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1. Introduction 
 
Problem 
As a beginner guitarist one of the most difficult obstacles that you face is learning the notes on 
the fretboard/neck of the guitar. Guitars do not have markings for each note, only some fret 
numbers. There are some tools online that can show you where the notes are, but this is not an 
effective way of learning. The best way to learn is by doing so with feedback from a system so 
that you are able to take corrective action and quickly fix mistakes. Learning each note on the 
guitar is important because it allows you to solo/improvise on a piece of music if you know the 
key. 
 
Solution 
The solution to this problem is FastFretTrainer (FFT). With this project, you will be able to learn 
notes with real-time feedback through the use of an attachment plugged into the jack of your 
guitar that would send data to a base station, and give visual feedback on how well you played 
the note and ways to improve through a computer-based application. The user would be able to 
interact using the computer-based application to interpret the feedback from the system. 
 
For this implementation there would be a small wireless fob that connects to the quarter-inch 
jack on the guitar; this fob will transmit via Bluetooth to the base station. The fob will be 
responsible for amplifying, converting analog to digital data, and correctly transmitting data to 
the base station. The computer-based application and base station will ask the guitarist to play a 
specific note on the guitar and connect to a computer via USB-C so that the web application can 
manipulate data and use a Fast Fourier Transform (FFT) to check the similarity between the note 
played and the expected note. The computer-based app would give more detailed visual 
feedback, such as a scale showing how far off the played note is in the unit of cents. If time 
permits, we plan to add more advanced features such as several practice modes, including 
practicing with or without accidentals on single or multiple strings, and it could even include a 
chord trainer that would be able to recognize the appropriate notes in a chord to determine if the 
correct notes are played. As a backup and for testing purposes, we will also include a 
quarter-inch jack on the base station in case the Bluetooth fob is out of battery. 
 
 



Visual Aid 

 
Figure 1: Visual Aid 

High-Level Requirements 
● The fob must be able to communicate with the base station wirelessly from a distance of 

1.5 meters without data loss 
● The local application on the laptop should be able to compare frequencies of the played 

and expected notes accurately after receiving data from the base station 
● The LCD display of the base station should be able to display basic values from the local 

application like how far off the note played was in cents 
 
Reach Requirements 

● The entire system should be able to support a chord mode, where multiple note 
frequencies will be compared to those of an expected chord 

● The LCD display should be able to display a more complex visual similar to that of the 
UI (cents scale) to support a mode where the app UI is not required 

● The system will also include a built-in guitar tuner with a set of options for alternate 
tunings of the user’s choice 



 
2. Design 
 
2.1 Block Diagram 

 
Figure 2: Block Diagram 

 
2.2 Subsystem Overview 
Our system is composed of several interconnected subsystems that work together to process 
audio from an electric guitar, analyze it, and provide real-time feedback via a computer-based 
application. The amplification subsystem boosts the guitar’s signal for accurate analog-to-digital 
conversion. The ADC subsystem digitizes the signal. The wireless subsystem handles audio 
transmission from the guitar to the base station via Bluetooth. The UART/USB subsystem 
transfers data from the base station to the PC to compute the FFT. The LCD subsystem provides 
visual feedback on pitch accuracy, while the PC subsystem handles signal analysis and user 
interaction. Each subsystem plays a critical role in ensuring accurate, real-time feedback for the 
user. 
 
 
 



2.2.1 Amplification Subsystem 
Before performing analog-to-digital conversion (ADC) and amplification, a DC offset must be 
added to ensure the post-amplification signal remains within the 0–3.3V input range of the ADC. 
The guitar’s output is an analog waveform representing string vibrations, which naturally 
includes negative voltages. Adding this offset allows for proper digitization at the ADC. Once 
the audio signal is received from the guitar’s jack, it is amplified to ensure accurate 
analog-to-digital conversion (ADC). The typical output of an electric guitar is around 100mV, 
which is too weak for effective sampling. After DC Offset we apply a low-pass filter to remove 
high-frequency noise before amplification. The signal is then amplified using the RC4559 
Opamp,  operating with biases -Vcc =-4.5V and Vcc = 4.5V, to bring it to a suitable level for 
ADC. This amplification step ensures a clean, well-sampled signal for Bluetooth transmission. 
 
2.2.2 Analog to Digital Subsystem 
The ESP32 microcontroller has built-in ADC channels, which we will utilize to convert the 
analog signal into a digital format. Once converted, the digital signal is transmitted via Bluetooth 
to an ESP32 microcontroller at the base station (explained in section 2.2.3). The 
microcontroller's built-in ADC channels are enabled in firmware to facilitate this process, 
ensuring smooth data acquisition and transmission. 
 
2.2.3 Wireless Subsystem 
The wireless subsystem is responsible for capturing audio from the guitar’s jack and transmitting 
it to the base station via Bluetooth. We leverage the Bluetooth capabilities of the 
ESP32-WROOM-32D to establish communication between the fob (attached to the guitar) and 
the base station. An ESP32 microcontroller in the fob samples the audio signal and transmits it 
wirelessly, while a separate ESP32 at the base station receives the data for further processing. 
Communication is handled using the Arduino IDE and the ESP32 BLE (Bluetooth Low Energy) 
library, ensuring reliable real-time data transfer. 
 
2.2.4 UART/USB Subsystem 
To transmit data to the computer for FFT computations, we will use the UART/USB protocol. 
The ESP32 microcontroller at the base station will receive digital data from the ESP32 on the fob 
via Bluetooth. Its role is to then forward this data to the computer through a UART/USB 
interface. For this, we will utilize the TXD/RXD (transmit/receive) pins of the ESP32 for UART 
communication. To convert the UART signal to USB protocol, we will use an FT232RL 
UART/USB bridge. The bridge will be connected to a 61400416021 USB A connector, which 
will allow data transmission to the computer through a USB cable. Additionally, the USB 
subsystem will also provide power to the base station. By wiring the power (VCC) and ground 
(GND) pins from the USB connector to the ESP32, we can power the microcontroller while 
simultaneously transmitting data. 



 
2.2.5 LCD Subsystem 
The LCD subsystem will provide real-time system status updates and basic feedback on the base 
station. This includes displaying whether the system is powered on and showing tuning 
feedback, such as how many cents off the user is from the expected note. This information will 
also be available on the computer-based application. The LCD subsystem consists of an I2C 
LCD display, an I2C LCD adapter, and the necessary wiring to interface with the ESP32 
microcontroller. The LCD display will connect to the adapter, which will then communicate with 
the microcontroller via I2C protocol. The ESP32 will provide both data and power to the display 
through Vcc and GPIO pins. For programming, we will use the LCD-I2C Arduino Library in 
C++, allowing the microcontroller to send data to the display efficiently. This setup ensures a 
simple and low-power interface for real-time feedback.  
 
2.2.6 PC Subsystem 
The PC Subsystem is responsible for acting as both a source of power for the base station and the 
main system used for data manipulation and visual feedback. The PC will also be responsible for 
the note selection that the user must play. The PC will be set up to enable single-string, 
multiple-string, and other more advanced practice modes as time allows. The PC subsystem 
would receive the signal from the base station via USB and Python scripts would be used to take 
the FFT via the FFT module of the SciPy library. If we encounter the issue of Python not being 
fast enough for data to be processed in real-time, C++ could also be used with the FFTW library. 
Once the strongest frequency from the FFT has been found, we can compare the frequency of the 
played note and that of the expected note (hardcoded) via conversion to cents, a unit in music 
that measures note intervals. This conversion can be done via a simple formula (1200 * log base 
2(f1/f2) where f1 is the played frequency and f2 is the expected) and a threshold of +/- 5 cents 
can be used to measure whether the note played was accurate. The PC subsystem would then 
send the cent to be shown back on the LCD display of the base station via the PyUSB library. 
The PC Subsystem will also have a local application that could be used to see more visual 
feedback on how close the played note is via a scale (inspired by GuitarTuna’s UI for tuning) 
showing the expected note in the center and the value in cents to the left or right at a distance 
based on the cents and whether the note was too high-pitched or too low-pitched. The UI could 
also be used to switch between more complex modes like chord training. 
 
2.2.7 Battery Subsystem 
The fob will be battery-powered, operating at approximately 3.3V. We plan to use a 9V battery 
with an LDO to provide reliable DC power. The base station will primarily be powered via 
USB-C, but if the power delivery is insufficient, we will incorporate an AC-DC conversion stage 
for wall power. This setup ensures stable power delivery to both the fob and base station while 
maintaining portability. For biasing the Opamp we plan to use an LM828 charge pump circuit to 
convert 4.5V to -4.5V. and use a buck converter to step down the 9V battery to 3.3V. 



 
 
2.3 Subsystem Requirements 
The following Requirements and Verification (R&V) Tables outline the criteria for each 
subsystem and how we will verify their functionality. By ensuring that all requirements are met 
through verification, we can systematically validate each module and achieve a fully functional 
project. 
 
 
2.3.1 Amplification Subsystem R&V 
 

Requirements Verification 

The Opamp requires the bias voltages to be 
within +18V and -18V, currently, we are 
planning to operate at -Vcc = -4.5V and Vcc = 
4.5V   

Use a multimeter to probe the power and 
ground pins of the IC to ensure the Vcc and 
-Vcc voltages are within 10 % of their 
expected values 

Using a 100 mVpp average input voltage, the 
ADC requires the input to be between 0V and 
3.3 V, The input must be amplified and a DC 
offset added 

Use an oscilloscope to measure the amplitude 
of the output of the amplifier. Must be within 
0-3.3V to avoid clipping or distortion of the 
signal during ADC. Allowing ~20% room for 
error in comparison to the ideal 100mvPP 
case.  

The operating temperature of RC4559 is from 
0 degrees to 70 degrees Celsius. Maintain 
thermal stability by staying in this range.  

Use a temperature probe to ensure the 
operating temperature doesn’t exceed 70 
degrees Celsius or drop below 0 degrees 
Celsius. 

 
2.3.2 Analog to Digital Subsystem R&V 
 

Requirements Verification 

ESP32 microcontroller operates at 3.3V, and 
we must be in a range between 3.0V and 3.6V 
for proper functionality.  

Use a multimeter to probe the power and 
ground pins of the IC to ensure that the Vcc 
voltage is within 10% of the desired operating 
voltage 

The input to the ADC must be in a range of 
0V to 3.3V 

Use an oscilloscope to ensure the input 
voltage is in the range of 0-3.3V, otherwise 
the signal will get clipped 



The ADC has multiple channels, must ensure 
we hookup to the correct channel and enable 
the correct channel with the respective GPIO 
pins 

Verify channel selection on the firmware side 
and data acquisition on the firmware side. 

The operating temperature of ESP32 is from 
-40 degrees to 85 degrees Celsius. Maintain 
thermal stability by staying in this range.  

Use a temperature probe to ensure the ESP32 
stays below 85 degrees Celsius during 
operation. 

 
2.3.3 Wireless Subsystem R&V 
 

Requirements Verification 

ESP32 microcontroller operates at 3.3V, and 
we must be in a range between 3.0V and 3.6V 
for proper functionality.  

Use a multimeter to probe the power and 
ground pins of the IC to ensure that the Vcc 
voltage is within 10% of the desired operating 
voltage 

Max data transfer rate is 150Mbps, but we 
will be transferring at a standard of 
115.2kbps.  

Measure the data rate in debug logs on the 
firmware side to ensure the data rate of 
115.2kbps.  

The Bluetooth connection between the fob 
and the base station must maintain a latency 
of less than 100ms to ensure real-time data 
transmission without delays. This is critical 
for quick feedback to the user.  

Measure round trip time of data transmission 
between the fob and the base station using a 
test signal. Ensure the latency remains under 
100ms.  

 
2.3.4 USB/UART Subsystem R&V 
 

Requirements Verification 

Provide 3.3V-5.25V +/- 0.5% for power via 
USB-C cable connected to computer; the USB 
connector can provide up to 5V for power 

Use a multimeter to probe the power and 
ground pins of the FT232RL, and ensure that 
the package is receiving at least 3.3V and no 
more than 5.25V for successful operation. 

The FT232RL must receive UART signals, 
convert to USB, and transfer to the PC  

Send a “Hello World” message from the 
ESP32 on the base station, and check to see if 
the message is successfully received at the PC 
terminal. This ensures the UART/USB 
conversion is correct.  



When plugged in, the device must be 
recognized by a COM port.  

On the PC side, Windows should recognize 
the device as a COM port. If not, will need to 
use a linux device and configure the device 
through /dev/tty/* 

Operating temperature of FT232RL is from 
-40 degrees to 85 degrees Celsius. Maintain 
thermal stability by staying in this range.  

Use a temperature probe to ensure the 
FT232RL stays below 85 degrees Celsius 
during operation. 

The ESP32 TX/RX pins must correctly be 
configured to the FT232RL TX/RX pins, and 
they must run on the same baud rate (e.g 
115200 bps).  

Use a multimeter to check continuity between 
the pins respectively. Zero resistance means a 
direct connection between the pins.  

The USB4230-03-A connector must 
successfully power the base station’s ESP32 
microcontroller and the LCD display. See 
ADC section for ESP32 microcontroller 
requirements, and see LCD section below for 
its requirements. When connected to a PC via 
a USB cable, the connector will typically 
provide 5V. The connector is designed to 
handle 5A 48V. 

Use a multimeter to probe the power and 
ground pins on the USB connector to ensure 
that voltage is being transferred from the PC. 
This ensures we won’t need some sort of 
external power supply for the base station.  

On plug-in to USB device, the device should 
draw no more than 100mA current.  

Use a multimeter to measure current input for 
the USB/UART bridge, and ensure that no 
more than 100mA of current is drawn from 
the device.  

 
2.3.5 LCD Subsystem R&V 
 

Requirements Verification 

The I2C LCD1602 needs to receive a supply 
voltage between 3.15V - 3.45V to properly 
function and not overheat 

We can use a multimeter to probe the power 
and ground pins of the LCD display to ensure 
they are within 3.15V - 3.45V 

The Serial Clock Line pin (SCL) of the I2C 
LCD1602 should receive consistent clock 
signals from GPIO pin 22 depending on 
whether it is in standard or fast 
communication mode 

We can use an oscilloscope to probe the SCL 
and ground pins of the LCD to see if a 
consistent 100 kHz square wave is generated 
(if in standard mode, otherwise should expect 
400kHz for fast mode) 

The Serial Data Line pin (SDA) of the I2C We can use a logic analyzer to probe the SDA 



LCD1602 should receive data frames from 
GPIO pin 21 with the proper structure and 
expected values 

and ground pins to decode data moving 
between the connection and verify if the 
structure and data are as expected (address, 
write data, ACK bit) 

 
2.3.6 PC Subsystem R&V 
 

Requirements Verification 

The PC Subsystem should be able to 
accurately report the frequency of the note 
played on the guitar to be used in its 
computation for the difference in cents. 

Use an oscilloscope hooked up to the guitar to 
measure the note frequency (or credible 
software like Audacity) and compare it to 
what is reported by the PC Subsystem 

The PC Subsystem should give an accurate 
measurement of note difference in cents on 
the scale shown in the user interface 

Use an oscilloscope to measure the frequency 
played and manually use the formula for cents 
to calculate and compare the values 

The PC Subsystem should be able to properly 
interface with the USB connection to send 
data packets back to the Base Station to 
display metrics on the LCD 

Use Wireshark to analyze packets being sent 
via the USB socket and make sure the packets 
align with expected data values 

 
2.3.7 Battery Subsystem R&V 
 

Requirements Verification 

A 9V battery will be used to power the fob 
and supply voltage to the ESP32 on the fob.  

Use a multimeter to measure the output 
voltage of the battery. Ensure the 9V battery 
matches the expected 9V.  

Ensure the battery-powered circuit steps down 
9V to 3.3V by a buck converter circuit for the 
ESP32 to use. 

Use a multimeter to probe the output of the 
battery step-down circuit, and ensure we have 
3.3V +/- 5% on the output side to power the 
ESP32 effectively.  

The battery must provide a stable 3.3V +/- 5% 
output after LDO for the ESP32 
microcontroller on the fob for successful 
operation.  

Use a multimeter to measure the operating 
voltage of the ESP32 on the fob via the VCC 
and GND pins.  

 
 



2.4 Tolerance Analysis 
The most critical circuit in our design is the amplification circuit before sampling. 
This circuit needs to be able to bring up the level of the input signal such that solid 
sampling can occur while also being able to add a DC offset without changing the 
frequency spectrum of the input signal much. To ensure that our amplification 
circuit could conceivably meet our needs we will assume that the peak-to-peak 
voltage of the input single tone (we used a single tone for ease of simulation) is 
100mV or 50mV amplitude is amplified about 20 times with a DC offset to ensure 
that the whole signal remains positive. Figure 3 shows the simulation setup that we 
used. The left Opamp is set up in an inverted summing amplifier configuration 
which will add the DC offset to the input guitar signal and produce the output 
which is off by a negative sign on the output. The resistors in the input, R6 and R2, 
control the amplification of each input relative to R3. Given that R6 is 20 times 
smaller than R3, that is the factor of amplification it will give, while by similar 
logic the DC_Offset will be slightly attenuated. 

 
Figure 3: Summing Amplifier Schematic 

 



 
Figure 4: Input Voltages for Simulation 

 
After passing through the summing portion of the circuit the signal reaches the 
inverter which is tasked with ensuring that the output voltage sits in the range of 
0V to 3.3V as this is the range that our ADC on the ESP 32 accepts. Since the 
output of the Summing circuit is the addition of the signals in Figure 4 multiplied 
by a negative one as shown in Figure 5, we must invert the signal on the output to 
satisfy our feasibility requirements. Using a unity inverter that amplifies the 
incoming signal by a factor of negative one we achieve our desired output as 
shown in Figure 6. Thus our amplifier design is feasible given that we are able to 
bias the opamps in the configuration above. The resistor values are subject to 
change as the physical design may present constraints not accounted for in this 
feasibility simulation. However, this simulation demonstrates that the concept of 
our amplifier design is valid and would serve our needs in the project. 

 
 

 



Figure 5: Output Of Summing Circuit 

 
Figure 6: Output of Inversion Stage 

 
 
3. Ethics and Safety 
When developing this project, it’s crucial that we consider the ethical and safety 
responsibilities that come with it. Regarding ethics, it is important that we credit 
sources of inspiration for our project out of respect for laying the foundation of 
what we are trying to accomplish. This would align with the ACM Code of Ethics 
section 1.5: Respect the work required to produce new ideas, inventions, creative 
works, and computing artifacts. For example, the UI of our local application is 
partially inspired by that of GuitarTuna with the measurement of how close a 
played note is to the expected note shown on a scale in cents. If we use schematic 
designs that are found through research we will cite the authors and give due 
credit. It is also important to make it clear which components we are ordering that 
will compose our design so that we don’t falsely claim that each part of our device 
is solely our intellectual property. Throughout the design process, we will also 
make sure to accept constructive criticism and address our own shortcomings to 
make the best and safest design we possibly can. By not being open-minded as to 
what could improve our design or make it safer, we would limit the potential of our 
project’s capabilities. For this reason, it is important to work under section I.5 of 
the IEEE Code of Ethics, which requires us to act on criticism as well as fairly 
credit others whose ideas we use in our project. 
 



To ensure that our design is safe to use, numerous precautions will be taken so that 
we uphold the IEEE Code of Ethics section I.1, which requires us to strive toward 
the safety of all and ensure that we always work to serve the best interest of others 
when it comes to education and removal of conflicts of interest. To do this, we will 
make sure that our PCB and hardware is designed in such a way that avoids any 
overheating, each connection is securely soldered, and wires are all completely 
insulated. To protect both the boards and the users, enclosures will be used to 
secure and isolate the hardware. If we have any doubts about the safety of our 
project, we will make sure to address them promptly and be transparent about each 
safety obstacle we encounter along the way so that no one is harmed in the 
production or use of what we develop. There are two main hazards with our 
project, misuse of the 9V battery and electric shock from the PCBs. To mitigate the 
9V risk we will ensure that the battery is used correctly, not discharged too quickly, 
and stored in a safe environment. To ensure safety with the PCB we will limit 
exposure to higher voltages and currents such that a user will not be able to easily 
interact and potentially be hurt by them. 


