ECE 445 FINAL REPORT

By

Ritvik Manda

Pranav Nair

Shivam Patel

Final Report for ECE 445, Senior Design, Fall 2024

TA: Dongming Liu

11 December 2024

Project No. 22



Abstract

The Smart Stick System (TripleS) is an innovative lacrosse performance tracking device that leverages
advanced sensor technology and cloud integration to provide real time feedback on shot speed, accuracy, and
stick form. The system includes three subsystems: LaxSense, a lightweight sensor module mounted on the stick;
LaxHub, a central processing unit; and a React-based mobile application. TripleS achieved shot speed accuracy
within £10 mph, trajectory prediction within +10 feet, and data transmission to the app in just 1.2 seconds. The
modular design significantly helped integrate components and assisted during development, while AWS
architecture opened up possibilities for scalability and reliability. This end to end solution successfully solves a
relatively unaddressed gap in lacrosse training by allowing players to monitor and improve their performance

with actionable insights, meeting all project objectives and requirements.
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1. Introduction

The sport of Lacrosse has been missing the sophisticated performance analysis tools available in other athletic
sports. Traditional training methods rely heavily on subjective observation, which is not very consistent. No
tools such as those available for other sports like baseball, golf, soccer, etc are available to monitor and improve
lacrosse form and accuracy, especially when a player is training alone. The lack of real-time, actual data focused
feedback on metrics such as shot speed, accuracy, and stick form has meant that both novice and experienced

players do not have a reliable method to track their progress and refine their skills.

Our Smart Stick System (TripleS) addresses this critical need in the lacrosse community. By leveraging sensor
technology and data analytics, TripleS provides players and coaches with insights into lacrosse performance. The
system gives immediate feedback and analysis, meaning users can now make data informed choices to enhance
their gameplay. The end product is very user friendly and fits a completely exclusive niche in the world of sports

performance tracking [1], [4], [5].



2. Outline

2.1 Introduction

Our TripleS solution integrates three critical subsystems—LaxSense, LaxHub, and the TripleS
Application—to deliver a comprehensive and robust technological ecosystem, as shown in Figure 1. This
integrated approach ensures seamless data collection, centralized management, and user-friendly interaction

across our product.
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Figure 1: Initial Smart Stick System (Triple S) Block Diagram
Our initial TripleS solution emerged as an innovative proof-of-concept to transform lacrosse
performance tracking through an integrated hardware-software ecosystem. The initial LaxHub prototype serves

as our central processing unit, featuring a custom PCB, microcontroller, LCD screen, and camera with a



Bluetooth 5.0 module. As our first-generation design, this component was conceptualized to provide a compact,
rechargeable central hub for data collection and intermediate processing, establishing a low-power Bluetooth
connection with the LaxSense subsystem and facilitating cloud backend communication via a Kinesis client.
The LaxSense subsystem represents our initial attempt to instrumentalize the lacrosse stick, integrating a
microcontroller, accelerometer, and gyroscope to capture fundamental performance metrics. This early-stage
design aimed to track critical parameters like shot speed, stick angle, and form through a compact,
stick-mounted device powered by a modest battery system. Our TripleS application—the initial software
interface—was developed as a React-based mobile platform leveraging AWS Amplify. This first-iteration design
focuses on translating raw performance data from the microcontroller, stored in DynamoDB, into intuitive,

actionable insights for athletes and coaches.

2.2 High-Level Requirements

1. Real-Time Performance Tracking: Deliver comprehensive swing feedback within 30 seconds,
capturing shot speed, accuracy, and stick form with minimal latency from data collection to cloud
transmission and application visualization.

2. Precise Performance Metrics: Ensure ball speed measurement accuracy within +10 mph and
trajectory within 10 feet, enabling athletes to track and understand their skill progression with
data-driven insights.

3. Minimally Invasive Design: Engineer the LaxSense unit to weigh under 3 ounces, preserving stick
mechanics and ensuring the device does not interfere with the player's natural movement and

performance.

2.3 Changes to Block-Level Diagram

While our core system architecture remained fundamentally consistent, we strategically optimized our
approach to meet our high-level requirements. We transitioned from Bluetooth to WiFi with MQTT clients,
providing a more robust and scalable communication protocol between subsystems. The LaxSense and LaxHub
modules remained structurally unchanged. However, we significantly enhanced the TripleS application's
backend infrastructure by replacing Kinesis with AWS IoT Things and implementing certificate-based
authentication for the ESP32 microcontroller. This shift to a pub/sub MQTT communication model
streamlined our data transmission. The foundational technology stack—including DynamoDB, Lambda,

React, Cognito, and Amplify—remained consistent, ensuring a seamless and secure application experience.



3. Design

3.1 Design Procedure

3.1.1 LaxHub Subsystem

The LaxHub is a communication hub unit with other hardware supplementing it with user
accessibility. The ESP32-S3 microcontroller is used as the central processing unit [2]. Though alternatives like
NodeMCU ESP32-S and STM32 were similarly used, the ESP32-83 seemed like the best choice due to its low
power performance, integrated WiFi, and processing power perfectly suited to our performance tracking
requirement.

We considered many battery options, including smaller Li-ion batteries and USB-powered options,
ultimately selecting the BO143KH9KG 3.7V-2600mAh Battery Pack. We looked for an option with extended
battery life, a consistent S00mA power supply, and rechargeability as these are essential factors for a portable
performance tracking device.

We also compared multiple camera sensors, weighing options with higher resolutions and different form
factors. The 2MP OV2640 Sensor was the perfect compromise as it offered a compact form factor while being
able to capture 1080p video at 30 12 fps [3]. This balanced approach ensures performance tracking capabilities
without unnecessarily bulky hardware.

Rather than defaulting to I2C screens or larger displays, we chose the ST7735R LCD with an SPI
interface. This decision prioritized faster data transfer and the ability to quickly display critical performance

information, since we required that players receive near-instantaneous feedback.

100000000

00000080

Or
Q
(0
()
(3
o
o
o
g

1—mMml

00000000

1000000

Figure 2: LaxHub Unit Figure 3: LaxHub Circuit Unit



Figure 2 above depicts the general design of our full LaxHub unit. The 3D printed shell encloses our
PCB and components, leaving areas for user interaction. More specifically, the LCD screen, camera, and battery
percentage LEDs show through, and the user can access power on/off buttons directly on the PCB. Figure 3
shows a much more detailed version of our circuit schematic on the PCB. The bottom area shows a power
system centered around the IP5306 chip which is configured to step up voltage as well as read battery
percentage. SMD LED:s in this section display battery percentage, and if the system is powered on or off. The
bottom right bumper connection along with one of the top left buttons is used as a method to program our
ESP32. Finally, we include ample space to wire up the LCD screen and ESP32 microcontroller itself.

Another essential component of LaxHub processing is to predict the trajectory of the ball that would
be released from a similar pass. We were able to use the gyroscope and accelerometer to calculate the angular
velocity and acceleration of the shot, mainly due to the pivoting nature of the lacrosse shot. Using linear release
speed and angle measured using the gyro, we predicted the final trajectory with the trajectory equation. We use

x = (vocosf)t and y = (vosind)e - (1/2)gt? (1)
to correspondingly calculate the predicted distance and height trajectory values, and record/display them on the

LaxHub unit.

3.1.2 LaxSense Subsystem

The LaxSense subsystem is an engineered solution for capturing lacrosse performance metrics, designed
to provide motion tracking without compromising stick dynamics. Our sensor selection process explored
multiple tracking options before deciding on the MPU-9250 sensor unit [7]. Alternatives like the LSM9DS1
and BMI160 were considered, but the MPU-9250 was best as it integrated a 3-axis accelerometer, gyroscope, and
magnetometer in one. The configurable acceleration and angular velocity ranges (+2g to £16g and £250° to
+2000°/s) gave exceptional flexibility in capturing nuanced stick throwing motions as every player may be
different.

We also looked through several microcontroller options on the LaxSense.. While options like
NodeMCU ESP32-S and Adafruit Feather Huzzah ESP8266 again had similar features, the LOLIN D1 Mini
with ESP-8266EX was the optimal choice [6]. Its low power consumption, compact form factor, and WiFi
capabilities aligned perfectly with our performance tracking objectives. The ability to maintain a stable 1 + 0.5
Mbps data transmission rate within a 10-meter range ensures real-time performance feedback without system

latency.



Power management is another critical design consideration. We chose the S00mAh Li-ion battery after
evaluating various power solutions, offering a balance between operational duration and minimal weight. This
power system ensures reliable performance by delivering a consistent 3.7 + 0.75 V output and supporting five
hours of continuous operation. Finally, by maintaining a total weight under 3 ounces and utilizing low-power
components, the LaxSense integrates seamlessly with the lacrosse stick, keeping the player's natural mechanics

while providing performance tracking.
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Figure 4: LaxSense Unit Figure S: LaxSense Circuit Unit

Figure 4 above shows a model of the 3D printed enclosure and PCB for the LaxSense subsystem. The shape of
the bottom of the enclosure is carefully measured to act as a substitute for the rubber stop on the ends of
Lacrosse sticks, meaning this entire unit can slot into a Lacrosse stick perfectly. Figure 3 shows the overall circuit
design for the LaxSense. This subsystem is very simple as it only connects the ESP8266 module with the MPU
sensor array and a battery connection at the left. The PCB is shaped in a smaller rectangular prism to fit in the
Lacrosse stick including the battery.
As part of development, we also analyzed accuracy of our sensor and LaxSense subsystem based on the
following:

1. Gyroscope sensitivity: 131 LSB/(°/s) for + 250 °/s full range scale

2. Gyroscope total root-mean-square noise 0.1 °/s

3. Typically a lacrosse shot takes approximately 0.2 seconds

4. Typically lacrosse shot speed ranges between 70-100 mph

Listed below are the steps and calculations to show the subsystem feasibility.

Step 1: Calculate the angular velocity of a typical shot, assuming a 90° rotation

w=90°/0.2s = 450°/s



Step 2: Calculate the gyroscope output for
450°/s* 131 LSB/(°/s) = 58,950 LSB
Step 3: Calculate the error due to gyroscope noise
Error w=0.1°/s* 0.2s = 0.02°
Error in rotational measurement = 0.02° / 90° = 0.022%
Step 4.1: Translate rotational error to linear velocity error, assuming stick length of 1.016 m
v=w*r
v=w"r=(450°/s*1/180)* 1.016 m = 80.1 m/s (179 mph)
Step 4.2: Translate rotational error to linear velocity error in a realistic scenario
v = *r* transfer efficiency = (450°/s * w/180) * (1.016 * 0.75) * 0.60 = 36.1 m/s (80.7 mph)
Step 5. Calculate the error in linear velocity
80.7 mph * 0.022% = 0.0178 mph
To make this calculation more robust, we can take additional errors into consideration:
Temperature drift: 0.75%
Calibration error: 1.25%
Step 6: Calculate the total error via the additional errors
Total error =1{0.022>+0.75’+1.25%) = 1.46%
80.7 mph * 1.46% = 1.18 mph error
The calculated error of 1.18 mph is within our high-level requirement of £10 mph accuracy for shot speed

measurement and the 80.7 mph falls within the 70-100 mph for a typical lacrosse shot.

3.1.3 TripleS Subsystem

The TripleS application uses a modern cloud-native architecture with a React-based frontend deployed
through AWS Amplify. While our initial design considered Amazon Kinesis for data streaming, we ultimately
chose AWS IoT Core as a more suitable solution for our IoT device integration. This alternative approach uses
MQTT protocol with pub/sub messaging, which provides several advantages over Kinesis streams. Instead of
setting up Kinesis clients and managing stream shards, the ESP32 microcontroller connects directly to AWS IoT
Core using X.509 certificates for secure authentication. This certification-based approach provides stronger
security and simplified device management compared to managing Kinesis credentials. The MQT'T pub/sub
model allows for more efficient bi-directional communication between devices and the cloud, which is a good

option for IoT applications. The AWS IoT Core implementation is largely better than Kinesis for our use case
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because it has built-in device management, lower latency, and reduced complexity. While Kinesis would require
managing shard limits and dealing with potential throttling issues, AWS IoT Core instead allows automatic
scaling and dedicated IoT-optimized message routing. The pub/sub architecture eliminates the need to worry
about streaming limits of IMB per second or 1000 messages per second that would have constrained our Kinesis
implementation.

Data from the ESP32 is published to specific MQTT topics, which trigger Lambda functions through
IoT Rules. These rules can directly route messages to DynamoDB, simplifying our architecture by removing the
need for intermediate stream processing. User authentication still occurs through Amazon Cognito, and API
Gateway handles REST HTTPS communication, but the data ingestion path is more streamlined. The AWS
IoT Core architecture maintains our requirement for real-time performance tracking and analysis, easily
achieving sub-30-second latency. The MQT'T protocol is specifically designed for IoT devices, offering lower
overhead and better reliability for intermittent connections compared to Kinesis streams. Additionally, the
serverless components (Lambda and DynamoDB) remain unchanged, allowing for efficient data processing.
The new architecture also keeps data consistent by enforcing message formats through IoT Core's registry and
rules engine, rather than relying on matching Lambda function implementations. This provides a more
complete solution for ensuring data format consistency between device publishing and database storage. The
overall design choice of AWS IoT Core over Kinesis streams results in a more efficient, secure, and scalable

solution that better serves our IoT application needs while maintaining all core functionality requirements.

3.2 Design Details

The motion tracking system operates using an MPU9250 sensor on the LaxSense to calculate shot
metrics. It begins with sensor initialization and calibration through our calibrate_imu() function, which takes
100 samples from the accelerometer and gyroscope, calculates their offset values by averaging these samples, and
stores the offsets for compensating raw sensor data later. For motion detection, the system monitors the

acceleration magnitude, calculated as shown below.

2 2 2
acceleration = \/ accelx + accely + accelz -9.81

A shot is detected when this value exceeds the threshold of 15.0 m/s*. When a shot is detected, the
system calculates velocity using the following equations:

velocityﬁnal=velocity0 + accelerationAt

distance = velocity At

11



Our calculate_trajectory() function then determines the parabolic path of the shot, using the launch

angle, which is calculated below.

—1 _ accel

0 = tan (

y
accel
X

The function additionally calculated the trajectory equation, shown below.

y = ax’ + bx + ¢

In this equation, a, b, and ¢ are derived from the shot's speed, distance, and gravity. In the main loop,
the system continuously reads sensor data, applies calibration offsets, monitors shot events, and updates speed
and distance in real-time. Once a shot is completed, the results are published via MQTT. The system uses
interrupt-driven data acquisition through the isr_imu() function to ensure timely sensor readings and precise
calculations. The LaxHub then receives these calculations and uses SPI, Serial Peripheral Interface, to display
these metrics on the TFT display screen, as shown in Figure 6 [8]. This same data is then sent to AWS, which
then processes the data, creates graphs, stores the images in S3 buckets, and the data itself in the DynamoDB
table. The TripleS App makes calls to this table to display the images in a user-friendly manner as shown in

Figure 6.

Figure 6: Correlation of Data Between TFT Display on LaxSense and TripleS Application
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4, Verification

The verification process for our Smart Stick System focused on ensuring that all high-level requirements
were met and that the system performed reliably under real-world conditions. Below, we summarize the testing
and verification of each major requirement. A comprehensive Requirements and Verifications table for each
subsystem is included in Appendix A for detailed reference.

The first high-level requirement for our system was to achieve real-time tracking by transmitting data
from the sensor array to the cloud within 30 seconds. To test this, we used a stopwatch to measure the time from
when a lacrosse swing was detected to when the data appeared in the TripleS application. The system
consistently completed this process within 1.2 seconds, far exceeding our requirement. The significant speed
improvement can be attributed to the use of AWS Kinesis for efficient data streaming and processing, as well as
optimized communication protocols such as MQTT Pub/Sub over Bluetooth and Wi-Fi. These technologies
allowed for minimal latency in data transfer and processing, even under varying network conditions.

The second high-level requirement was to predict ball distance with an accuracy of 10 feet. We tested
this manually by throwing a lacrosse ball across measured distances and comparing the actual distance with the
predicted values displayed on the LCD screen. Over ten trials, the system achieved an average error of +4.6 feet,
which is well within our specified tolerance. This level of accuracy was achieved through careful calibration of
the gyroscope and accelerometer in the LaxSense unit, as well as physics focused trajectory calculations using
angular velocity and acceleration data.

The third high-level requirement specified that the LaxSense unit must weigh less than 3 ounces to
avoid interfering with the natural balance of the lacrosse stick. Using a digital scale, we measured the total weight
of the unit (including its 3D-printed housing, PCB, sensors, and battery) at 2.7 ounces, successfully meeting this
requirement. This was especially crucial to us considering we did not want a difference in swing feel for players
between practice and in game; ultimately we achieved this by carefully planning ahead and adding predicted
weight values to keep our unit under the threshold.

The R&V tables from our design document provided a structured framework for testing all system
components against their respective requirements. Each subsystem was verified separately with these
verifications before integrating them into the final product. On the LaxHub, several of our requirements
included printing log messages to the LCD screen when issues happened (disconnection with LaxSense, battery
low) or when data was successfully passed to the cloud application. This was verified simply through observation

and testing, and helped significantly with further development as well. Another requirement was for our
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LaxSense to LaxHub connection to reconnect quickly after a failure, and this was also simple to implement
using our Pub-Sub model. We added a heartbeat metric that simply made sure the other system was alive, and if
not rebooted its connection to the relevant MQT'T broker. Here we were able to verify by using a stopwatch to
measure how long it takes for a reconnect to happen if one system is rebooted, and it falls within our threshold.
All our requirements were verified successfully without any need for modifications or adjustments to tolerances.

For further details on specific tests and their results, please refer to the R&V tables in Appendix A.
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5. Costs

5.1 Parts

Name

Description

Quantity

Cost

Total

1 ESP32-S3 Microcontroller

ESP32-CAM Camera WiFi +
Bluetooth Module 4M PSR AM
Dual-core 32-bit CPU Development
Board with OV2640 2MP Camera
Module Support Image WiFi Upload

$12.99

$12.99

2MP OV2640 Camera
Sensor (Comes with ESP32)

OmniVision 2MP camera sensor for
capturing images

$8.99

$8.99

3 ST7735R LCD Screen

HiLetgo 2.2 Inch ILI9341 SPI TFT
LCD Display 240x320 ILI9341 LCD
Screen with SD Card Slot for Arduino
Raspberry Pi
51/AVR/STM32/ARM/PIC

$14.49

$14.49

B0143KH9KG Li-ion
Battery Pack

Voice Amplifier Replacement Battery
B0143KH9KG 3.7V 2600mAh
Rechargeable Lithium-ion Battery,
with XH2.54mm Connector

$12.69

$12.69

LOLIN D1 Mini

Microcontroller

LOLIN mini Wi-Fi microcontroller

$14.99

$14.99

6 MPU-9250 Sensor Unit

MPU9250 GY-9250 9-Axis 9 DOF 16
Bit Gyroscope Acceleration Magnetic
Sensor 9-Axis Attitude
+Gyro+Accelerator+Magnetometer
Sensor Module IIC/SPI
MPU9250/6500

$14.29

$14.29

7 |Li-ion Battery Charger

Adafruit charger for Li-ion batteries

—

$5.99

$5.99

8 |FTDI1232

3PCS FT232RL Mini USB to TTL
FTDI Adapter Module, 3.3V 5.5V
FT232R Breakout FT232RL USB to
Serial Converter Adapter Board

—

$8.99

$8.99

EEMB 3.7V LiPo Battery
9 S00mAh

EEMB 3.7V Lipo Battery 500mAh
403048 Lithium Polymer ion Battery
Rechargeable Lithium ion Polymer
Battery with JST Connector Make Sure
Device Polarity Matches with Battery
Before Purchase!!!

—

$7.90

$7.90

15




Ximimark SOIC8 SOPS to DIPS IC
Programmer Socket Converter Adapter
Module 150mil 200mil For 25xx
10 [Ximimark SOICS8 Eeprom Flash 1 $7.99 $7.99
CRCWO08052R00DKEAH (2 ohm resistors
11 (P 10| $0.387 $3.87
12 |LSMé676-P2R1-1-Z Red 633nm LED 10( $0.286 $2.86
13 |ERJ-UP6D20R0OV 200 ohm resistors 10| $0.261 $2.61
14 [BDQQO00201210R33MPA [330 nH inductor 10( $0.172 $1.72
Exclusive! 2.54mm 1x42pin/2x42pin
Gold-Plated Hand Breakaway Female
Pin Header Strip (Single Row x 42
15 |Breakaway pins pin*10 pcs 1] $9.98] $9.98
Integrated 7 protocols for fast charging
16 [IP5306 SOP8 protocol ICs for USB ports. 1 $3.00]  $3.00
JST XH 2.54 mm Pitch 2-Pin JST
Wiring Connecting IC Male Plugs,
Female Sockets Housing and T-Shaped
Crimp Terminal Connector Kit. 50
Sets/200 Pieces JST XH Connector
17 |JST XH Connectors Adapter Cable Assembly. 1 $5.99]  $5.99
A 1 1- . .
18 | Amazon Kinesis Cliene SDK |/m220's real-time streaming data N/A|  $0.00[  $0.00
service SDK
19  |DynamoDB Database Amazon NoSQL database service N/A[  $0.00[  $0.00
20 |AWS Lambda Amazon's serverless compute service N/A|  $0.00|  $0.00
Total $139.34
5.2 Labor

The total cost for parts, as seen in the Bill of Materials above, is $139.34 before shipping. A 5% shipping

cost adds an additional cost, bringing the total to $146.31. In Champaign County, a 9% sales tax on the parts

cost adds to the final cost, resulting in a total of $158.85 for the components. For labor costs, calculated at

$40/hr for 3 hours per day over 40 days, the total salary per team member comes to $4,800. Multiplying this by 3

team members results in a total labor cost of $14,400. Adding the labor cost to the total parts cost gives us a

comprehensive total of $14558.85. Therefore, the overall total cost for this project, including materials,

shipping, sales tax, and labor, amounts to $14558.85.
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6. Conclusion

6.1 Accomplishments

The Smart Stick System (TripleS) project successfully achieved its primary objectives, meeting all
high-level requirements and demonstrating its ability to provide accurate and real-time performance tracking for
lacrosse players. The system was able to integrate hardware and software components well to deliver reliable data
on player performance. The communication pipeline between the LaxSense unit, LaxHub, and the TripleS
application performed particularly well, achieving results faster than anticipated. The system’s ability to process

and transmit data efficiently highlights the effectiveness of its design and implementation.

Additionally, the project showcased strong adaptability when taking on challenges during testing. The
system’s modular design allowed for easy troubleshooting and testing of individual subsystems and even
components, ensuring reliability in the final product. Using AWS cloud services for data storage and analysis
allowed for scalability and security and made the system practical for a larger deployment. These

accomplishments highlight the project’s success in addressing an ignored need in lacrosse training technology.

6.2 Uncertainties

Despite the project’s successes, certain uncertainties remain that could impact TripleS in specific
scenarios. Our reliance on stable network connectivity for data movement has a limitation, especially in
environments with restricted or unreliable Wi-Fi networks, such as university facilities where some features like
MQTT Pub-Sub were restricted. Additionally, the MPU-9250 sensor occasionally produced noisy data, which
could affect accuracy under less controlled conditions. Even though this did not significantly impact overall
results during testing, more refinement of data filtering techniques may be useful for more user value. Finally,
due to delays in receiving hardware components, the LaxSense subsystem was tested and displayed using a
breadboard instead of the custom PCB design. While this workaround allowed for successful testing, it

introduced minor inefficiencies that could be resolved with the intended PCB implementation.

6.3 Ethical considerations

The development of TripleS closely followed ethical principles outlined in the IEEE Code of Ethics by
prioritizing user safety, data privacy, and transparency. To ensure safety, the LaxSense unit was designed to be
lightweight and securely attached to the lacrosse stick to minimize risks during use. We made sure that the unit
was able to physically adhere to the lacrosse stick to make sure it could not fly out in any way. Electrical safety
was also considered by always enclosing batteries in some kind of housing and using low-voltage components
where possible. Regarding data privacy, only essential performance metrics were collected and securely stored on
AWS servers with user authentication protocols in place. Users keep full control over their data with options for
deletion of their account. Transparency was another focus for us. Users were clearly told about system
capabilities and limitations within the application itself, including potential inaccuracies in trajectory
predictions due to sensor noise. By always keeping these ethical concerns in mind through development, TripleS

ensures it is both safe and respectful of user rights while keeping trust among its users.
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6.4 Future work

In the future, we would like to enhance the functionality and user experience of TripleS using lessons we learned
now. First, we would like to transition from Wi-Fi-based communication to Bluetooth which solves connectivity
issues in restricted network environments while keeping relatively reliable data transmission. Additionally,
implementing a Kalman filter or using a more advanced sensor could reduce noise in motion data and improve
accuracy for trajectory predictions. Another option for improvement is adding real time physical feedback such
as audio or haptics to notify users about swing quality or performance metrics during training. Finally,
expanding the system’s capabilities to support other sports or activities requiring motion tracking could open it
up as a very useful tool for athletes and have a larger societal impact. These advancements would help solidify

TripleS as an innovative tool for athletic performance tracking.
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Appendix A: Requirement and Verification Tables

1. LaxHub Requirements and Verification Table

battery warning on the
LCD screen

Wait for this amount of time, and expect
to see a battery warning message on the

Requirements Verification Verification
Status
e When the hub system is First confirm the LaxHub and LaxSense Yes
active and detects that a subsystems are both active and connected
swing has happened, it (look for a “connected” status on screen)
should complete Once in range and in frame of the
internal processing and LaxHub, do a test swing
display basic output on Wait to see a processing message on the
the LCD screen within screen
10 seconds of receiving Confirm that predictions are outputted
data within 10 seconds
If any communication Initially confirm the LaxHub and Yes
failure occurs between LaxSense subsystems are both active and
the LaxHub and connected (look for a “connected” status
LaxSense device on screen)
subsystems when they Temporarily turn off the LaxSense
are active in a waiting subsystem,possibly by disconnecting its
state, the LaxHub battery
should let the user Wait for S seconds and check to see a
know through the LCD disconnected message on the LaxHub
screen within 5 seconds LCD screen
of losing the Now reconnect the LaxSense battery and
connection, and make sure it turns on
attempt to reconnect Wait and check for a reestablished
automatically connection (back to a “connected” status
afterwards on the screen)
If the battery First connect a new fully charged battery Yes
percentage of the to the system and turn it on for standard
LaxHub system falls use
below 15%, the Calculate approximately how long the
LaxHub should detect battery should take to get to 15% by
this and display a low looking at overall current draw
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screen

Calculate approximately how long the
battery should take to run out with 15%
left

Wait for this amount of time, and make
sure the system dies from battery loss

® When the system is alive

and ready to use the
camera, it should
display a “Camera On”
indicator on the LCD
screen; In addition if
the Camera is obscured
or not reading frames it
expects to, it should
display a camera error
to the screen within 5
seconds

Initially confirm the LaxHub and Yes
LaxSense subsystems are both active and
connected (look for a “connected” status
on screen)

Ensure the LaxHub unit is turned on and
the LCD display initially shows a
“Camera On” status

Cover the camera temporarily with a
screen or cover so it is unable to see the
lacrosse player

Wait 5 seconds and make sure we see a

“Camera error” message on the screen

When the LaxHub has
received and
transmitted data to the
cloud, display a message
to show the data has
been sent for
processing, ultimately
routing the user to a
more detailed
breakdown in the
application

Initially confirm the LaxHub and Yes
LaxSense subsystems are both active and

connected (“connected” status)

Demonstrate a normal use of the system

by doing a practice swing

Expect to see a “Data sent to cloud”

message on the LCD screen

Later check the TripleS application has

updated with more data
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2. LaxSense Requirements and Verification Table

warning on the
LaxHub if the voltage
drops below 3.7 volts

using a variable power supply
Confirm that a warning is logged on
the LaxHub when the voltage falls
below 3.7 volts

Requirements Verification Verification
Status
e If the bluetooth BLE Establish a BLE connection between Yes
connection is lost when LaxSense and LaxHub.
the subsystems are in Turn off the LaxHub momentarily,
use, the system should turn it back on, and verify that the
attempt to reconnect system reconnects automatically
within S seconds
Only when the Simulate a shot by moving the stick Yes
LaxSense detects a shot, in a fast, forward motion
denoted by rapid Confirm that LaxHub received the
acceleration, 15 £ 3 data transmitted by LaxSense within
m/s’, it must log and 10 seconds (timer) by observing the
transmit the data to the logs on LaxHub.
LaxHub within 10 Additionally, move the stick lightly
seconds. This is to and verify that no log has been sent to
prevent any unnecessary the LaxHub unit
logging.
If there is a critical To simulate a failure, we can Yes
miscommunication interrupt the I2C connection by
between the LOLIN disconnecting the sensor unit from
D1 Mini and the the microcontroller.
MPU-9250 sensor, the Make sure that the system stops
subsystem must stop transmitting data once the
transmitting data and communication error is detected -
log an error on the this is needed so that LaxHub does
LaxHub not receive false readings
Verify that an error is logged on
LaxHub to maintain the integrity of
data
The system must log a Simulate low battery conditions by Yes
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3. TripleS App Requirements and Verification Table

sent from the Lambda
functions to
DynamoDB and
retrieved from
DynamoDB has to be
consistent to prevent
any data errors for
calculations

DynamoDB and also retrieved

® This can be done by hard coding values
via the LaxHub microprocessor to be
sent to the Kinesis Streams

e Validate that the data retrieved (client
side mobile application) matches what is
being sent

Requirements Verification Verification
Status
® The end data should be e Simulate data from LaxSense, and track  No
sent to Amazon Kinesis to see the time it takes for the data to
Streams in JSON travel from one subsystem to another
format within 30 e Confirm data transfer through logs sent
seconds from creation to the microcontroller
time (readings from ® Once the data reaches the cloud, verify it
LaxSense) has been reached within 30 seconds since
the shot start time
Ensure that the ® Deploy a temporary, test Lambda Yes
Lambda function function that sends messages to
transmits data to DynamoDB
DynamoDB that does e Configure AWS Cloudwatch on the
not exceed 2 MB / per Lambda function
second per shard to ® Use the AWS Cloudwatch console to
avoid throttling. monitor the throughput and metrics and
see if it is below the 2MB limit
The format of the data ® Conduct tests where data is sent to Yes
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Appendix B: Subsystem Schematics

1.1. Schematic for LaxHub Subsystem: Main Skeleton
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1.2. Schematic for LaxHub Subsystem: Connections
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2. Schematic for LaxSense Subsystem
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