because it has built-in device management, lower latency, and reduced complexity. While Kinesis would require

managing shard limits and dealing with potential throttling issues, AWS IoT Core instead allows automatic

scaling and dedicated IoT-optimized message routing. The pub/sub architecture eliminates the need to worry

about streaming limits of 1MB per second or 1000 messages per second that would have constrained our Kinesis

implementation.

Data from the ESP32 is published to specific MQTT topics, which trigger Lambda functions through

IoT Rules. These rules can directly route messages to DynamoDB, simplifying our architecture by removing the

need for intermediate stream processing. User authentication still occurs through Amazon Cognito, and API

Gateway handles REST HTTPS communication, but the data ingestion path is more streamlined. The AWS

IoT Core architecture maintains our requirement for real-time performance tracking and analysis, easily

achieving sub-30-second latency. The MQTT protocol is specifically designed for IoT devices, offering lower

overhead and better reliability for intermittent connections compared to Kinesis streams. Additionally, the

serverless components (Lambda and DynamoDB) remain unchanged, allowing for efficient data processing.

The new architecture also keeps data consistent by enforcing message formats through IoT Core's registry and

rules engine, rather than relying on matching Lambda function implementations. This provides a more

complete solution for ensuring data format consistency between device publishing and database storage. The

overall design choice of AWS IoT Core over Kinesis streams results in a more efficient, secure, and scalable

solution that better serves our IoT application needs while maintaining all core functionality requirements.

3.2 Design Details

The motion tracking system operates using an MPU9250 sensor on the LaxSense to calculate shot

metrics. It begins with sensor initialization and calibration through our calibrate_imu() function, which takes

100 samples from the accelerometer and gyroscope, calculates their offset values by averaging these samples, and

stores the offsets for compensating raw sensor data later. For motion detection, the system monitors the

acceleration magnitude, calculated as shown below.

acceleration = - 9.81𝑎𝑐𝑐𝑒𝑙
𝑥
2 + 𝑎𝑐𝑐𝑒𝑙

𝑦
2 + 𝑎𝑐𝑐𝑒𝑙

𝑧
2

A shot is detected when this value exceeds the threshold of 15.0 m/s². When a shot is detected, the

system calculates velocity using the following equations:

 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
𝑓𝑖𝑛𝑎𝑙

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
0
 + 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛△𝑡

= 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦△𝑡

11

Our calculate_trajectory() function then determines the parabolic path of the shot, using the launch

angle, which is calculated below.

Θ = 𝑡𝑎𝑛−1(
𝑎𝑐𝑐𝑒𝑙

𝑦

𝑎𝑐𝑐𝑒𝑙
𝑥

)

 The function additionally calculated the trajectory equation, shown below.

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

In this equation, a, b, and c are derived from the shot's speed, distance, and gravity. In the main loop,

the system continuously reads sensor data, applies calibration offsets, monitors shot events, and updates speed

and distance in real-time. Once a shot is completed, the results are published via MQTT. The system uses

interrupt-driven data acquisition through the isr_imu() function to ensure timely sensor readings and precise

calculations. The LaxHub then receives these calculations and uses SPI, Serial Peripheral Interface, to display

these metrics on the TFT display screen, as shown in Figure 6 [8]. This same data is then sent to AWS, which

then processes the data, creates graphs, stores the images in S3 buckets, and the data itself in the DynamoDB

table. The TripleS App makes calls to this table to display the images in a user-friendly manner as shown in

Figure 6.

 Figure 6: Correlation of Data Between TFT Display on LaxSense and TripleS Application

12

4. Verification
The verification process for our Smart Stick System focused on ensuring that all high-level requirements

were met and that the system performed reliably under real-world conditions. Below, we summarize the testing

and verification of each major requirement. A comprehensive Requirements and Verifications table for each

subsystem is included in Appendix A for detailed reference.​

The first high-level requirement for our system was to achieve real-time tracking by transmitting data

from the sensor array to the cloud within 30 seconds. To test this, we used a stopwatch to measure the time from

when a lacrosse swing was detected to when the data appeared in the TripleS application. The system

consistently completed this process within 1.2 seconds, far exceeding our requirement. The significant speed

improvement can be attributed to the use of AWS Kinesis for efficient data streaming and processing, as well as

optimized communication protocols such as MQTT Pub/Sub over Bluetooth and Wi-Fi. These technologies

allowed for minimal latency in data transfer and processing, even under varying network conditions.​

The second high-level requirement was to predict ball distance with an accuracy of ±10 feet. We tested

this manually by throwing a lacrosse ball across measured distances and comparing the actual distance with the

predicted values displayed on the LCD screen. Over ten trials, the system achieved an average error of ±4.6 feet,

which is well within our specified tolerance. This level of accuracy was achieved through careful calibration of

the gyroscope and accelerometer in the LaxSense unit, as well as physics focused trajectory calculations using

angular velocity and acceleration data.​

The third high-level requirement specified that the LaxSense unit must weigh less than 3 ounces to

avoid interfering with the natural balance of the lacrosse stick. Using a digital scale, we measured the total weight

of the unit (including its 3D-printed housing, PCB, sensors, and battery) at 2.7 ounces, successfully meeting this

requirement. This was especially crucial to us considering we did not want a difference in swing feel for players

between practice and in game; ultimately we achieved this by carefully planning ahead and adding predicted

weight values to keep our unit under the threshold.

The R&V tables from our design document provided a structured framework for testing all system

components against their respective requirements. Each subsystem was verified separately with these

verifications before integrating them into the final product. On the LaxHub, several of our requirements

included printing log messages to the LCD screen when issues happened (disconnection with LaxSense, battery

low) or when data was successfully passed to the cloud application. This was verified simply through observation

and testing, and helped significantly with further development as well. Another requirement was for our

13

LaxSense to LaxHub connection to reconnect quickly after a failure, and this was also simple to implement

using our Pub-Sub model. We added a heartbeat metric that simply made sure the other system was alive, and if

not rebooted its connection to the relevant MQTT broker. Here we were able to verify by using a stopwatch to

measure how long it takes for a reconnect to happen if one system is rebooted, and it falls within our threshold.

All our requirements were verified successfully without any need for modifications or adjustments to tolerances.

For further details on specific tests and their results, please refer to the R&V tables in Appendix A.

14

5. Costs

5.1 Parts

Name Description Quantity Cost Total

1 ESP32-S3 Microcontroller

 ESP32-CAM Camera WiFi +
Bluetooth Module 4M PSRAM
Dual-core 32-bit CPU Development
Board with OV2640 2MP Camera
Module Support Image WiFi Upload

1 $12.99 $12.99

2
2MP OV2640 Camera
Sensor (Comes with ESP32)

OmniVision 2MP camera sensor for
capturing images

1 $8.99 $8.99

3 ST7735R LCD Screen

HiLetgo 2.2 Inch ILI9341 SPI TFT
LCD Display 240x320 ILI9341 LCD
Screen with SD Card Slot for Arduino
Raspberry Pi
51/AVR/STM32/ARM/PIC​

1 $14.49 $14.49

4
B0143KH9KG Li-ion
Battery Pack

Voice Amplifier Replacement Battery
B0143KH9KG 3.7V 2600mAh
Rechargeable Lithium-ion Battery,
with XH2.54mm Connector​

1 $12.69 $12.69

5
LOLIN D1 Mini
Microcontroller

LOLIN mini Wi-Fi microcontroller 1 $14.99 $14.99

6 MPU-9250 Sensor Unit

MPU9250 GY-9250 9-Axis 9 DOF 16
Bit Gyroscope Acceleration Magnetic
Sensor 9-Axis Attitude
+Gyro+Accelerator+Magnetometer
Sensor Module IIC/SPI
MPU9250/6500​

1 $14.29 $14.29

7 Li-ion Battery Charger Adafruit charger for Li-ion batteries 1 $5.99 $5.99

8 FTDI 1232

3PCS FT232RL Mini USB to TTL
FTDI Adapter Module, 3.3V 5.5V
FT232R Breakout FT232RL USB to
Serial Converter Adapter Board​ 1 $8.99 $8.99

9
EEMB 3.7V LiPo Battery
500mAh

EEMB 3.7V Lipo Battery 500mAh
403048 Lithium Polymer ion Battery
Rechargeable Lithium ion Polymer
Battery with JST Connector Make Sure
Device Polarity Matches with Battery
Before Purchase!!!​ 1 $7.90 $7.90

15

10 Ximimark SOIC8

Ximimark SOIC8 SOP8 to DIP8 IC
Programmer Socket Converter Adapter
Module 150mil 200mil For 25xx
Eeprom Flash​ 1 $7.99 $7.99

11
CRCW08052R00DKEAH
P

2 ohm resistors
10 $0.387 $3.87

12 LS M676-P2R1-1-Z Red 633nm LED 10 $0.286 $2.86

13 ERJ-UP6D20R0V​ 200 ohm resistors 10 $0.261 $2.61

14 BDQQ00201210R33MPA 330 nH inductor 10 $0.172 $1.72

15 Breakaway pins

Exclusive! 2.54mm 1x42pin/2x42pin
Gold-Plated Hand Breakaway Female
Pin Header Strip (Single Row x 42
pin*10 pcs 1 $9.98 $9.98

16 IP5306 SOP8
Integrated 7 protocols for fast charging
protocol ICs for USB ports. 1 $3.00 $3.00

17 JST XH Connectors

JST XH 2.54 mm Pitch 2-Pin JST
Wiring Connecting IC Male Plugs,
Female Sockets Housing and T-Shaped
Crimp Terminal Connector Kit. 50
Sets/200 Pieces JST XH Connector
Adapter Cable Assembly.​ 1 $5.99 $5.99

18 Amazon Kinesis Client SDK
Amazon's real-time streaming data
service SDK

N/A $0.00 $0.00

19 DynamoDB Database Amazon NoSQL database service N/A $0.00 $0.00

20 AWS Lambda Amazon's serverless compute service N/A $0.00 $0.00

Total $139.34

5.2 Labor
The total cost for parts, as seen in the Bill of Materials above, is $139.34 before shipping. A 5% shipping

cost adds an additional cost, bringing the total to $146.31. In Champaign County, a 9% sales tax on the parts
cost adds to the final cost, resulting in a total of $158.85 for the components. For labor costs, calculated at
$40/hr for 3 hours per day over 40 days, the total salary per team member comes to $4,800. Multiplying this by 3
team members results in a total labor cost of $14,400. Adding the labor cost to the total parts cost gives us a
comprehensive total of $14558.85. Therefore, the overall total cost for this project, including materials,
shipping, sales tax, and labor, amounts to $14558.85.

16

6. Conclusion

6.1 Accomplishments

The Smart Stick System (TripleS) project successfully achieved its primary objectives, meeting all
high-level requirements and demonstrating its ability to provide accurate and real-time performance tracking for
lacrosse players. The system was able to integrate hardware and software components well to deliver reliable data
on player performance. The communication pipeline between the LaxSense unit, LaxHub, and the TripleS
application performed particularly well, achieving results faster than anticipated. The system’s ability to process
and transmit data efficiently highlights the effectiveness of its design and implementation.

Additionally, the project showcased strong adaptability when taking on challenges during testing. The
system’s modular design allowed for easy troubleshooting and testing of individual subsystems and even
components, ensuring reliability in the final product. Using AWS cloud services for data storage and analysis
allowed for scalability and security and made the system practical for a larger deployment. These
accomplishments highlight the project’s success in addressing an ignored need in lacrosse training technology.

6.2 Uncertainties

Despite the project’s successes, certain uncertainties remain that could impact TripleS in specific
scenarios. Our reliance on stable network connectivity for data movement has a limitation, especially in
environments with restricted or unreliable Wi-Fi networks, such as university facilities where some features like
MQTT Pub-Sub were restricted. Additionally, the MPU-9250 sensor occasionally produced noisy data, which
could affect accuracy under less controlled conditions. Even though this did not significantly impact overall
results during testing, more refinement of data filtering techniques may be useful for more user value. Finally,
due to delays in receiving hardware components, the LaxSense subsystem was tested and displayed using a
breadboard instead of the custom PCB design. While this workaround allowed for successful testing, it
introduced minor inefficiencies that could be resolved with the intended PCB implementation.

6.3 Ethical considerations

The development of TripleS closely followed ethical principles outlined in the IEEE Code of Ethics by
prioritizing user safety, data privacy, and transparency. To ensure safety, the LaxSense unit was designed to be
lightweight and securely attached to the lacrosse stick to minimize risks during use. We made sure that the unit
was able to physically adhere to the lacrosse stick to make sure it could not fly out in any way. Electrical safety
was also considered by always enclosing batteries in some kind of housing and using low-voltage components
where possible. Regarding data privacy, only essential performance metrics were collected and securely stored on
AWS servers with user authentication protocols in place. Users keep full control over their data with options for
deletion of their account. Transparency was another focus for us. Users were clearly told about system
capabilities and limitations within the application itself, including potential inaccuracies in trajectory
predictions due to sensor noise. By always keeping these ethical concerns in mind through development, TripleS
ensures it is both safe and respectful of user rights while keeping trust among its users.

17

6.4 Future work

In the future, we would like to enhance the functionality and user experience of TripleS using lessons we learned
now. First, we would like to transition from Wi-Fi-based communication to Bluetooth which solves connectivity
issues in restricted network environments while keeping relatively reliable data transmission. Additionally,
implementing a Kalman filter or using a more advanced sensor could reduce noise in motion data and improve
accuracy for trajectory predictions. Another option for improvement is adding real time physical feedback such
as audio or haptics to notify users about swing quality or performance metrics during training. Finally,
expanding the system’s capabilities to support other sports or activities requiring motion tracking could open it
up as a very useful tool for athletes and have a larger societal impact. These advancements would help solidify
TripleS as an innovative tool for athletic performance tracking.

18

References
[1] “Biomechanics of the lacrosse shot,” Biomechanics of the Lacrosse Shot,

http://www.centerislandperformanceathletics.com/2016/03/biomechanics-of-lacrosse-shot.html (accessed
Dec. 11, 2024).

[2]​ Esp32 series, https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
(accessed Dec. 11, 2024).

[3]​ Utsource and Instructables, “Getting started with ESP32 CAM: Streaming video using ESP cam over
WIFI: ESP32 security camera project,” Instructables,
http://www.instructables.com/Getting-Started-With-ESP32-CAM-Streaming-Video-Usi/. (accessed Dec.
11, 2024).

[4]​ Lacrosse Monkey, “Lacrosse passing guide: How to throw a lacrosse ball,” LacrosseMonkey.com,
https://www.lacrossemonkey.com/learn/how-to-pass-lacrosse-ball (accessed Dec. 11, 2024).

[5]​ A.-G. Sports, “Lacrosse shooting: A guide to increased shot speed and a quicker release - A-game sports,”
A, https://agamesports.net/2017/09/04/lacrosse-shooting-guide-increased-shot-speed-quicker-release/
(accessed Dec. 11, 2024).

[6]​ “D1 boards,” D1 Boards - WEMOS documentation, https://www.wemos.cc/en/latest/d1/index.html
(accessed Dec. 11, 2024).

[7]​ “MPU-9250,” TDK InvenSense,
https://invensense.tdk.com/products/motion-tracking/9-axis/mpu-9250/ (accessed Dec. 11, 2024).

[8]​ Adafruit, https://cdn-shop.adafruit.com/datasheets/ST7735R_V0.2.pdf (accessed Dec. 11, 2024).

19

Appendix A: Requirement and Verification Tables

1. LaxHub Requirements and Verification Table

 Requirements Verification Verification
Status

●​ When the hub system is
active and detects that a
swing has happened, it
should complete
internal processing and
display basic output on
the LCD screen within
10 seconds of receiving
data

●​ First confirm the LaxHub and LaxSense
subsystems are both active and connected
(look for a “connected” status on screen)

●​ Once in range and in frame of the
LaxHub, do a test swing

●​ Wait to see a processing message on the
screen

●​ Confirm that predictions are outputted
within 10 seconds

Yes

●​ If any communication
failure occurs between
the LaxHub and
LaxSense device
subsystems when they
are active in a waiting
state, the LaxHub
should let the user
know through the LCD
screen within 5 seconds
of losing the
connection, and
attempt to reconnect
automatically
afterwards

●​ Initially confirm the LaxHub and
LaxSense subsystems are both active and
connected (look for a “connected” status
on screen)

●​ Temporarily turn off the LaxSense
subsystem,possibly by disconnecting its
battery

●​ Wait for 5 seconds and check to see a
disconnected message on the LaxHub
LCD screen

●​ Now reconnect the LaxSense battery and
make sure it turns on

●​ Wait and check for a reestablished
connection (back to a “connected” status
on the screen)

Yes

●​ If the battery
percentage of the
LaxHub system falls
below 15%, the
LaxHub should detect
this and display a low
battery warning on the
LCD screen

●​ First connect a new fully charged battery
to the system and turn it on for standard
use

●​ Calculate approximately how long the
battery should take to get to 15% by
looking at overall current draw

●​ Wait for this amount of time, and expect
to see a battery warning message on the

Yes

20

screen
●​ Calculate approximately how long the

battery should take to run out with 15%
left

●​ Wait for this amount of time, and make
sure the system dies from battery loss

●​ When the system is alive
and ready to use the
camera, it should
display a “Camera On”
indicator on the LCD
screen; In addition if
the Camera is obscured
or not reading frames it
expects to, it should
display a camera error
to the screen within 5
seconds

●​ Initially confirm the LaxHub and
LaxSense subsystems are both active and
connected (look for a “connected” status
on screen)

●​ Ensure the LaxHub unit is turned on and
the LCD display initially shows a
“Camera On” status

●​ Cover the camera temporarily with a
screen or cover so it is unable to see the
lacrosse player

●​ Wait 5 seconds and make sure we see a
“Camera error” message on the screen

Yes

●​ When the LaxHub has
received and
transmitted data to the
cloud, display a message
to show the data has
been sent for
processing, ultimately
routing the user to a
more detailed
breakdown in the
application

●​ Initially confirm the LaxHub and
LaxSense subsystems are both active and
connected (“connected” status)

●​ Demonstrate a normal use of the system
by doing a practice swing

●​ Expect to see a “Data sent to cloud”
message on the LCD screen

●​ Later check the TripleS application has
updated with more data

Yes

21

2. LaxSense Requirements and Verification Table

 Requirements Verification Verification
Status

●​ If the bluetooth BLE
connection is lost when
the subsystems are in
use, the system should
attempt to reconnect
within 5 seconds

●​ Establish a BLE connection between
LaxSense and LaxHub.

●​ Turn off the LaxHub momentarily,
turn it back on, and verify that the
system reconnects automatically

Yes

●​ Only when the
LaxSense detects a shot,
denoted by rapid
acceleration, 15 ± 3
m/s2, it must log and
transmit the data to the
LaxHub within 10
seconds. This is to
prevent any unnecessary
logging.

●​ Simulate a shot by moving the stick
in a fast, forward motion

●​ Confirm that LaxHub received the
data transmitted by LaxSense within
10 seconds (timer) by observing the
logs on LaxHub.

●​ Additionally, move the stick lightly
and verify that no log has been sent to
the LaxHub unit

Yes

●​ If there is a critical
miscommunication
between the LOLIN
D1 Mini and the
MPU-9250 sensor, the
subsystem must stop
transmitting data and
log an error on the
LaxHub

●​ To simulate a failure, we can
interrupt the I2C connection by
disconnecting the sensor unit from
the microcontroller.

●​ Make sure that the system stops
transmitting data once the
communication error is detected -
this is needed so that LaxHub does
not receive false readings

●​ Verify that an error is logged on
LaxHub to maintain the integrity of
data

Yes

●​ The system must log a
warning on the
LaxHub if the voltage
drops below 3.7 volts

●​ Simulate low battery conditions by
using a variable power supply

●​ Confirm that a warning is logged on
the LaxHub when the voltage falls
below 3.7 volts

Yes

22

3. TripleS App Requirements and Verification Table

 Requirements Verification Verification
Status

●​ The end data should be
sent to Amazon Kinesis
Streams in JSON
format within 30
seconds from creation
time (readings from
LaxSense)

●​ Simulate data from LaxSense, and track
to see the time it takes for the data to
travel from one subsystem to another

●​ Confirm data transfer through logs sent
to the microcontroller

●​ Once the data reaches the cloud, verify it
has been reached within 30 seconds since
the shot start time

No

●​ Ensure that the
Lambda function
transmits data to
DynamoDB that does
not exceed 2 MB / per
second per shard to
avoid throttling.

●​ Deploy a temporary, test Lambda
function that sends messages to
DynamoDB

●​ Configure AWS Cloudwatch on the
Lambda function

●​ Use the AWS Cloudwatch console to
monitor the throughput and metrics and
see if it is below the 2MB limit

Yes

●​ The format of the data
sent from the Lambda
functions to
DynamoDB and
retrieved from
DynamoDB has to be
consistent to prevent
any data errors for
calculations

●​ Conduct tests where data is sent to
DynamoDB and also retrieved

●​ This can be done by hard coding values
via the LaxHub microprocessor to be
sent to the Kinesis Streams

●​ Validate that the data retrieved (client
side mobile application) matches what is
being sent

Yes

23

Appendix B: Subsystem Schematics
1.1. Schematic for LaxHub Subsystem: Main Skeleton

1.2. Schematic for LaxHub Subsystem: Connections

24

2. Schematic for LaxSense Subsystem

25

	1. Introduction
	2. Outline
	2.1 Introduction
	2.2 High-Level Requirements
	2.3 Changes to Block-Level Diagram

	3. Design
	3.1 Design Procedure
	3.1.1 LaxHub Subsystem
	3.1.2 LaxSense Subsystem
	3.1.3 TripleS Subsystem
	3.2 Design Details

	4. Verification
	5. Costs
	5.1 Parts
	5.2 Labor

	6. Conclusion
	6.1 Accomplishments
	6.2 Uncertainties
	6.3 Ethical considerations
	6.4 Future work

	References
	Appendix A: Requirement and Verification Tables
	1. LaxHub Requirements and Verification Table
	2. LaxSense Requirements and Verification Table
	3. TripleS App Requirements and Verification Table

	Appendix B: Subsystem Schematics

