

FastFretTrainer Design Document
Eli Hoon, Murtaza Saifuddin, Omeed Jamali

1. Introduction

Problem
As a beginner guitarist one of the most difficult obstacles that you face is learning the notes on

the fretboard/neck of the guitar. Guitars do not have markings for each note, only some fret

numbers. There are some tools online that can show you where the notes are, but this is not an

effective way of learning. The best way to learn is by doing so with feedback from a system so

that you are able to take corrective action and quickly fix mistakes. Learning each note on the

guitar is important because it allows you to solo/improvise on a piece of music if you know the

key.

Solution
The solution to this problem is FastFretTrainer (FFT). With this project, you will be able to learn

notes with real-time feedback through the use of an attachment plugged into the jack of your

guitar that would send data to a base station, and give visual feedback on how well you played

the note and ways to improve through a computer-based application. The user would be able to

interact using the computer-based application to interpret the feedback from the system.

For this implementation there would be a small wireless fob that connects to the quarter-inch

jack on the guitar; this fob will transmit via Bluetooth to the base station. The fob will be

responsible for amplifying, converting analog to digital data, and correctly transmitting data to

the base station. The computer-based application and base station will ask the guitarist to play a

specific note on the guitar and connect to a computer via USB-C so that the web application can

manipulate data and use a Fast Fourier Transform (FFT) to check the similarity between the note

played and the expected note. The computer-based app would give more detailed visual

feedback, such as a scale showing how far off the played note is in the unit of cents. If time

permits, we plan to add more advanced features such as several practice modes, including

practicing with or without accidentals on single or multiple strings, and it could even include a

chord trainer that would be able to recognize the appropriate notes in a chord to determine if the

correct notes are played. As a backup and for testing purposes, we will also include a

quarter-inch jack on the base station in case the Bluetooth fob is out of battery.

Visual Aid

Figure 1: Visual Aid
High-Level Requirements

●​ The fob must be able to communicate with the base station wirelessly from a distance of

1.5 meters without data loss

●​ The local application on the laptop should be able to compare frequencies of the played

and expected notes accurately after receiving data from the base station

●​ The LCD display of the base station should be able to display basic values from the local

application like how far off the note played was in cents

Reach Requirements

●​ The entire system should be able to support a chord mode, where multiple note

frequencies will be compared to those of an expected chord

●​ The LCD display should be able to display a more complex visual similar to that of the

UI (cents scale) to support a mode where the app UI is not required

●​ The system will also include a built-in guitar tuner with a set of options for alternate

tunings of the user’s choice

2. Design

2.1 Block Diagram

Figure 2: Block Diagram

2.2 Subsystem Overview

Our system is composed of several interconnected subsystems that work together to process

audio from an electric guitar, analyze it, and provide real-time feedback via a computer-based

application. The amplification subsystem boosts the guitar’s signal for accurate analog-to-digital

conversion. The ADC subsystem digitizes the signal. The wireless subsystem handles audio

transmission from the guitar to the base station via Bluetooth. The UART/USB subsystem

transfers data from the base station to the PC to compute the FFT. The LCD subsystem provides

visual feedback on pitch accuracy, while the PC subsystem handles signal analysis and user

interaction. Each subsystem plays a critical role in ensuring accurate, real-time feedback for the

user. Below are the descriptions of each subsystem, and we have provided justifications for our

design decisions respective to each subsystem as well.

2.2.1 Amplification Subsystem
Before performing analog-to-digital conversion (ADC) and amplification, a DC offset must be

added to ensure the post-amplification signal remains within the 0–3.3V input range of the ADC.

The guitar’s output is an analog waveform representing string vibrations, which naturally

includes negative voltages. Adding this offset allows for proper digitization at the ADC. Once

the audio signal is received from the guitar’s jack, it is amplified to ensure accurate

analog-to-digital conversion (ADC). The typical output of an electric guitar is around 100mV,

which is too weak for effective sampling. After DC Offset we apply a low-pass filter to remove

high-frequency noise before amplification. The signal is then amplified using the LMV922MX

Opamp, operating with biases -Vcc =-3.3V and Vcc = 3.3V, to bring it to a suitable level for

ADC. This amplification step ensures a clean, well-sampled signal for Bluetooth transmission.

Design Justification:

We chose this design because our guitar signal needs to be digitized to be sent via bluetooth, and

working to create a cost effective solution we decided to use the ESP 32 as the ADC. This

presented several design constraints. The most important of which is the fact that the ESP can

only sample from 0 to 3.3V. The a strong solution that is also relatively simple to implement is a

summing amplifier that looks something like this:

Figure 3: Opamp Circuit

We chose this specific architecture for a couple reasons. We have the Opamps in this inverting

configuration because according to the LMV922MX datasheet cited in the ‘References’ section,

the Opamp is much less sensitive than when it is in the non inverting configuration. The choices

of the resistor values are purely because of the function of their block. For example the input

resistors that handle VGuitar combine to be 500 ohms which is 1/20th of 10,000 ohms (R1 in this

diagram). The inverse of this ratio is equal to the gain on the output for the VGuitar signal. Since

the typical amplitude for the input guitar signal is 50 mV we chose to amplify it 20 times.

Another reason that we chose to amplify the guitar signal to such a large value is because when

sampling it is better to have as large of a signal as possible so you sample it with as high a

resolution as possible. Since the ESP has a 12 bit ADC, and there are 4096 unique values it can

output, the larger the input signal, the less data is lost to quantization error. We chose the DC

offset voltage to be half of 3.3V because this provides a good platform to amplify around as we

have equal amplitude on both sides of this signal, giving us the most room when amplifying.

Since the DC offset holds this middle ground, it makes sense that we do not want to amplify it at

all, thus we choose R6 to have the same value as R1 for unity gain. After the output of the first

stage, since we used an inverting amplifier configuration, the voltage is fully negative, thus we

chose to implement a unity gain inverting amplifier to bring the output voltage within our desired

range. Also the output of our amplifier there is a Low pass filter with its values selected such that

the cutoff frequency is around 30 kHz, removing as much high frequency noise as possible while

leaving plenty of room for our audio signal. We chose this cutoff frequency due to the easy

availability of the components to construct the filter and because it still meets our needs of

leaving the amplified signal alone while removing noise.

2.2.2 Analog to Digital Subsystem
The ESP32 microcontroller has built-in ADC channels, which we will utilize to convert the

analog guitar input signal into a digital format. Once converted, the digital signal is stored in the

local flash before it is transmitted via Bluetooth to an ESP32 microcontroller at the base station

(explained in section 2.2.3). The microcontroller's built-in ADC channels are enabled in

firmware to facilitate this process, ensuring smooth data acquisition and transmission.

Design Justification

 We chose the ESP 32 for our ADC for several reasons. The first of which is the fact that we

were already planning on using it for bluetooth transmission, thus to save cost we decided to use

the onboard and quite capable ADC. A benefit of this choice is that the ESP 32 contains a I2S

controller which will make high sampling rates achievable. The I2S peripheral essentially

enables continuous sampling and thus gives us room to have a high 44.1 kHz sampling rate so

that we ensure there is no aliasing. While using the I2S Peripheral we are able to free up our

CPU to focus on Bluetooth transmission. Since this is all happening on the ESP 32 there is no

external memory needed because the ESP 32 has 4MB of flash included internally. Again,

having this flash internally saves us on CPU work because there are already on-chip drivers like

I2S that can handle some of these operations in the background. One might ask if there is enough

memory to handle the high sampling rate and the sheer volume of data. Given the fact that our

ADC is 12 bits and we want to have a 4Hz resolution in our FFT this requires that we take and

assuming that we sample at with an I2S sampling rate of 44.1 kHz on the ESP 32:

 ∆𝑓 =
𝑓

𝑠

𝑁

 𝑁 =
𝑓

𝑠

∆𝑓 = 44.1𝑘𝐻𝑧
4

 𝑁 = 11, 025 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

This will correspond to

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑖𝑡𝑠 = 12 * 𝑁 = 132, 300 𝐵𝑖𝑡𝑠

Which will require:

 𝐵𝑦𝑡𝑒𝑠 = 132, 300/8 = 16, 538 𝐵𝑦𝑡𝑒𝑠

Or 16.538kB of storage which is well within the amount of flash memory and even the internal

ram of the ESP. The ESP 32 is well equipped to be able to handle the sampling of audio and has

more than enough memory and sampling resources to do so. Thus the ESP was the obvious

choice for this project.

2.2.3 Wireless Subsystem
The wireless subsystem is responsible for capturing audio from the guitar’s jack and transmitting

it to the base station via Bluetooth. We leverage the Bluetooth capabilities of the

ESP32-WROOM-32D and we will be using a standard baud rate of 115200 bps to establish serial

communication between the fob (attached to the guitar) and the base station. An ESP32

microcontroller in the fob samples the audio signal and transmits it wirelessly, while a separate

ESP32 at the base station receives the data for further processing. Communication is handled

using the Arduino IDE and the ESP32 Bluetooth Serial Library, ensuring reliable real-time data

transfer.

Design Justification:

There were many reasons we decided to integrate a wireless subsystem into our project. Initially,

we decided to connect the fob directly to the computer to display the information about which

guitar note was played. We decided to move away from this because one of our high level goals

is to display information on an LCD display similar to what would be displayed on a computer

application regarding the note that was played on the guitar. Since it doesn’t make sense to add

an LCD display on the fob where all the other electrical equipment will be, we decided to add a

base station and include the LCD display on there. To transfer the data to the base station, we

then decided to use the ESP bluetooth capabilities as there are many resources available online

and we can easily transfer data in our project, while also adding hardware complexity. This also

reinforces our decision to do the signal amplification and ADC on the fob, since transferring

digitized data via bluetooth is much better than transferring analog data as it’s less susceptible to

noise and interference. Additionally, we chose to use Bluetooth Serial over BLE (Bluetooth Low

Energy) because we cannot transfer large amounts of data using BLE communication. We are

using a sampling rate of 44.1kHz on the ADC on the fob’s ESP32. For example, we will be

sampling 12 bits at a time because the ADC on the ESP32 supports 12 bits/sample, then that

means that we will be sending 529.2kbps (44.1kHz * 12 bits/sample). For BLE, optimized

throughput limits are 100-200kbps (ESPressif Documentation), while for Bluetooth Serial,

throughput can range from 500 kbps to 1.5Mbps. BLE doesn’t support our data packet size,

which was enough for us to justify moving to Bluetooth Serial. Furthermore, we chose a baud

rate of 115200 bps because it gives a good balance between speed and reliability. While the

ESP32 supports higher baud rates, pushing it too high increases the risk of transmission errors,

especially in a wireless environment where interference is a factor. Our system is transmitting

digitized audio data at about 529.2kbps, but that’s handled by Bluetooth’s packet transmission

rather than raw serial communication. The baud rate mainly affects how the ESP32’s UART

communicates with peripherals, and 115200 bps is a solid standard that’s fast enough for

command and control messages while keeping things stable. It’s also widely supported by

debugging tools, making development and troubleshooting easier.

2.2.4 UART/USB Subsystem
To transmit data to the computer for FFT computations, we will use the UART/USB protocol.

The ESP32 microcontroller at the base station will receive digital data from the ESP32 on the fob

via Bluetooth. Its role is to then forward this data to the computer through a UART/USB

interface. For this, we will utilize the TXD/RXD (transmit/receive) pins of the ESP32 for UART

communication. To convert the UART signal to USB protocol, we will use an FT232RL

UART/USB bridge. The bridge will be connected to a MicroUSB connector, which will allow

data transmission to the computer through a MicroUSB cable. Additionally, the computer will

provide power to the base station via the connector to reduce circuitry on the base station. By

wiring the power (VCC) and ground (GND) pins from the USB connector to the ESP32, we can

power the microcontroller while simultaneously transmitting data.

Design Justification:

As mentioned, we will be transferring digitized data to the base station’s ESP32 via bluetooth. To

transfer the digitized data to the computer, we will be doing this transfer via USB. However, the

ESP32 we are using does not support USB, it only supports UART (TX/RX). This is why we

need a USB/UART controller, to do the data transfer for us. The ESP32 doesn’t have USB data

pins, so without this we would not be able to transfer the data to the computer successfully. We

used the circuit for the integration between the ESP32 and USB/UART controller from a dev kit

we found online (ESP32 Dev Board Schematic). The FT232RL connects to the ESP32's

TXD/RXD pins and interfaces with a MicroUSB port for both data transmission and power

delivery. Additionally, we are using a MicroUSB port with a cable to do the data transfer as well

as powering the base station. Initially, we were going to use a USB-C port but there are many

pins on the USB-C port so soldering would be complex, and we would also need to impedance

match the traces as USB-C (only for USB3.0 not USB2.0) runs at a much higher frequency. We

would need to use USB3.0 because USB2.0 doesn’t provide more than 500mA of current, and

that is the minimum supply we need to give to the ESP32 for proper functionality. When the

ESP32 is idle, it consumes approximately 80mA of current, but can consume up to Bluetooth

capabilities. If we had done USB2.0, then we wouldn’t be able to provide power to any of the

other components on the base station, including sufficient power to the ESP32 since we are

utilizing its bluetooth capabilities. We also did research on using a USB A port, but the issue here

is we wouldn’t be able to transfer power because for USB A, the input is usually the one

providing power while we need the base station to be the one receiving power, so this doesn’t

work in our case. Since we ruled out USB-C and A, we did research on MicroUSB and this was

the best option as it’s simpler to implement because of how widespread it is, and we would be

able to transfer data to the computer as well as receive power from the computer with no issues.

Our MicroUSB connector is rated to support 48V/5A which is more than enough power.

2.2.5 LCD Subsystem
The LCD subsystem will provide real-time system status updates and basic feedback on the base

station. This includes displaying whether the system is powered on and showing tuning

feedback, such as how many cents off the user is from the expected note. This information will

also be available on the computer-based application. The LCD subsystem consists of an 16x2

LCD display, an I2C LCD adapter, and the necessary wiring to interface with the ESP32

microcontroller. The LCD display will connect to the adapter, which will then communicate with

the microcontroller via I2C protocol. The ESP32 will provide both data and power to the display

through Vcc and GPIO pins. For programming, we will use the LCD-I2C Arduino Library in

C++, allowing the microcontroller to send data to the display efficiently. This setup ensures a

simple and low-power interface for real-time feedback.

Design Justification:

The justification to include an LCD display aligns directly with the high level requirements for

this project. We decided to use an I2C adapter to make coding the firmware easier for us, and it

also simplifies the PCB. Without an I2C adapter with the LCD display, we would need to

connect all 16 pins of the LCD display to the ESP32, and we would need to constantly write to

all the data lines to update the display. With an I2C adapter, we only need to connect to 4 pins

(power, ground, SCLK, and SDA), and there are libraries available to initialize and run the I2C

protocol with the ESP32 as the master and the LCD display as the slave. In addition, there are

two common types of LCD displays: 16x2 and 20x4. The 20x4 display consumes slightly more

power, but that is not the reason we are not using it. The main reason we are using the 16x2

board is due to the board size constraint of 100x100mm given by the instructors. The size of the

16x2 display is 80x35mm (LCD 16x02 Datasheet), and the size of the 20x4 display is 98x60mm

(LCD 20x04 Datasheet). Since the 20x4’s display is much larger, we decided to use the smaller

16x2 display to stay within the constraints. If we want to use the larger display, it would be

possible to do within the constraints of the board size, we would just need to place the display on

top of other circuitry on the board to minimize space. We can revert to this later if necessary.

2.2.6 PC Subsystem
The PC Subsystem is responsible for acting as both a source of power for the base station and the

main system used for data manipulation and visual feedback. The PC will also be responsible for

the note selection that the user must play. The PC will be set up to enable single-string,

multiple-string, and other more advanced practice modes as time allows. The subsystem would

receive the signal from the base station via USB and Python scripts would be used to take the

FFT via the FFT module of the SciPy library. Once the fundamental frequency (frequency of first

harmonic that is considered the true frequency of the note) from the FFT has been found, we can

compare the frequency of the played note and that of the expected note (hardcoded) via

conversion to cents, a unit in music that measures note intervals. This conversion can be done via

a simple formula (1200 * log base 2(f1/f2) where f1 is the played frequency and f2 is the

expected) and a threshold of +/- 5 cents can be used to measure whether the note played was

accurate. The PC subsystem would then send the cents measurement to be shown back on the

LCD display of the base station via the PySerial library. The PC Subsystem will also have a local

application that could be used to see more visual feedback on how close the played note is via a

scale (inspired by GuitarTuna’s UI for tuning) showing the expected note in the center and the

value in cents to the left or right at a distance based on the cents and whether the note was too

high-pitched or too low-pitched. The UI could also be used to switch between more complex

modes like chord training. The languages we plan on using to create the UI are HTML, CSS, and

JavaScript with the Flask framework.

Design Justification:

The PC Subsystem is mainly responsible for the second of our listed high-level requirements

(comparing frequencies of the played and expected note using the data received from the base

station via USB). Through a local application, we will be able to give more visual feedback to

the user than the LCD display would be able to on its own. The USB to MicroUSB connection is

being used to power the base station on top of serving as a data connection since it will save us a

lot of time when it comes to hardware design as the power connection will be automatic. We

chose Python for our data processing scripts due to its ease of implementation and variety of

libraries. However, if we encounter the issue of Python not being fast enough for data to be

processed in real-time, C++ could also be used with the FFTW library. Our choices of languages

and the framework for the local application would be best since they allow for more advanced

and creative visuals, support for Python data processing scripts, and a lot of documentation to

refer to.

2.2.7 Power Supply Subsystem
The fob will be battery-powered, operating at approximately 3.3V. We plan to use a 3.7V battery

with an LDO to provide reliable DC power. If power delivery from the battery does not meet

specifications, the backup power supply plan is to use the onboard MicroUSB connector to

power the chip. The base station will primarily be powered via MicroUSB (this was discussed

and justified in the USB/UART subsystem section). This setup ensures stable power delivery to

both the fob and base station while maintaining portability. For biasing the Opamp we will use

an LM828 charge pump circuit to convert 3.3V to -3.3V. This Circuit will power the ESP 32 and

the Opamp Amplifier subcircuit.

Design Justification:

We have an LDO in our design to step down from our power supply to the 3.3V which is needed

to supply power to the ESP32 and the rest of the components on the fob (USB/UART controller,

Opamp circuit, etc.) Initially, we were going to use a 9V battery, but stepping down from 9V to

3.3V is inefficient as there’s a lot of power dissipation. See below:

 𝑃
𝑑𝑖𝑠𝑠

 = (𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡) * 𝐼𝑜𝑢𝑡

 𝐶𝑎𝑠𝑒 1: (9𝑉 − 3. 3𝑉) * 𝐼𝑜𝑢𝑡

 𝐶𝑎𝑠𝑒 2: (3. 7𝑉 − 3. 3𝑉) * 𝐼𝑜𝑢𝑡

 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑃
𝑑𝑖𝑠𝑠

 = 5. 7/0. 4 = 14. 25

Based on this ratio, we see that case 1 dissipates 14.25x more power than case 2, which justified

our design to use a 3.7V battery to provide power for the fob. We have a MicroUSB port on the

fob to flash the ESP32, and if we need more power we can connect the connector to the rest of

the circuit to provide power (can control through a switch). For the Opamp, we need a reliable

3.3V and -3.3V to bias the Opamp to do signal amplification before digitization. Since our

Opamp requires a negative voltage to provide amplification to our signal which has negative

voltage components, we must use a charge pump IC to provide the negative output voltage. Since

the charge pump is a switching circuit. We will pass the input supply voltage, either 5V from

USB or 3.7V from the battery, into the charge pump IC and it will output the negative voltage

and then we will pass the negative supply voltage to the negative voltage LDO. The purpose of

the negative voltage LDO is to step up the negative supply voltage to -3.3V while also filtering

out some of the switching noise from the charge pump. We need this LDO also to ensure that the

power to the Opamp is clean and that none of the switching harmonics leak into the amplifier

circuit and alter the amplified guitar signal.

2.3 Subsystem Requirements
The following Requirements and Verification (R&V) Tables outline the criteria for each

subsystem and how we will verify their functionality. By ensuring that all requirements are met

through verification, we can systematically validate each module and achieve a fully functional

project.

2.3.1 Amplification Subsystem R&V

Requirements Verification

The Opamp requires the bias voltages to be

within +18V and -18V, currently, we are

planning to operate at -Vcc = -3.3V and Vcc =

3.3V

Use a multimeter to probe the power and

ground pins of the IC to ensure the Vcc and

-Vcc voltages are within 10 % of their

expected values

Using a 100 mVpp average input voltage, the

ADC requires the input to be between 0V and

3.3 V, The input must be amplified and a DC

offset added

Use an oscilloscope to measure the amplitude

of the output of the amplifier. Must be within

0-3.3V to avoid clipping or distortion of the

signal during ADC. Allowing ~20% room for

error in comparison to the ideal 100mvPP

case.

The operating temperature of RC4559 is from

0 degrees to 70 degrees Celsius. Maintain

thermal stability by staying in this range.

Use a temperature probe to ensure the

operating temperature doesn’t exceed 70

degrees Celsius or drop below 0 degrees

Celsius.

2.3.2 Analog to Digital Subsystem R&V

Requirements Verification

ESP32 microcontroller operates at 3.3V, and

we must be in a range between 3.0V and 3.6V

Use a multimeter to probe the power and

ground pins of the IC to ensure that the Vcc

for proper functionality. voltage is within 10% of the desired operating

voltage

The input to the ADC must be in a range of

0V to 3.3V

Use an oscilloscope to ensure the input

voltage is in the range of 0-3.3V, otherwise

the signal will get clipped

The ADC has multiple channels, must ensure

we hookup to the correct channel and enable

the correct channel with the respective GPIO

pins

Verify channel selection on the firmware side

and data acquisition on the firmware side.

The operating temperature of ESP32 is from

-40 degrees to 85 degrees Celsius. Maintain

thermal stability by staying in this range.

Use a temperature probe to ensure the ESP32

stays below 85 degrees Celsius during

operation.

2.3.3 Wireless Subsystem R&V

Requirements Verification

ESP32 microcontroller operates at 3.3V, and

we must be in a range between 3.0V and 3.6V

for proper functionality.

Use a multimeter to probe the power and

ground pins of the IC to ensure that the Vcc

voltage is within 10% of the desired operating

voltage

Max data transfer rate is 150Mbps, but we

will be transferring at a standard of

115.2kbps.

Measure the data rate in debug logs on the

firmware side to ensure the data rate of

115.2kbps.

The Bluetooth connection between the fob

and the base station must maintain a latency

of less than 300ms to ensure real-time data

Measure round trip time of data transmission

between the fob and the base station using a

test signal. Ensure the latency remains under

transmission without delays. This is critical

for quick feedback to the user.

100ms.

2.3.4 USB/UART Subsystem R&V

Requirements Verification

Provide 3.3V-5.25V +/- 0.5% for power via

USB-C cable connected to computer; the USB

connector can provide up to 5V for power

Use a multimeter to probe the power and

ground pins of the FT232RL, and ensure that

the package is receiving at least 3.3V and no

more than 5.25V for successful operation.

The FT232RL must receive UART signals,

convert to USB, and transfer to the PC

Send a “Hello World” message from the

ESP32 on the base station, and check to see if

the message is successfully received at the PC

terminal. This ensures the UART/USB

conversion is correct.

When plugged in, the device must be

recognized by a COM port.

On the PC side, Windows should recognize

the device as a COM port. If not, will need to

use a linux device and configure the device

through /dev/tty/*

Operating temperature of FT232RL is from

-40 degrees to 85 degrees Celsius. Maintain

thermal stability by staying in this range.

Use a temperature probe to ensure the

FT232RL stays below 85 degrees Celsius

during operation.

The ESP32 TX/RX pins must correctly be

configured to the FT232RL TX/RX pins, and

they must run on the same baud rate (e.g

115200 bps).

Use a multimeter to check continuity between

the pins respectively. Zero resistance means a

direct connection between the pins.

The USB4230-03-A connector must

successfully power the base station’s ESP32

microcontroller and the LCD display. See

ADC section for ESP32 microcontroller

requirements, and see LCD section below for

its requirements. When connected to a PC via

a USB cable, the connector will typically

provide 5V. The connector is designed to

handle 5A 48V.

Use a multimeter to probe the power and

ground pins on the USB connector to ensure

that voltage is being transferred from the PC.

This ensures we won’t need some sort of

external power supply for the base station.

On plug-in to USB device, the device should

draw no more than 100mA current.

Use a multimeter to measure current input for

the USB/UART bridge, and ensure that no

more than 100mA of current is drawn from

the device.

2.3.5 LCD Subsystem R&V

Requirements Verification

The I2C LCD1602 needs to receive a supply

voltage between 3.15V - 3.45V to properly

function and not overheat

We can use a multimeter to probe the power

and ground pins of the LCD display to ensure

they are within 3.15V - 3.45V

The Serial Clock Line pin (SCL) of the I2C

LCD1602 should receive consistent clock

signals from GPIO pin 22 depending on

whether it is in standard or fast

communication mode

We can use an oscilloscope to probe the SCL

and ground pins of the LCD to see if a

consistent 100 kHz square wave is generated

(if in standard mode, otherwise should expect

400kHz for fast mode)

The Serial Data Line pin (SDA) of the I2C

LCD1602 should receive data frames from

We can use a logic analyzer to probe the SDA

and ground pins to decode data moving

GPIO pin 21 with the proper structure and

expected values

between the connection and verify if the

structure and data are as expected (address,

write data, ACK bit)

2.3.6 PC Subsystem R&V

Requirements Verification

The PC Subsystem should be able to

accurately report the frequency of the note

played on the guitar to be used in its

computation for the difference in cents.

Use an oscilloscope hooked up to the guitar to

measure the note frequency (or credible

software like Audacity) and compare it to

what is reported by the PC Subsystem

The PC Subsystem should give an accurate

measurement of note difference in cents on

the scale shown in the user interface

Use an oscilloscope to measure the frequency

played and manually use the formula for cents

to calculate and compare the values

The PC Subsystem should be able to properly

interface with the USB connection to send

data packets back to the Base Station to

display metrics on the LCD

Use Wireshark to analyze packets being sent

via the USB socket and make sure the packets

align with expected data values

2.3.7 Power Supply Subsystem R&V

Requirements Verification

A 3.7 battery will be used to power the fob

and supply voltage to the ESP32 on the fob.

Use a multimeter to measure the output

voltage of the battery. Ensure the 3.7V battery

matches the expected 3.7V with in 10 %.

Ensure the battery-powered circuit steps down

3.7V to 3.3V by a LDO for the ESP32 to use.

Use a multimeter to probe the output of the

battery step-down circuit, and ensure we have

3.3V +/- 5% on the output side to power the

ESP32 effectively.

The battery must provide a stable 3.3V +/- 5%

output after LDO for the ESP32

microcontroller on the fob for successful

operation.

Use a multimeter to measure the operating

voltage of the ESP32 on the fob via the VCC

and GND pins.

The output voltage of the voltage inverter

must be as close as possible to the negative of

the supply voltage to ensure performance

Use a multimeter to ensure the output of the

inverter equals the negative of the supply

voltage with +/- 10% error

The outpout of the negative voltage LDO is

critical to the function of the amplifier circuit

so it is required that the output voltage be as

close as possible to -3.3V

Probe the out put of the negative voltage LDO

to ensure that the value is within 10% of

-3.3V

2.4 Tolerance Analysis
The most critical circuit in our design is the amplification circuit before sampling. This circuit

needs to be able to bring up the level of the input signal such that solid sampling can occur while

also being able to add a DC offset without changing the frequency spectrum of the input signal

much. To ensure that our amplification circuit could conceivably meet our needs we will assume

that the peak-to-peak voltage of the input single tone (we used a single tone for ease of

simulation) is 100mV or 50mV amplitude is amplified about 20 times with a DC offset to ensure

that the whole signal remains positive. Figure 3 shows the simulation setup that we used. The left

Opamp is set up in an inverted summing amplifier configuration which will add the DC offset to

the input guitar signal and produce the output which is off by a negative sign on the output. The

resistors in the input, R6 and R2, control the amplification of each input relative to R3. Given

that R6 is 20 times smaller than R3, that is the factor of amplification it will give, while by

similar logic the DC_Offset will be slightly attenuated.

Figure 4: Summing Amplifier Schematic

Figure 5: Input Voltages for Simulation

After passing through the summing portion of the circuit the signal reaches the inverter which is

tasked with ensuring that the output voltage sits in the range of 0V to 3.3V as this is the range

that our ADC on the ESP 32 accepts. Since the output of the Summing circuit is the addition of

the signals in Figure 4 multiplied by a negative one as shown in Figure 5, we must invert the

signal on the output to satisfy our feasibility requirements. Using a unity inverter that amplifies

the incoming signal by a factor of negative one we achieve our desired output as shown in Figure

6. Thus our amplifier design is feasible given that we are able to bias the opamps in the

configuration above. The resistor values are subject to change as the physical design may present

constraints not accounted for in this feasibility simulation. However, this simulation

demonstrates that the concept of our amplifier design is valid and would serve our needs in the

project.

Figure 6: Output Of Summing Circuit

Figure 7: Output of Inversion Stage

The previous section assumed a perfectly ideal case in that all the resistor values had zero

tolerance associated with them and there was no noise on the input voltage. Next we will

conduct a simulation that accounts for these factors. We first consider the noise on the input

voltage. After connecting a guitar to an oscilloscope and measuring the output before and after

playing the guitar we find that, on average there is a range of +5mV to -5mV of noise on the

output. I will model this noise with a piecewise voltage source that I will use to approximate the

zero-mean nature of the noise. Our amplifier output voltage is governed by the following

equation(with resistance values from the above schematic):

 𝑉
𝑜𝑢𝑡

= (
𝑅

3

𝑅
6

𝑉
𝐺𝑢𝑖𝑡𝑎𝑟𝐼𝑛

+
𝑅

3

𝑅
2

𝑉
𝐷𝐶𝑂𝑓𝑓𝑠𝑒𝑡

)

Since noise that we are most concerned about is coming from the guitar input I will add the noise

voltage to the guitar input signal. Under our current setup the guitar voltage will be amplified 20

times because,

 𝐺
𝐺𝑢𝑖𝑡𝑎𝑟𝐼𝑛

=
𝑅

3

𝑅
6

= 10,000
500 = 20

Thus we expect the final contribution of the noise on the output waveform to be:

 𝑉
𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑𝑁𝑜𝑖𝑠𝑒

= 𝐺
𝐺𝑢𝑖𝑡𝑎𝑟𝑡𝐼𝑛

* 𝑉
𝑛𝑜𝑖𝑠𝑒

= 20 * 0. 005 = 0. 1𝑉

Thus at most we expect the noise to add or subtract one tenth of a volt from the guitar signal.

Thus the noise present on the guitar input voltage should be of little effect on the output voltage.

Running the simulation under these conditions we see that the output waveform looks like:

Figure 8: Output Amplifier Voltage with 5mV Amplitude Input Noise

Now that we have include noise in in the input, we consider the effects on the maximum and

minimum output voltage based on the resistor tolerances. Since the goal of this tolerance analysis

is to create a system that amplifies the input voltage and adds a DC offset without exceeding

3.3V or going lower than 0V we will look at the changes to the maximum and minimum values

based on the tolerances of the resistors in our summing amplifier circuit. We will consider the

tolerances on resistors R2, R3, and R6 since those have the main contribution to the output

voltage. Since the second opamp stage is only a voltage inverter, the tolerances on those resistors

will not alter the output voltage as much. The resistor that we chose to use has a 5% tolerance,

thus we will consider the effects on the output voltage in this range.

Figure 9. Effect of Tolerances on the Output Voltage

Looking at the max line in Figure 8, this will occur when the R3 Resistor is +5% over 10000

Ohms and R2 and R6 are -5% under 10000 and 500 Ohms Respectively. The max line reaches

just over 3V but there is still about 200 mV until the hard cutoff of 3.3V. Similarly, if we look at

the minimum line, which corresponds to when the R3 Resistor is -5% under 10000 Ohms and R2

and R6 are +5% over 10000 and 500 Ohms Respectively. The minimum voltage line shows that

there is no issue clearing the minimum voltage criteria of 0V. Thus regardless of the tolerances

on the summing amplifier resistors there is no case where we exceed our output target maximum

of 3.3V or fall below the minimum of 0V. Even if we include a simple approximation of the .1V

of noise voltage on the input, we see:

Figure 10: Output Voltage with Tolerance and Input Noise Included

Thus we see that even with the noise on the input voltage we still have margin both on the low

side of our 0 to 3.3V range and on the high side. We can tolerate the noise and tolerance error on

our resistors and still meet our goal of amplifying the input voltage, adding a DC offset and

remaining within the 0V to 3.3V limit. As a final point, the noise present in the signal should not

be a large issue in signal processing, since it will not meaningful change the amplitude or the

frequency content. However, we still have a plan in place to minimize noise, in that we are

planning to put a lowpass filter on the output of our amplifier with a cutoff frequency just above

the audible range so that we can limit noise before sampling. This filter will make the noise less

of an issue and less present when sampling.

3. Cost and Schedule
Labor Analysis
We found that the average salary for an Electrical Engineering graduate at UIUC is $87,769 and

the average for a Computer Engineering graduate is $109,176. This means that the average salary

for an ECE graduate is $98,472.50. Converted to an hourly rate, this would be $47.34 an hour

(assuming a standard 40 hour weekly schedule). We estimate that with the amount of time we

have and the complexity of our project, each member can expect to put in 1.5 hours of work in a

day, 5 days a week. This would come out to 9 weeks * 5 days * 1.5 hours per day * 47.34 dollars

= $3,195.45 per team member. Our total labor cost would be 3 team members * 3195.45 dollars

= $9,586.35

Parts List

Fob:

Description Manufacturer Part Number Quantity Cost per Unit ($)

ESP 32

Microcontroller

Espressif ESP32-S3-WRO

OM-1-N16

1 3.48

Negative

Voltage LDO

Texas

Instruments

LM337KVURG

3

1 0.96

Charge Pump

Circuit

Texas

Instruments

LM828M5/NOP

B

1 0.92

LDO Diodes Inc AZ1117CD-3.3T

RG1

2 0.49

Opamp IC National

Semiconductor

LMV922MX 1 0.6

Button ITT C&K PTS645SM43S

MTR92LFS

2 0.13

68 ohm Resistor Yageo RC0603FR-076

8RL

1 0.1

240 ohm

Resistor

Yageo RC0603FR-076

8RL

2 0.1

150 ohm

Resistor

Yageo RC0603FR-071

50RL

1 0.1

0 ohm Resistor Stackpole

Electronics

RMCF0805ZT0

R00

11 0.01

1k ohm Resistor Stackpole

Electronics

RMCF0805JT1

K00

9 0.01

10k ohm

Resistor

Stackpole

Electronics

RMCF0805JG1

0K0

7 0.01

USB to Uart IC FTDI FT232RL-REEL 1 5.08

N Channel International IRLML0030TR 2 0.39

Mosfet Rectifier PBF

2 pin header

Molex 22-23-2021 3 0.057

Battery Header JST S2B-PH-K-S(LF

)(SN)

1 0.037

Battery Sparkfun PRT-18286 1 10.95

Micro USB

Connector

Amphenol ICC /

FCI

10118194-0001

LF

2 0.26

Red LED Lite-On Inc. LTST-C150CKT 3 0.17

TVS Diode Littelfuse SP0503BAHTG 2 0.40

Schottky Diode Comchip CDBA540-HF 4 0.313

1uF Tantalum

Capacitor

Kyocera AVX TAJR105K020R

NJ

2 0.25

1nF Capacitor Samsung CL21B102KBA

NNNC

1 0.10

100 nF

Capacitor

Samsung CL21F104ZAA

NNNC

5 0.075

10 uF Capacitor Murata GRM21BR61H1

06ME43L

12 0.16

The total cost of the parts in the Fob comes out to $31.26

Base Station:

Description Manufacturer Part Number Quantity Cost per Unit ($)

ESP 32

Microcontroller

Espressif ESP32-S3-WR

OOM

1 3.46

LCD Display SunFounder 4411-CN0295D

-ND

1 8.95

4 pin connector TE Connectivity 640445-4 1 0.36

100 nF

Capacitor

Yageo CC0805KRX7R

9BB104

1 0.01

22uF Capacitor Samsung CL21A226MOQ

NNNE

1 0.23

1 nF Capacitor Wurth

Electronics

885012205061 2 0.01

Schottky Diode Comchip CDBA540-HF 1 0.47

TVS Diode Littelfuse SP0503BAHTG 1 0.41

Red LED Lite-On Inc. LTST-C150CKT 3 0.17

MicroUSB

Connector

Amphenol ICC /

FCI

10118194-0001

LF

1 0.26

NMOS mosfet ON

Semiconductor

2N7002ET7G 2 0.14

10kOhm resistor Vishay CRCW080510K

0FKEA

4 0.01

0R ohm resistor Yageo RC0603JR-130 9 0.01

RL

100k Ohm

resistor

Yageo RC0805FR-071

00KL

1 0.10

1k Ohm resistor Vishay Dale CRCW08051K0

0FKEA

2 0.01

470 Ohm

resistor

Vishay Dale RCG0805470RJ

NEA

2 0.01

Keypad switches TE Connectivity FSM2JSMAA 2 0.06

USB/UART

Controller

FTDI FT232RL-REEL 1 5.17

LDO (5V to

3.3V)

Diodes AZ1117CD-3.3T

RG1

1 0.50

The total cost of parts in the base station is $21.02.

Which brings the total cost in parts to be $52.28.

After summing all our parts and labor together, we come to a final cost of:

(Labor = $9,586.35) + (Parts = $52.28) = $9638.63.

Schedule

Color Code: Eli, Omeed, Murtaza, All

 Sunday Monday Tuesday Wednesday Thursda

y

Friday Saturday

Week of

3/03

Order

Parts

Order PCB

Continue to

work on FW,

Teamwork

Evaluation

Design

Docum

Begin

writing

Integrate

fob, base

for

PCB

pass 1

Begin

designi

ng ESP

Firmwa

re

Contin

ue

writing

scripts

for

pulling

data

from

USB

socket

and

display

differen

ce in

cents

Order PCB

Start writing

FW for

ESP32 to

prep for

breadboard

demo

and get parts

from supply

shop (ESPs are

ordered from

Amazon, and

all other parts

are found in

EShop)

The LCD

Display will be

ordered

through

digikey.

1 Due

11:59pm

ent Due

11:59p

m

Breadb

oard

demo

HW/F

M Done

Finish

breadbo

ard for

demo

Finish

scripts

for

pulling

data

from

USB

socket

and

display

differen

ce in

cents

script to

send data

back to base

station

station,

and

laptop

communi

cation

for demo

Week of

3/10

Finish

writing

Breadboard

Demo

Begin

designing UI

 Finish

writing

script

for

sending

data

back to

base

station

Begin

writing

firmware to

display data

on LCD

display

for laptop

application

firmware to

display data

on LCD

display

Week of

3/17

Spring

Break

Spring

Break

Spring Break Spring

Break

Spring

Break

Spring Break Spring

Break

Week of

3/24

 Finish

designing

UI for

laptop

application

Assemble

PCB

Assemble

PCB

Begin

integrating data

processing

scripts with UI

Have PCB

tested, reorder

if necessary

with correct

changes

 Test

PCB

and

verify

relevant

paramet

ers

Test PCB

integration

with FW,

and ensure

bluetooth

from fob to

base station

is working

correctly

with proper

data transfer

Week of

3/31

 Begin

integrating

data

processing

scripts with

UI

Begin

integrating FW

with

HW

Individual

Progress

Reports due

11:59pm

 Base

station/Fob

integration

Week of Finish Begin Base

4/07 integrat

ing

data

process

ing

scripts

with UI

integrating FW

with software

station/Fob

integration

Week of

4/14

 Integrate all

systems

Final Debug Final

Debug

Final Debug Prepare

Mock

Demo

Week of

4/21

Begin

Final

Paper

 Prep for

Final demo

Week of

4/28

 Prep for

Mock Demo

 Prep for

Final

Presentation

Week of

5/05

 Final Paper

Due

4. Discussion of Ethics and Safety
When developing this project, it’s crucial that we consider the ethical and safety

responsibilities that come with it. Regarding ethics, it is important that we credit

sources of inspiration for our project out of respect for laying the foundation of

what we are trying to accomplish. This would align with the ACM Code of Ethics

section 1.5: Respect the work required to produce new ideas, inventions, creative

works, and computing artifacts. For example, the UI of our local application is

partially inspired by that of GuitarTuna with the measurement of how close a

played note is to the expected note shown on a scale in cents. If we use schematic

designs that are found through research we will cite the authors and give due

credit. It is also important to make it clear which components we are ordering that

will compose our design so that we don’t falsely claim that each part of our device

is solely our intellectual property. Throughout the design process, we will also

make sure to accept constructive criticism and address our own shortcomings to

make the best and safest design we possibly can. By not being open-minded as to

what could improve our design or make it safer, we would limit the potential of our

project’s capabilities. For this reason, it is important to work under section I.5 of

the IEEE Code of Ethics, which requires us to act on criticism as well as fairly

credit others whose ideas we use in our project.

To ensure that our design is safe to use, numerous precautions will be taken so that

we uphold the IEEE Code of Ethics section I.1, which requires us to strive toward

the safety of all and ensure that we always work to serve the best interest of others

when it comes to education and removal of conflicts of interest. To do this, we will

follow a set of procedures to make sure that our PCB and hardware is designed in

such a way that avoids any overheating, each connection is securely soldered, and

wires are all completely insulated. To protect both the boards and the users,

enclosures will be used to secure and isolate the hardware. If we have any doubts

about the safety of our project, we will make sure to address them promptly and be

transparent about each safety obstacle we encounter along the way so that no one is

harmed in the production or use of what we develop. There are two main hazards

with our project, misuse of the 3.7V battery and electric shock from the PCBs. To

mitigate the 3.7V risk we will ensure that the battery is used correctly, not

discharged too quickly, and stored in a safe environment. We will be sure to handle

the battery with care during connection and while in use. We will also be sure to

limit the current draw from the battery to prevent damage and danger to the user.

To guide our use we will follow these rules when handling the battery:

-​ Ensure storage in a cool dry location

-​ Before connection check for shorts in the battery connector and on the

PCB

-​ Monitor the output current of the battery during operation to ensure

that it is in a safe range.

 To ensure safety with the PCB we will limit exposure to higher voltages and

currents such that a user will not be able to easily interact and potentially be hurt

by them. As we solder parts onto the PCB, we will make sure to consistently

perform continuity checks to ensure that every connection is properly soldered and

there are no shorts and there are connections to ground when necessary. We will

also ensure that there is proper ventilation when using the soldering equipment,

turn off the iron when no longer in use, and that everything in the lab is returned to

its designated spot before we leave. Our design decisions should ensure overall

safety as we are using enclosures to protect hardware and not dealing with any

higher voltages (5V from USB or 3.7V from battery). Our top priority is the safety

of our end users and of our lab mates in this class, we will do everything in our

power to deliver a safe project, by following all applicable safety codes and

seeking knowledgable advice as much as possible.

5. Citations

“ACM Code of Ethics and Professional Conduct.” ACM, 22 June 2018,

www.acm.org/code-of-ethics.

“Bluetooth LE & Bluetooth - - — ESP-FAQ Latest Documentation.” Espressif.com, 2020,

docs.espressif.com/projects/esp-faq/en/latest/software-framework/bt/ble.html

“ESP32 Documentation”

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32d_esp32wro

om-32u_datasheet_en.pdf

“ESP32 Dev Board Schematic”

https://dl.espressif.com/dl/schematics/ESP32-Core-Board-V2_sch.pdf

“Fundamental Frequency and Harmonics.” The Physics Classroom,

www.physicsclassroom.com/class/sound/lesson-4/fundamental-frequency-and-harmonics

#:~:text=The%20fundamental%20frequency%20is%20also,complete%20wave%20withi

n%20the%20pattern. Accessed 6 Mar. 2025.

“Guitar Output Voltage.” Sound-Au.com, sound-au.com/articles/guitar-voltage.htm.

“IEEE Code of Ethics.” IEEE, www.ieee.org/about/corporate/governance/p7-8.html. Accessed

27 Feb. 2025.

“LCD 16x02 Datasheet” https://www.vishay.com/docs/37484/lcd016n002bcfhet.pdf

“LCD 20x04 Datasheet” http://www.systronix.com/access/Systronix_20x4_lcd_brief_data.pdf

http://www.acm.org/code-of-ethics
http://docs.espressif.com/projects/esp-faq/en/latest/software-framework/bt/ble.html
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32d_esp32-wroom-32u_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32d_esp32-wroom-32u_datasheet_en.pdf
https://dl.espressif.com/dl/schematics/ESP32-Core-Board-V2_sch.pdf
http://www.physicsclassroom.com/class/sound/lesson-4/fundamental-frequency-and-harmonics#:~:text=The%20fundamental%20frequency%20is%20also,complete%20wave%20within%20the%20pattern
http://www.physicsclassroom.com/class/sound/lesson-4/fundamental-frequency-and-harmonics#:~:text=The%20fundamental%20frequency%20is%20also,complete%20wave%20within%20the%20pattern
http://www.physicsclassroom.com/class/sound/lesson-4/fundamental-frequency-and-harmonics#:~:text=The%20fundamental%20frequency%20is%20also,complete%20wave%20within%20the%20pattern
http://www.ieee.org/about/corporate/governance/p7-8.html
https://www.vishay.com/docs/37484/lcd016n002bcfhet.pdf
http://www.systronix.com/access/Systronix_20x4_lcd_brief_data.pdf

LMV921, LMV922, LMV924 LMV921/LMV922/LMV924 Single, Dual and Quad 1.8V, 1MHz,

Low Power Operational Amplifiers with Rail-To-Rail Input and Output Check for

Samples: LMV921, LMV922, LMV924 1FEATURES. 2000.

https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/996/LMV921_22_24_

Rev_Apr_2013.pdf

https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/996/LMV921_22_24_Rev_Apr_2013.pdf
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/996/LMV921_22_24_Rev_Apr_2013.pdf

