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Introduction 

Problem 
 
Weightlifting is a key method of staying active and maintaining fitness for many people. 
Currently, the main metric of progress in weightlifting for everyday weightlifters is varying the 
heaviness of the weight and the number of repetitions. For example, once could raise up 10 
pounds (weight) 10 times in a row (repetitions). But, there is also value in (and workouts 
designed around) moving the weight at an appropriate speed, known as Velocity-Based Training 
(VBT) [1]. Continuing our example, instead of  just counting how many times the weight is 
lifted, one tries to raise the weight slowly, never exceeding two meters per second. Effective 
velocity-based training emphasizes lifting heavy, while simultaneously ensuring one handles the 
weight well and with the speed desired. 
 
However, velocity-based training is not accessible because available sensors for tracking velocity 
are costly and therefore infeasible for everyday weightlifters. If a lifter does buy an expensive 
sensor, those available lack some key features for an optimal workout. For example, some 
sensors assist with tracking velocity but do not assist with tracking form. Also, current sensors 
offer feedback that consists of the lifter doing their exercise and then checking their results on 
their phones. Since this feedback is not necessarily “real-time”, these sensors cannot indicate to a 
user to adjust their velocity between each repetition. This results in wasted repetitions; and, for 
form tracking sensors, users are not informed immediately if bad form is used during the 
workout, increasing the risk of injury [2-3]. 

Solution 

We propose a compact wearable device that takes and transmits workout data to a phone via 
Bluetooth. It will utilize a 9-axis sensor (acceleration, gyroscope, and magnetometer). However, 
in addition to sending data to a phone, it will internally process data taken during the workout 
and provide immediate feedback to the user through haptic signaling and LED feedback. Before 
starting the workout, the user can indicate on his/her phone the workout they are performing and 
any desired constraints. This data will be sent to the device. The device will track the user's form 
and acceleration, alerting him/her if a desired constraint is not being met so that it can be 
immediately corrected mid-set. It would be small enough to velcro around a user’s wrist, hang on 
a necklace worn by the user, velcro-strap around a weight set, or attach it to a desired object. 
Using the acceleration data given by the tracking sensor, the app will display the collected 
velocity graphically and the lifting form so that the user can visually see his/her progress. 

 



Visual Aid 
 

  
Figure 1: Usage of athletic tracking sensor.  

 

High-Level Requirements 
Our athletic tracking sensor will need to meet the following requirements: 

-​ IMU readings on-chip will be able to determine velocity in the vertical direction with 
precision in the hundredths of a meter per second for bench press and back squat 
workouts. The device will alert the user immediately when a goal velocity is 
met/exceeded. 

-​ The athletic sensor must be able to send and receive data via Bluetooth to/from our 
developed iPhone app, which will then use that data to graphically represent the athlete’s 
velocity at a certain load. 

-​ For form applications, our gyroscope will be able to detect degrees in a given direction at 
the precision of 3 degrees and alert the user within a half second of entering bad form. 

Testing 
To test our device, we will be simulating a weightlifting session in an enclose area. To ensure 
safety of the testers, we will not be using a barbell nor weighted plates. Instead, we will be using 
a PVC pipe that is similar in length to an actual barbell. We will test and verify operation of our 
device with the following two workouts:  



Back Squat: 
 
Back squat is the movement in which weight is placed across the user’s shoulders, often a long 
metal bar called a barbell. The user then bends their legs at the knees and lowers their body until 
their thighs are parallel with the ground (squatting). Then, the user stands back up. Squat would 
require one sensor module on the upper back of the user. For the acceleration tracking aspect, the 
vertical velocity of the user would be gained (using the magnetometer data to isolate the vertical 
component of acceleration data). In addition to tracking and sending the data to the app, the user 
will input goals such as not wanting to pass a given velocity (in which case the haptics will 
actuate if the goal is not met), or wanting to exceed a certain velocity (in which case the haptics 
will actuate if the goal is met). For form tracking, the dangerous aspect of squat is back form. 
Often, lifters will lean too far forward at the bottom of their rep, putting themselves at risk. The 
microcontroller will analyze gyroscope readings to ensure the user's back stays within a safe 
degree from vertical.  

Bench Press: 

Bench Press is an exercise in which the user lays down on their back, and holds a barbell above 
their chest. They then lower the bar to tap their chest, and then push the weight back upwards. 
For bench press, we would have one sensor strapped to the center of the barbell or two on either 
end of the barbell. Acceleration tracking would be very similar to squat: isolating the vertical 
direction and then implementing speed goals. For form, we would additionally isolate lateral 
movement and haptically warn if dangerous amounts of movement occur (forward and 
backward, for example). Additionally, in the two-sensor mode, the levelness of the bar will be 
tracked to ensure one side is not higher/lower than the other. 

 



Design 

Block Diagram 

 
Figure 2: Block diagram for Athletic Tracking Sensor 

 
Our block diagram consists of 4 different subsystems: power, sensing, control, and feedback. The 
power subsystem converts 3.7V battery power to 3.3V/1.8V regulated power and handles battery 
charging. The sensing subsystem consists of a 9-axis sensor and an optional force sensor to 
collect data on the position of the tracking sensor and how much force is being applied during an 
exercise. The control subsystem handles programming of the microcontroller and utilizes a 
mobile app to display collected data and set parameters for success and failure. The feedback 
subsystem provides haptic and visual feedback via a vibration motor and LEDs to alert the user 
of deviations from correct form as soon as possible.  



Physical Design 
The Athletic Tracking Sensor will be enclosed in a 3D-printed rectangular enclosure similar to 
the one below. The use of plastic ensures that signal disruptions are a lot less likely, especially 
since we are using Bluetooth connectivity. There will also be holes added to the enclosure to 
ensure proper airflow. 

 
Figure 3: 3D-printed PCB enclosure example 

 

Power Subsystem 

Hardware Design Overview 

 
Figure 4: Power Subsystem Schematic Design  



The power subsystem utilizes a 3.7V 2000mAh battery as its main power source. After being 
connected with a battery charging IC, the voltage is stepped down to 3.3V and 1.8V via two 
consecutive linear voltage regulators. This reduces the amount of heat created, mitigating any 
risks of injuring the user via heat or melting the plastic enclosure. The battery charger allows the 
user to recharge the device as much as needed. The power subsystem ensures stable power 
supply to all other components and ensures the device is capable of recharging. 

Functionality & Contribution 

The main goal of the power subsystem is to convert the Adafruit 3.7V 2000mAh battery’s 
voltage to more stable supply voltages for our devices (3.3V and 1.8V) and enable recharging the 
device for its users.. The following components contribute to this goal: 
 

-​ BQ24232HARGTT Li-ion charger: Enables charging, including an LED to indicate when 
said charging is occurring. 

-​ TLV76133DCYR linear voltage regulator: Regulates the battery’s 3.7V down to 3.3V for 
use on most of our devices 

-​ AP7331-18WG-7 linear voltage regulator: Regulates the 3.3V output of the previous 
component down to 1.8V for the 9-axis sensor’s I/O voltage. 

-​ UP2-AH-1-TH USB-A 2.0 connector: Processes USB charging and allows data transfer 
to the control sensor. 

 
The power subsystem converts the battery’s higher voltage to lower voltages that our 
components and ICs can reliably use. The addition of a battery charger increases convenience for 
the user while allowing them to understand when their device is charging. 

Interfaces 

Inputs: 
 

●​ Adafruit 3.7V 2000mAh Li-ion battery 
○​ Voltage range: 3.0 (discharged) to 4.2 (full charge) 
○​ Input to battery charger: 3.7V 

●​ 3.3V output from TLV76133DCYR: input to AP7331-18WG-7 to regulate down to 1.8V 
 
Outputs: 
 

●​ 3.3V output from TLV76133DCYR: powers the ESP32-S3R8, USB-Serial converter, 
9-axis sensor, and various throughhole components of the feedback subsystem 

●​ 1.8V output from AP7331-18WG-7: powers the 9-axis sensor’s I/O voltage 



●​ Charging LED: indicates whether the battery is being charged or not at any given time 
 

Requirements & Verification 

Requirements Verification 

●​ The power subsystem must recharge 
the battery within 6 hours. 

●​ Discharge the battery until its voltage 
is equivalent to 3.0V, or its discharged 
voltage 

●​ Plug the device into a USB power 
source 

●​ Check the voltage of the battery every 
hour until it reaches 4.2V, or its 
voltage when fully charged 

●​ Repeat at least once to ensure 
consistency 

●​ The power subsystem must supply 
continuous power to the rest of the 
system for at least 2 hours from a fully 
charged battery. 

●​ Fully charge the battery and begin 
operating the athletic tracking sensor, 
including gathering measurements to 
be sent to the mobile app 

●​ Utilize a stopwatch to track how long 
the device stays operational 

●​ Ensure the operational time the device 
has under one charge exceeds 2 hours 

●​ Repeat at least once to ensure 
consistency 

●​ The power subsystem must not be 
overloaded by the device’s 
components, failing to supply enough 
current for it to operate 

●​ Fully charge the battery and begin 
operating the athletic tracking sensor 

●​ Verify that the correct voltage is being 
outputted by both regulators in the 
subsystem 

●​ Use a multimeter to measure total 
current consumption during both 
exercises used in testing 

●​ Verify that current draw does not 
exceed 1 A at any point during 
operation 



Figure 5: Power Subsystem Requirements & Verifications 

Design Decisions 

We decided to use two linear voltage regulators chained together. By connecting our 3.3V 
regulator into the 1.8V regulator, it minimizes the amount of heat generated from said 
conversions. Because wearable devices and small form factors in general are susceptible to 
overheating (especially with a plastic enclosure), it is crucial we reduce our heat output as much 
as possible. 
 
Battery charging is included so that the device can be reused regularly. While we do have to 
consider overheating and overcharging issues, it is important that users are able to charge the 
device overnight before they work out. Because some users may exercise up to 6 times a week, 
the athletic training sensor must be readily available on a daily basis. 

 

●​ Repeat at least once to ensure 
consistency 



Control Subsystem 

Hardware Design Overview 

 
Figure 6: Control Subsystem Schematic Design 

 
The control subsystem consists of our microcontroller (the ESP32-S3R8) and a USB to serial 
data converter in order to program it. As the main computational component of our device, the 
ESP32-S3R8 will be responsible for processing the data from our 9-axis sensor via SPI. Utilizing 
SPI allows for faster data transfer, which will allow our device to experience less latency when it 



comes to alerting users of bad form. The embedded Bluetooth module will be used to 
communicate with our mobile phones so that we can display the data collected and set the 
parameters the ESP32-S3R8 should trigger at. 

Functionality & Contribution 

Operation of the athletic tracking sensor will be initiated via a “Record Data” button. This 
signals to the device that we are starting a workout and need to start measuring data. This also 
ensures a boost in efficiency, as we will not always have our device operating at full power when 
it does not need to do so. 
 
Once operational, the control subsystem handles all of the data processing. The 9-axis sensor will 
send its data via SPI to the ESP32-S3R8. Once the sensor’s data has been sent over, velocity and 
acceleration will be calculated, which will be sent over Bluetooth to our mobile app for display. 
Computational power should not be an issue, as we are mostly just checking if measured values 
from the sensor exceed or fail to meet a certain threshold, as decided by the parameters set in the 
mobile app. 
 
When those thresholds are exceeded, the control subsystem will also be responsible for initiating 
the feedback system. This includes turning on vibration motors or associated LEDs via the GPIO 
pins. 

Interfaces 

Inputs: 
 

●​ 9-axis sensor data via SPI 
●​ The 3.3V power source from the power subsystem 
●​ Programs being loaded to the ESP32-S3R8 via the USB to serial converter 

 
Outputs: 

●​ Bluetooth Low Energy protocol sends velocity and acceleration data to the device hosting 
the mobile app 

●​ GPIO signals to activate the feedback subsystem when relevant 

Requirements & Verification 

Requirements Verification 



●​ When the “Record Data” button is 
pressed, the control subsystem should 
determine if the user is hitting the 
necessary threshold for the velocity 
the user inputted. 

●​ Have the user input a desirable and 
reasonable velocity into the mobile 
app. Observe if the MCU stores this 
value into its memory. 

●​ Have the user be in a proper position 
and press the button on the device 

●​ The user should then try to go way 
below the threshold. Observe if the 
boolean value for hitting the threshold 
is False. 

●​ The user should then be within the 
proper threshold. Observe if the 
boolean value for hitting the threshold 
is True. 

●​ The user should then be way over the 
threshold. Observe if the boolean 
value for hitting the threshold is False. 

●​ Alternate between these three 
conditions, observing the boolean 
value is in the proper state. 

●​ When the “Record Data” button is 
pressed, the control subsystem should 
determine if the user is using the 
proper form.  
 

●​ Have the user input the desired 
exercise as the weighted squat into the 
mobile app. Observe if the MCU 
stores this information in its memory. 

●​ Have the user place the device in the 
proper location on the back and press 
the button on the device, indicating the 
start of the workout 

●​ Observe if the MCU records the initial 
position of the user, and that the 
thresholds for proper form at certain 
locations are implemented.  

●​ Have the user be within the threshold. 
Observe if the boolean indicating if 
the user is using the proper form is 
True. 

●​ Have the user be outside of the 
threshold. Observe if the boolean 
indicating if the using proper form is 



False. Have the user re-enter the 
thresholds. Observe if the boolean is 
True. 

●​ Have the user press the button on the 
device, indicating the end of the 
workout. 

●​ Have the user input the desired 
exercise as the bench press. Observe if 
the MCU stores this information in its 
memory. 

●​ Have the user place the device on the 
center of the barbell and press the 
button on the device, indicating the 
start of the workout.  

●​ Observe if the MCU records the initial 
position of the user, and that the 
thresholds for proper form at certain 
locations are implemented.  

●​ Have the user be within the threshold. 
Observe if the boolean indicating if 
the user is using the proper form is 
True. 

●​ Have the user be outside of the 
threshold. Observe if the boolean 
indicating if the using proper form is 
False. Have the user re-enter the 
thresholds. Observe if the boolean is 
True. 

●​ Have the user press the button on the 
device, indicating the end of the 
workout. 

Figure 7: Control Subsystem Requirements & Verification 

Design Decisions 

Utilizing a button to initiate and then end workouts allows us to make our device more efficient. 
It is not necessary that data is transmitted when no exercises are currently being done. By 
utilizing the button to start an exercise, it allows the device to have certain components enter 
sleep mode. By minimizing the amount of time that components are running at full power, it 
ensures the device’s battery lasts longer. 



 
Additionally, utilizing the USB-A 2.0 connector for both charging and data purposes allows the 
PCB to be smaller. Having two connectors would complicate the design unnecessarily, as there 
would be two separate USB-A ports, with one handling charging the battery and the other 
handling microcontroller programming. By combining both purposes into one connector, it 
simplifies how the port should be used by users and prevents a waste of resources and space by 
having two of the same connector. 

Sensing Subsystem 

Hardware Design Overview 

 
Figure 8: Control Subsystem Schematic Design 

 
Our sensing subsystem currently consists of the ICM-20948, a 9-axis sensor composed of an 
accelerometer, a magnetometer, and a gyroscope. The sensing subsystem must send gyroscope 
data to the ESP32 often enough to meet our 0.5-second output responsiveness requirement for 
form detection, and spend the rest of its operation time collecting acceleration data. We can 
validate the sensor data by observing it once it is transmitted to the iPhone app. We can compare 
with video to ensure the data is representative of what is happening. 



Functionality & Contribution 

The main goal of the sensing subsystem is to provide real-time data of the device’s acceleration 
and position. The following components contribute to this goal: 

●​ ICM-20948 9-axis Sensor: The 9-axis sensor used to track the position/velocity of the 
user. 

 
Upon powering on, the microcontroller will interface with the ICM through SPI to initialize the 
registers required for operation, ensuring proper data delivery speed and formats. Once the 
workout has begun (indicated by the user actuating the push button) The microcontroller 
continually takes data readings from the sensor. Due to the nature of the ICM, only one sensor 
can be read from at a time. This issue is talked through in depth in the ‘Tolerance Analysis’ 
section below. For a high level overview, the microcontroller will switch between the three 
sensors at a frequency appropriate to achieving our goals.  
 
The cycle of data readings will meet the following requirements: 

●​ Ten readings per second from the gyroscope 
●​ Three readings from the magnetometer per second 
●​ Rest of readings from accelerometer 

 
Once we have our data streaming in, the data analysis will go as follows. First the magnetometer 
will analyze the three magnetic data vectors to determine which direction is vertical. Then 
acceleration readings will be made. The acceleration data will be pre-processed by removing the 
roughly 9.8m/s^2 due to gravity, and combining the remaining 3 vectors to achieve a total 
acceleration vector, shown in equation 1, where each component is an acceleration vector. 
 

A_total  =  A_x + A_y + A_z - A_gravity                                        (2 
 
After preprocessing, the acceleration data will be continually integrated to determine velocity. 
Acceleration data will continually be collected until a gyroscope reading is requested or it is time 
to recalibrate the vertical reading from the magnetometer.  

Interfaces 

Inputs: 
 

●​ The microcontroller will set up the sensor through SPI protocol, involving sending 
register initialization data, and sensor select 

●​ During sensing, the ESP32 will indicate when it is ready for the next data acquisition 
 



Outputs: 
●​ Readings from the magnetometer, accelerometer, and gyroscope 

Requirements & Verification 

Requirements Verification 

●​ The sensing subsystem must start 
recording once the ESP32 sends the 
proper signal. 

●​ Have the ESP32 send the necessary 
signal that initializes the sensor and 
tells it to start recording. 

●​ Observe if the sensing subsystem 
starts sending data to the MCU. 

●​ The sensing subsystem must collect 
gyroscope data often enough to alert 
the user of bad form usage within 
0.5±0.2 seconds. 

●​ Have the sensor record data. 
●​ Ensure that the data includes a 

gyroscope reading at least three times 
per second. 

Figure 9: Sensing Subsystem Requirements & Verifications 

Design Decisions 

We chose the IMC sensor, which combines the three sensors we require into one, instead of three 
separate sensors in order to save space. Due to the nature of our device as a wearable, we want it 
to be as small as possible to enhance user experience. The optional addition of a force sensor 
attachment allows our device to become more versatile and applicable to a larger variety of 
workouts, though a focus on acceleration tracking allows prioritization of our main goals in a 
time-constrained project, and that will be our focus initially. 



Feedback Subsystem 

Hardware Design Overview 

 
Figure 10: Feedback Subsystem Schematic Design 

 
This handles haptic and visual feedback when exercise requirements are not being met, as well as 
basic status feedback of the device in general. The vibration motor will receive power through a 
MOSFET. Thus, when the GPIO is high, it will raise voltage at the gate of the MOSFET and 
allow power to go to the haptic motor. This output GPIO pin will also be directly routed to the 
yellow LED to indicate visually as well as haptically. 
 
Additionally, we include three other LEDs to indicate to the user the state of the device. 
 
The feedback subsystem must be able to provide haptic and visual feedback while an exercise is 
occurring, contributing to our real-time feedback requirement. In the demo, we will intentionally 
not meet our input goals and demonstrate bad form (without heavyweight) to feedback system 
works. 

Functionality & Contribution 

The main goal of the feedback subsystem is to provide real-time feedback to the user, alerting the 
user if the user is not hitting certain constraints. The following components contribute to this 
goal: 



●​ FIT0774 Vibration Motor: The motor should activate once the user enters bad form/not 
hitting a certain velocity requirement, and will deactivate once the user corrects 
themselves. 

●​ LEDs: These LEDS present the current state of the environment. There are three different 
colored LEDs on the device: 

○​ Red LED: conveys alerts to the user, either of bad form (through blinks) or of a 
goal being met/broken (through a sustained ‘ON’ period) 

○​ Yellow LED 1: indicates that the battery is low 
○​ Yellow LED 2: indicates the device is waiting for the user to start the workout 
○​ Green LED: indicates that the device is turned on 

Interfaces 

Inputs: 
 

●​ Indication from the microcontroller that the user needs to be alerted, either through a 
pulsing signal (repeated on and offs) indicating dangerous form measurements, or a 
constant ‘ON’ for a set amount of time, indicating a goal is met/not met depending on the 
exercise. 

●​ Logical ‘1’ or ‘0’ indicating if the device is on 
●​ Logical ‘1’ or ‘0’ indicating if the device’s battery is charged 
●​ Blinking signal to indicate if the device is waiting for the user to start his/her workout, or 

solid logical ‘1’ if workout is in progress 
 
Outputs: 
 

●​ Visual alerts through a red LED 
●​ Haptic alerts through a vibration motor 
●​ Visual indications through the yellow and green LEDs conveying the current state of the 

device as a whole. 

Requirements & Verification 

Requirements Verification 

●​ The feedback subsystem’s LEDs 
should be able to indicate the proper 
state of the device. 

●​ Turn on the device. Observe if the 
green LED turns on. Turn off the 
device. Observe if the green LED 
turns off. 

●​ Place the MCU in a state where it 



waits for user input. Observe if the 
respective yellow LED is blinking. 

●​ Press the button on the device. 
Observe if the yellow LED is solid.  

●​ Place the MCU into data recording 
mode. Have it record an initial 
position and develop the thresholds for 
good form. Have the user stay within 
these thresholds. Observe if the red 
LED is off.  

●​ Have the user go outside of the 
thresholds. Observe if the red LED 
turns on within (a certain time). 

●​ Have the user re-enter the thresholds. 
Observe if the red LED is off within (a 
certain time).  

●​ The feedback system should 
activate/deactivate the vibration 
motors  

●​ Place the MCU into data recording 
mode. Have it record an initial 
position and develop the thresholds for 
good form. Have the user stay within 
these thresholds. Observe if the motor 
is off. 

●​ Have the user go outside the 
thresholds. Observe if the motor turns 
on within (a certain time). 

●​ Have the user re-enter the thresholds. 
Observe if the red LED is off within (a 
certain time).  

Figure 11: Feedback Subsystem Requirements & Verifications 

Design Decisions 

Our decision to run the haptic motor’s power through a MOSFET is due to the fact that the ESP 
output voltage is not sufficient to actuate the motor. Therefore the MOSFET receives the signal 
from the ESP to actuate, but the physical motor is ran by the 3.3V. Additionally, we had to 
include a pull down resistor so that if the GPIO pin connected to the MOSFET is not actuated, 
the gate of the MOSFET sees a logic ‘0’ instead of indeterminate. 
 



The rest of the LEDs are included to give a more user-friendly experience. The user can clearly 
see if the device is on, if the device is waiting to start, and battery status. 
 

Software Design 
The mobile app communicates with the control subsystem via its Bluetooth module. This app 
will be developed for Apple iOS. Mainly, the application will take velocity data and the user’s 
weightlifting form data from the control subsystems and process that data to show the velocity at 
which the user is lifting a certain load. Other possible features that could be added include a 
simple rep counter, rest tracking, or other exercise-related quality-of-life enhancements. 
 
The user will interact with the app’s user interface to input the desired constraints for the 
workout. The app’s screen will change depending on the state of the device. 
 
The application will have the following states: 

●​ ENTER_INFO: In this state, the user will be able to input the desired velocity and the 
desired workout. The app will enter the next state once the user hits a button on the 
screen, labeled “Send Data”. 

●​ DATA_SEND: In this state, the app will communicate with the MCU, sending over the 
user-inputted data. While in this state, the app will indicate that the MCU and the app are 
communicating with each other. It will wait for the MCU to send a signal back to the app 
confirming that it received the data. If that signal is received, the app will enter the 
CONFIRM state. If the signal is not received after a certain amount of time, the app will 
enter a TIME_OUT state. 

●​ TIME_OUT: This state is reached if the MCU, after a certain amount of time, does not 
send a signal back to the app confirming that it received the data from the application. It 
will be able to return to DATA_SEND by pressing a button labeled “Send Again”. 

●​ CONFIRM: The app will indicate that the MCU has received the necessary data, and will 
prompt the user to start the workout, and press the button once they are ready to start 
recording data. Once the button is pressed, the app will enter the CONFIRM state. 

●​ RECORD: The app will receive velocity data from the MCU. The app will enter the 
COMPILE state once the button on the device is pressed again. 

●​ COMPILE: In this state, the data received from the MCU is compiled into a velocity 
graph, showing the velocity of the user over time. This graph will also present the areas 
where the user had good/bad velocity/form. The app will enter the ENTER_INFO state 
once the “Restart Workout” button on the app is pressed. 

●​ CONNECTION_FAILED: If at any point, the app loses connection with the MCU 
outside of the COMPILE, TIMEOUT, and ENTER_INFO states, this screen will appear 
on the application, indicating that the app lost connection. The user can press a button 
labeled “Restart Workout”, taking the app back to the ENTER_INFO state.  



 
Figure 12: App state diagram for Athletic Tracking Sensor.  

 
 

Tolerance Analysis 

Successful completion of the athletic tracking sensor hinges on the data collection from the 
9-axis sensor and the processing speed of the ESP32.  We must be able to collect and process 
data quickly enough that the device can alert the user in real-time, otherwise, the user is not 
getting immediate feedback. Because of the nature of the ICM-20948, there are three sensors on 
board and only one can be read from at a time. The maximum low noise output frequencies are 
1.125kHz for the gyroscope and accelerometer and 100 Hertz for the magnetometer. We will 
have to alternate between the on-chip sensors with priority to acceleration since that data is 
integrated. Our goal will be to maximize velocity measurements while getting at least 10 
gyroscope readings per second. The magnetometer readings will just be used to recalibrate the 
vertical axis, so it will be much less frequently read, 3 times per second. With a goal of 100 
samples per second for velocity readings we spend .118 of each second sampling data, calculated 
in equation 2. Switching between the sensors will also take time, 20 ms according to the 
datasheet for the accelerometer, the rest are not given so we will assume similar. Switching 23 
times per second brings that number to .46 seconds of switching per second. Combined with our 
sample goal we are using .578 of each second, as seen in equation 3. This proves we will have a 
buffer for adjustments and non-idealities in our design. For the processor, it runs at a maximum 



of 240MHz with a dual processor. This should be enough to maintain sensor readings, 
continuously integrate acceleration, maintain Bluetooth transmission, and internally monitor 
data.   
 

(3*1/100 + 10*1/1,125 + 100/1,125)  = .118 seconds                                     (2 
 

Switching time + sampling time = .118s + .46s = .578 seconds                          (3 
 

Cost Analysis 

Labor 
​ Assuming that an average ECE graduate makes around $37.50/hr [4], and each member 
will work around 80 hours for the course of this project, we estimate that labor costs for one 
person will be: 

 𝑙𝑎𝑏𝑜𝑟 =  37. 50 *  2. 5 * 80 =  7500

Parts 

 
Figure 13: Cost of Parts Table 

 
This brings parts costs before tax to ​​$47.68. Sales tax is 6.25%. This brings parts cost to $50.66. 
 



Total Cost 
​ Overall, the total cost will be labor * 3 + cost of parts. This will bring total cost to 
$22,550.66. 
 

Schedule 

 
Figure 14: Schedule for Athletic Tracking Sensor 

 

Ethics and Safety 

Due to our use of Bluetooth, we need to ensure that users have their exercise data secured, as per 
the IEEE Code of Ethics #1. Practically, this means implementing a form of encryption to protect 
against anyone who would want to intercept the data being sent. While the athletic tracking 
sensor does not explicitly require personal data, it is still imperative that we protect users’ 
privacy in any way possible. The Bluetooth controller on the ESP32 supports LE Privacy 1.2. 
This feature ensures that the message authentication code (MAC) address associated with the 
ESP32 will be randomized at certain intervals [5]. Any malicious device that wishes to intercept 
the data sent by the tracker will be unable to determine the true MAC address of the tracker. 
Apple devices also support address randomization [6]. Thus, the two devices will be able to 
connect to each other while still being able to ensure data privacy from malicious devices. To 
alleviate user concerns about the app, we will inform users of the mobile app of the data that is 
being collected and being sent to the device.  
 



Because our device is wearable and will be used while performing athletic exercises, safety 
precautions must be taken to ensure no one is injured during testing, as per IEEE Code of Ethics 
#9 [7]. Since we are testing with heavy lifts, including squats and the bench press, we need to 
allocate adequate space for those lifts to be performed. This is especially important as testing will 
occur in UIUC’s recreation centers available to all students, so others will be around us 
constantly. Additionally, we need to make sure the wearable design does not inhibit movement or 
cause injury, especially due to heat. Ensuring that our design does not hurt the wearer is of 
utmost importance, as a device that enhances exercise should not prevent the user from doing so. 
We will address this by keeping the device compact and ensuring the location of the device will 
not interfere with workout movements. Generation of heat will also be minimized amongst our 
components, with airflow holes being implemented into the PCB’s enclosure to reduce the risk of 
any injuries happening due to heat. 
 
The project itself fits #1 and #2 in the IEEE Code of Ethics [7]. The tracking sensor aims to 
enhance athletic training for anyone, supporting their well-being and promoting exercise for all. 
It also introduces users to the idea that their timing while exercising is important. Different 
purposes of training offer different benefits, so gaining direct knowledge of how the user’s 
workout is going is important for both beginners and advanced lifters.  
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