
 

Smoothie Recipe Maker 

Team 49 – Avyay Koorapaty, Anay Koorapaty, Max Gendeh 

ECE 445 Design Document – Spring 2025 

TA: Jason Zhang 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mar. 6th, 2025  

 

 



Table of Contents 

Smoothie Recipe Maker 1 
1. Introduction 3 

1.1 Problem 3 
1.2 Solution 4 
1.3 Visual Aid 5 
1.4 High-level Requirements 5 

2. Design 6 
2.1 Physical Design 6 
2.2 Block Diagram 8 
2.3 PCB Schematic 9 
2.4  Subsystem Overview 9 

2.4.1 Actuation 9 
2.4.2 Sensors 12 
2.4.3 Control 13 
2.4.4 UI 15 
2.4.5 Power 16 

2.5 Tolerance Analysis 17 
3. Schedule and Cost 18 

3.1 Schedule 18 
3.2 Cost 19 

3.2.1 Labor 19 
3.2.2 Parts 19 
3.2.3 Total 20 

4. Ethics and Safety 20 
4.1 Ethical Guidelines 20 
4.2 Safety Standards 21 
4.3 Regulations 21 
4.4 Respect and Compliance 21 

5. References 22 

 

 



1. Introduction                                                                                                   

1.1 Problem 

Making smoothies often requires measuring different ingredients with different measurement 

utilities. Liquid ingredients must be measured in mL, while solid ingredients are usually in units of cups 

or tablespoons. This can be a long process especially when the ingredients are numerous and are of 

various sizes, textures, and shapes.  Additionally, the measurement steps are repeated for every 

subsequent smoothie made. To make the process more efficient, we will automate measuring and 

dispensing of ingredients. This will simplify creating smoothies with different recipes and reduce 

repetitive steps when creating more than one smoothie. The products currently on the market that 

automate the process of making smoothies are either too simplistic or are not cost effective enough. The 

Ninja drink makers, although affordable,  turn liquid ingredients into frozen drinks but do not provide the 

capability to deal with solid ingredients. Other smoothie machines such as Albert’s smoothie station and 

the Milk station company smoothie station are essentially vending machines that are not commercially 

available. These machines likely cost upwards of $3,000 to buy.  To address these issues, our system will 

be simple, versatile, and cost effective. 

 

 

 
 
 

 

 



1.2 Solution 

Our system will be able to make smoothies by following preset smoothie recipes or recipes the 

user creates. Our solution will be a three compartment structure with two solid compartments and one 

liquid compartment. The two solid compartments will have stepper motors to control the dispensing 

system while the liquid compartment will have a solenoid valve controlling its flow rate. The ingredients 

will be dispensed one at a time into a cup sitting on a load cell, which measures weight. The motors and 

solenoid valve are part of the Actuation Subsystem, and the load cell is part of the Sensors Subsystem. 

Complementing this, we will have software to control the motors, converting the load cell weight to 

tangible measurement quantities like cups, mL, and tablespoons. This is the Control Subsystem. To be 

able to create different kinds of smoothies, there will be a UI for inputting recipes and selecting preset 

recipes. This is the UI Subsystem. These subsystems will work together to automatically dispense the 

appropriate amounts of ingredients into the cup for different recipes, making the ingredient measuring and 

placing process more efficient. The user can then empty the cup’s contents into a blender. Our dispensing 

subsystem can only deal with very small ingredients such as grains and oats and wet ingredients like fruits 

cannot be utilized. To get around this fact, we will allow users to deposit ingredients into the blender cup 

directly and the LCD display will, in real-time,  show the amount of each ingredient deposited. 

We will use a microcontroller and the software we upload to it to control the motors and solenoid 

valve for proper dispensing. The microcontroller takes information from the load cell and the UI recipe to 

control the motors. The UI will have an LCD display and buttons to allow the user to select a preset  

recipe or input their own recipe. 

 

 

 



1.3 Visual Aid 

1.4 High-level Requirements 

● The system takes a maximum of 1.5 minutes from the start of dispensing to all of the ingredients 

being inside the blender. 

● Measurement accuracy will be to ±20% of intended ingredient amount. 

● The system will dispense the correct ingredients given a preselected or user inputted recipe. 

 

 



2. Design 

2.1 Physical Design 

 

Front View 

 

 

 

 

 

 



Side View 

 

  

The physical design consists of the compartments mounted vertically in three columns, two of 

them for solid ingredients and one for a liquid ingredient. The stepper motors are for the solid ingredient 

compartments. They will be mounted horizontal, i.e. parallel with the ground, and rotate disks as big as 

the bottom of a compartment. Each disk will have a hole, where the solid ingredient can fall into. A hose 

will route the liquid ingredient into the solenoid valve and out of it to the cup. The cup sits on one end of 

the load cell, which is fixed to the structure on the other side. 

 

 



2.2 Block Diagram 

 

 

The critical subsystems are the Actuator, Sensor, Control, UI, and Power subsystems. The 

Actuator subsystem dispenses the solid and liquid ingredients from their compartments into the cup sitting 

on the load cell. The Sensor subsystem measures the mass of each ingredient added using the load cell. 

The UI subsystem uses buttons and an LCD Display to allow the user to make their own recipes. The 

Control subsystem uses the information from the UI and Sensor subsystems to execute the dispensing of 

ingredients for the correct recipe and in the correct amounts, by controlling the Actuator subsystem. The 

Power subsystem provides power to all components. 

 

 



2.3 PCB Schematic 

 

2.4  Subsystem Overview 

2.4.1 Actuation 

The Actuation Subsystem contains the stepper motors and solenoid valve that are used to dispense each 

ingredient into the cup. We will be using ROB-09238 or 17HS19-2004S1 stepper motors. The stepper 

motors will rotate a disk with a pocket. This pocket sits underneath a compartment filled with an 

ingredient. As the pocket faces upwards, the ingredient will fall into the pocket. When the motor rotates 

the pocket to face down, the ingredient in the pocket will fall into the cup. Multiple iterations of rotating 

the disk with the pocket will dispense the ingredient from the compartment into the cup in intervals of 

small amounts. We plan to use a DRV8825 motor driver that will allow us to precisely control the 

positioning of the motor, and thus, the where the pocket is. We will need to connect the ESP32’s GPIO 

 

 



digital pins  to the DRV8825 driver, such as GPIO 4 to DIR pin of driver, and GPIO 5 to EN pin of driver. 

We will need to wire the PWM signal output of the microcontroller to the STEP input of the driver . 

These digital pins can also be used to change the mode of the stepper motor. There are three input pins on 

the driver corresponding to 8 binary modes. The modes are full step, half step, quarter step, 8 microsteps, 

16 microsteps, and 3 32 microstep modes. This controls how much the motor will rotate in degrees based 

on the step angle. The step angle for our motor is 1.8 degrees, denoting how much the motor will turn for 

one full step. At the rising edge of the PWM step signal, the motor changes state to the next degree 

position. When the DIR pin of the driver is high, the motor turns clockwise and counterclockwise when 

the DIR pin is low.  The stepper motor we will be using is a 4 wire bi-polar motor having two coils. The 

two wires of one coil will be wired to AOUT1(+) and AOUT2(-)  on the driver and the wires of the 

second coil will be wired BOUT1(+) and BOUT2(-). The motor driver will be supplied with 12V, which 

will be used to power the stepper motor.  The driver also has a pin for specifying the decay mode. The 

decay is how fast the current is reduced in the coil of the motor when the driver switches the current off in 

the motor. We will be utilizing the mixed decay mode, which combines the smooth deceleration of slow 

decay with the fast deceleration using fast decay. Details about controlling the speed of the stepper motor 

will be provided in the Control subsystem section. 

 

The solenoid valve is a DIGITEN DC 12V normally closed solenoid valve, a valve that only opens when 

supplied with power. It is mounted with the liquid ingredient feeding into it, and the output of the solenoid 

valve routed into the cup. The solenoid valve only requires one GPIO pin to switch it on and off. We plan 

to use GPIO 9 for this. By using software to trigger the GPIO pin of the microcontroller, we can turn the 

solenoid valve on and off, restricting or allowing the flow of liquid.  Additionally, there is a flyback diode 

in parallel with the solenoid valve to slowly dissipate energy built up in the magnetic field of the solenoid 

when it is powered. This is to prevent spurious voltage spikes that can damage other sensitive 

components.  

 

 



 

To supply power to the solenoid valve, we are using the 12V supply from our power subsystem. The 

solenoid valve is in series with an N-MOS transistor with a turn-on voltage between 1.0 to 2.5V. When 

Vgs, the voltage between the gate and source of the transistor, is between 1.0 to 2.5V, there is a 

conducting path from the 12V supply through the solenoid to ground, and the valve opens. When the 

voltage Vgs is less than 1.0V, the transistor is off, and there is no conducting path from the 12V supply 

through the solenoid to ground, and the valve remains closed.  There is a voltage divider circuit at the gate 

of the transistor with an ESP32 GPIO input. In a voltage divider circuit with two resistances R1 and R2, 

the output voltage is In our circuit,  the resistances are 2k and 1k Ohms 𝑉
𝑜𝑢𝑡 

=  𝑉
𝑖𝑛

𝑅2/(𝑅1 +  𝑅2).  

respectively. The GPIO pin of the microcontroller can output 3.3V or 0V.  When = 3.3V,  = 𝑉
𝑖𝑛 

𝑉
𝑜𝑢𝑡 

(3.3)(1000)/(3000) = 1.1V, the transistor is on. When  = 0V,  = (0)(1000)/(3000) = 0V, the 𝑉
𝑖𝑛 

𝑉
𝑜𝑢𝑡 

transistor is turned off.    

 

Requirements Verifications 

● Motors must be able to rotate the disk 
between 0 and 180 degrees with tolerance 
of 5 degrees.  

 

● Stepper motor’s step angle of 1.8 degrees 
means it cannot be off by more than 3.6 
degrees, so tolerance is satisfied.  

● Motors can run at speeds from 60 rpm to 
180 rpm, in order to control dispensing 
rate. 

● Run motor for ten revolutions, and 
measure the time it takes, then convert to 
rpm 

● The solenoid valve must be able to control 
flow rate of water and milk to a minimum 
of 1 cup per 20 seconds. 

● Test the following with water and milk. 
● Fill the container that feeds into the 

solenoid valve with liquid, with the 
solenoid valve closed. 

● Collecting the solenoid valve output in a 
standard unit sized cup, open the solenoid 
valve and start a timer at the same time. 

 

 



● End timer when cup is filled, checking 
that the timer value is under 20 seconds. 

2.4.2 Sensors 

 The Sensors Subsystem contains the load cell, which is used to dispense the correct amount of 

each ingredient. A typical smoothie size is 12-16 ounces [6], or 340 to 454 grams, and load cells should 

have a maximum capacity 25 to 30 percent greater than the load [7]. Therefore, to keep some buffer, 

including the mass of the cup holding the dispensed ingredients, our load cell has a maximum capacity of 

1kg. The load cell’s voltage output must be fed through an analog to digital converter to make it 

intelligible to the microcontroller, which is a digital system. The NAU7802SGI analog to digital converter 

gives 24 bits of precision, converting the load cell’s voltage into a number between 0 and , which 224 − 1

corresponds to the mass range of 0-1 kg. The NAU7802SGI takes 2.7 to 5.5V as supply power, so the 

output from the 3.3V voltage regulator will power it. The microcontroller will read the NAU7802SGI 

output by first checking the DRDY (data ready) output, and then reading registers 0x12, 0x13, and 0x14, 

which contain the 24 bit conversion result [8].  The load cell can be driven by 3.3V [9].  

 

Requirements Verifications 

● Differential mass measurements, i.e. the 
measurement of the change in weight 
caused by adding some of an ingredient, 
must be accurate to +- 10 grams. 

● Start with the cup on the load cell, then 
add a 100 gram object. 

● Check that the mass measurement, i.e. the 
result from the ADC converted to a mass 
value, is 100 grams more than just the 
cup, +- 10 grams. 

● Repeat for 50, 150, 200, 250, and 300 
grams to confirm the requirement for a 
range of ingredient mass additions. 

● The load cell must be able to make mass 
measurements up to 600 grams. 

● Place objects with masses known to be 
100, 200, 300, 400, 500, and 600 grams 
on the load cell.  

● Check that the mass measurement, i.e. the 
result from the ADC converted to a mass 

 

 



value, increments by 100 each time, 
confirming that the load cell can 
adequately make mass measurements 
through the range of masses. 

● Calibrate load cell so that absolute weight 
measurements are accurate to +- 10 grams 

● Use the voltage values from the ADC 
when zero grams are on the load cell and 
when close to the maximum number of 
grams are on the load cell, and figure out 
offset and gain needed for conversion 
from the voltage value to the absolute 
gram measurement, with this formula: 

 𝑀𝑎𝑠𝑠 =  (𝑣𝑜𝑙𝑡𝑎𝑔𝑒 − 𝑜𝑓𝑓𝑠𝑒𝑡) * 𝑔𝑎𝑖𝑛
● Ensure that gram measurements of 100, 

200, 300, 400, 500, and 600 gram objects 
are correct to within +- 10 grams, so our 
measurement range is correctly measured 
by the load cell. 

  

2.4.3 Control 

The Control Subsystem contains the ESP32 microcontroller and interfaces with the UI and 

Actuation subsystems. The microcontroller receives inputs from the buttons and load-cell sensor and 

outputs signals to the DRV8825PWP motor driver  and LCD display.  The ESP32 contains two 12 bit 

ADC’s that can be used in place of the NAU7802SGI for simplifying the system but receiving less precise 

measurement of the load. The software we use to program the microcontroller will be responsible for 

controlling the speed of the stepper motor through its PWM output pin. 

 

To achieve our desired rotations/minute v,  we will adjust the frequency of the step signal and the 

microstepping level, which can be done by setting three mode pins with a combination of high and low 

signals. The  or step angle  is provided by the datasheet and is 1.8 degrees/step. The LCD display is θ
𝑠𝑡𝑒𝑝

programmed through the I2C communication protocol. In the code we will have to find the I2C address. 

Then, we will use the LiquidCrystal_I2C Library to print characters to the lcd at certain positions on the 

 

 



lcd. The first two buttons are used to adjust the ingredient quantity amounts or select between preset 

recipes. The third button is used to move into preset recipe mode. The fourth button is used to select 

ingredient quantities for your own recipe.  

 

Because the software of the ESP 32 manages the control subsystem, such as processing load cell 

data and button inputs, it uses the GPIO pins of the other subsystems and doesn’t require any additional 

pins.  

 

Requirements Verifications 

● Software must start and stop motors and 
solenoid to dispense ingredient amounts 
accurate to +- 10g 

● Take a preset recipe as an example and 
check the gram amounts of each 
ingredient 

● Take note of the current weight of the load 
cell, and after an ingredient finishes 
dispensing, stop the software and look at 
the difference in weight. Check if this is 
+- 10g of expected weight in preset recipe 

● Software is able to change speed of 
stepper motor from 60 rpm to 180 rpm 

● In the software, set the speed of the motor 
to 60 rpm and count the time it takes to 
make 10 revolutions. Make sure this is 
close to 10 seconds 

● In the software, set the speed of the motor 
to 180 rpm and count the time it takes to 
make 30 revolutions. Make sure this is 
close to 30 seconds 

● Software should debounce a button press 
so that aren’t multiple button presses 
registered within half a second 

● Press button 3 to switch to preset recipes 
● Press button 1 or 2 and make sure LCD 

display only changes once 

● Software should display recipe name on 
first row of LCD, the current ingredient 
compartment on the second row, the 
amount in grams on the third row along 
with its conversion to 
ounces/cups/tablespoons 

● Press button 3 and check whether recipe 
name is positioned on first row of LCD 

● Press button 4 and check if ingredient 
compartment is positioned on second row 
of LCD 

● After pressing button 4, press buttons 1 
and 2 and check if ingredient amount 
shows up in grams, ounces, cups, and 

 

 



tablespoons on the third row of the LCD 

 

2.4.4 UI 

The UI Subsystem contains the buttons and LCD display. The buttons are used to select between 

recipes and input a new recipe. To scroll between pre-set recipes and user recipes, the user can press 

button 3, and then press buttons 1 and 2 to scroll between recipes. Button 3 is pressed again to confirm the 

recipe that machine should make. An LCD will display the recipe name the user is currently looking at. 

To create a custom recipe, press button 4. The user can adjust ingredient quantities (in grams) for each 

ingredient using buttons 1 and 2 and press button 4 again to save and finalize the recipe. Finally, they can 

press and hold buttons 1 and 2 for faster quantity changes. Each press of buttons 1 and 2 

decrements/increments the ingredient amount by 0.5g.  The LCD display provides visual aid to the user 

during this process, displaying the current recipe and ingredient amounts in units common in smoothie 

recipes such as ounces/cups/tablespoons. The buttons are inputs to the Control Subsystem that each feed 

into the ESP 32. The buttons we are using are SPST Momentary N.O. Red Pushbutton, which we plan to 

solder onto a connector that we’ll solder onto the PCB. The circuits for each button will connect to GPIO 

pins 13-16 as it supports pullup resistors that we can enable through software. We will be utilizing a 20x4 

LCD display with I2C support. Because the ESP32 has I2C support, we can simplify the wiring to 4 pins. 

The connections will be SDA to GPIO 21, SCL to GPIO 22. The other 2 pins go to Vcc 5V and GND. 

The default state of the button will be high due to the pull-up resistor. Pressing the button connects the pin 

to GND. The ESP reads this change with digitalRead(pin) and displays the appropriate results.  

 

There will be no external power for buttons since these are passive switches and don’t need their 

own power supply. They simply connect or disconnect the GPIO pin to GND. The ESP32 provides 3.3V 

logic via its GPIO pins. The internal pull-up resistor draws a tiny current (microamps) from this 3.3V 

 

 



supply through the GPIO pin. Our pushbuttons are likely rated for higher voltages/currents (12V/50mA). 

At 3.3V and lower microamp currents, they’re well within specs. 

 

Requirements Verifications 

● Pressing button 3 without first pressing 
button 4 will move to the mode for 
selection between preset and user-made 
recipes, which will be done using buttons 
1 and 2. The recipe names will be 
displayed on the LCD. 

● Press button 3 and check that first preset 
recipe shows up 

● Press buttons 1 and 2 and see if different 
recipe names show up 

● When in ingredient mass adjustment 
mode, the LCD should display ingredient 
amounts in real-time when buttons 1 and 
2 are pressed in increments of 0.5 units 

● Check that one press of button 2 
increments ingredient amount by 0.5 units 

● Check that one press of button 1 
decrements ingredient amount by 0.5 units 

● Holding down button 1 or 2 should 
continuously increment/decrement the 
ingredient amount and this should be 
clearly reflected on the LCD display 

● Pressing button 4 allows the user to create 
their own recipe. Buttons 1 and 2 allow 
the user to change ingredient amounts and 
button 3 is to to lock the amount into the 
recipe. The amount of each ingredient will  
be specified with the LCD showing which 
compartment’s ingredient amount is 
currently being adjusted.  

● Check that pressing button 4 displays first 
ingredient compartment on LCD display 

● Check that pressing buttons 1 and 2 
change ingredient amounts and pressing 
button 3 switches to next ingredient 
compartment 
 

● Ingredient amounts should be shown on 
LCD display in grams along with its 
conversion to standard units in smoothie 
recipes: ounces, cups, tablespoons within 
some error tolerance(e.g 5%)      

● Check that the numbers shown on the 
LCD display for ounces, cups, and 
tablespoons are equivalent using 
dimensional analysis with known 
conversion factors  

 

2.4.5 Power 

The Power Subsystem contains a 12V power supply and two voltage regulators, to convert the 

power supply voltage to 5 volts and 3.3 volts. The 12V supply is used to drive the DRV8825PWP motor 

driver, and the solenoid valve. The 3.3V regulator output is used to drive the ESP32, and through the 

 

 



ESP32 drive the buttons. It also drives the load cell and the NAU7802SGI. The 5V regulator output is 

used to drive the LCD display. 

 

Requirements Verifications 

● Power supply should output a constant 
voltage of 12V +- 0.1 volts. 

Use a multimeter and place positive lead at output 
of power supply and negative lead at ground. 
Look at voltage reading. 

● The first regulator should output 5V +- 
0.1 volts. 

● The second regulator should output 3.3V 
+- 0.1 volts 

Use a multimeter and place positive lead at output 
of the first regulator and negative lead at ground. 
Look at voltage reading. 
 
Use a multimeter and place positive lead at output 
of second regulator and negative lead at ground. 
Look at voltage reading. 

 

2.5 Tolerance Analysis 

 An aspect of the design that poses a threat to the functionality of our smoothie maker is the 

selection of our motors, particularly the torque the motor has relating to the rpm of the motor. This affects 

how fast we can turn the disk to stop the dispensing of ingredients. If it is too slow we will overshoot our 

ingredient measurements and if it is too fast we will undershoot our ingredient measurements. We will be 

using a stepper motor so we must calculate its rpm.  

A stepper motor has a command pulse rate which moves the motor in steps and not continuously.  

 

 

 



 We want to achieve a delay from  d = 1 to 3 seconds for the disk to turn and stop the flow of 

ingredients.  

 𝑟𝑝𝑚
60 = 1

𝑑

 𝑟𝑝𝑚 = 60
𝑑

We want to choose a stepper motor and program it with the right command pulse rate and to 

achieve an rpm, depending on the delay we seek. The 17HS19-2004S1 is a bipolar stepper motor that has 

a step angle of 1.8 degrees. For a delay of 1 to 3 seconds we need our stepper motor to run in the range of 

20 to 60 rpm. In order to run our stepper motor in the range from 20 rpm to 60 rpm, assuming a microstep 

level of 8 microsteps, we need to have the frequency of our step signal range from (20 * 360* 8)/(60 * 

1.8) = 533.33 usteps/second to (60 * 360 * 8)/(60 * 1.8) = 1600 usteps/second. We used the equation 

detailed in the Control Subsystem section for this calculation. We don't want to make our rpm too high, 

otherwise the disk could fly off or jam.  

3. Schedule and Cost 

3.1 Schedule 

Week  Task       Members 

 

7   Order Components     Max 

 

8   Finalize PCB and breadboard design   Avyay, Anay 

 

9  Spring Break - meet to discuss/prepare   All 

 

 

 



10   Prototype the ingredient dispensing and UI   Max, Avyay 

 

11   Finalize User UI and Measurement Conversion   Max 

Order PCB 2nd Wave     Avyay 

 

12   Finalize Machine Shop Design    All 

Integrate Power with Core Sensors   Anay 

 

13   Complete Weight, Motor, Dispensing Mechanisms  Anay, Avyay 

 

14  Debug, Review, Order Final PCB if Needed   All 

 

15   Final Demo, debug, review, work on paper   All 

3.2 Cost 

3.2.1 Labor 

Assuming $35/hr, an average of 15 hours spent per week, and 15 weeks of work, our total is:

 

3.2.2 Parts 

Amazon:  

----------------------------------------------------------------------------------------------------------------------------------------------------------- 

No Catalog/Part # Description Units Qty Unit Price Ext Price  

 

 



----------------------------------------------------------------------------------------------------------------------------------------------------------- 

1 B016MP1HX0 DC 12V 1/4" Quick connect Solenoid valve each 1 $7.49 $7.49  

2 B098KMB3DJ adafruit 1kg strain gauge load cell each 1 $3.95 $3.95  

3 B01GPUMP9C SunFounder IIC I2C TWI Serial 2004 20x4 

LCD Module Shield Compatible with Arduino 

R3 MEGA (IIC 2004) 

each 1 $12.59 $12.59  

-------------------------------------------------------------------------------------------------------------------------------------------------------- 

Total: $24.03 

PCBway: 

We plan on ordering 3 rounds of PCBs - totalling around $25 including assorted resistors, capacitors, etc. 

3.2.3 Total 

Factoring in labor and design, we estimate the total development cost to be $59,100. 

 

4. Ethics and Safety 

We will address the ethical and safety issues with reference to the IEEE and ACM Codes of Ethics and 

relevant regulatory standards [1].  

4.1 Ethical Guidelines 

Ethical guidelines require that we prioritize public safety and the well-being of users [1]. Because 

our project interacts directly with users, we want to provide full transparency of the capabilities of 

the machine. We aim to provide clear documentation, labeling intended use, limitations, and 

 

 



potential risks. An example is during an unlikely event when one of the ingredient chambers gets 

clogged, we’ll let the user know on the LCD to try giving the machine a shake.  

  

4.2 Safety Standards 

We take user safety extremely seriously. Blenders are known to be dangerous and our design 

ensures that our product will not interfere with the blending process. Food safety is another 

concern. We aim to provide that through temperature sensors that let users know for example 

when the temperature of milk has exceeded a safe temperature for storage. Materials in contact 

with ingredients will be food-grade and easy to clean to prevent contamination. Finally, with the 

elimination of any batteries, we minimize the risk of fires and electrical hazards.  

4.3 Regulations 

We will adhere to campus safety and lab policies throughout the development of this project. Our 

team has set aside time for weekly reviews and feedback on our design throughout the project’s 

lifecycle. With this, we will be able to collect valuable insight and feedback to ensure our project 

stays within relevant regulations and standards.  

4.4 Respect and Compliance 

Our team is committed to developing an environment of respect and ethical awareness. All 

members will treat all users fairly and hold each other accountable for any outcomes our project 

may have. Through this, we hope there will be efficient teamwork and good progress throughout 

the project lifecycle.  

 

 

 



5. References 

[1 ] IEEE-CS. “Code of ethics,” IEEE Computer Society, 

https://www.computer.org/education/code-of-ethics (accessed Feb. 12, 2025).  

[2] “Oatmeal PNG transparent images,” PNG All -, https://www.pngall.com/oatmeal-png/ 

(accessed Mar. 6, 2025).  

[3] A. satya, “Download strawberry slices on a transparent background, PNG for free,” Vecteezy, 

https://www.vecteezy.com/png/11198730-strawberry-slices-on-a-transparent-background-png 

(accessed Mar. 6, 2025).  

[4] B. Foundation, “Home of the blender project - free and open 3D creation software,” blender.org, 

https://www.blender.org/ (accessed Mar. 6, 2025).  

[5] K. Beck, “How to determine the RPM on Stepper Motors,” Sciencing, 

https://www.sciencing.com/determine-rpm-stepper-motors-10033323/ (accessed Mar. 6, 2025).  

[6] Vitamix. “Making Large-Batch Smoothies at Home.” vitamix.com. Accessed: Mar. 5, 2025. 

[Online]. Available: 

https://www.vitamix.com/us/en_us/articles/making-large-batch-smoothies-at-home#:~:text=A%20t

ypical%20smoothie%20size%20is,you're%20good%20to%20go! 

[7] Laumas. “How to choose a load cell? The factors to assess.” laumas.com. Accessed: Mar. 5, 

2025. [Online]. Available: 

https://www.laumas.com/en/blog/guides/how-to-choose-a-load-cell-the-factors-to-assess/#:~:text=

As%20a%20rule%20it%20is,much%20as%20100%25%20or%20more. 

 

 

https://www.vitamix.com/us/en_us/articles/making-large-batch-smoothies-at-home#:~:text=A%20typical%20smoothie%20size%20is,you're%20good%20to%20go!
https://www.vitamix.com/us/en_us/articles/making-large-batch-smoothies-at-home#:~:text=A%20typical%20smoothie%20size%20is,you're%20good%20to%20go!
https://www.laumas.com/en/blog/guides/how-to-choose-a-load-cell-the-factors-to-assess/#:~:text=As%20a%20rule%20it%20is,much%20as%20100%25%20or%20more.
https://www.laumas.com/en/blog/guides/how-to-choose-a-load-cell-the-factors-to-assess/#:~:text=As%20a%20rule%20it%20is,much%20as%20100%25%20or%20more.


[8] Nuvoton. NAU7802 24-Bit Dual-Channel ADC For Bridge Sensors, Revision 1.7. (2012). 

Accessed: Mar. 5, 2025. [Online]. Available: 

https://www.nuvoton.com/export/resource-files/NAU7802%20Data%20Sheet%20V1.7.pdf 

[9] cs137, adafruit_support_mike, dlleigh. “Load Cell Sensitivity.” forums.adafruit.com. Accessed: 

Mar. 5, 2025. [Online]. Available: https://forums.adafruit.com/viewtopic.php?t=191695 

 

 

 

 

https://www.nuvoton.com/export/resource-files/NAU7802%20Data%20Sheet%20V1.7.pdf
https://forums.adafruit.com/viewtopic.php?t=191695

	Smoothie Recipe Maker 
	1. Introduction                                                                                                   
	1.1 Problem 
	 
	 
	1.2 Solution 
	1.3 Visual Aid 
	1.4 High-level Requirements 

	2. Design 
	2.1 Physical Design 
	2.2 Block Diagram 
	2.3 PCB Schematic 
	2.4 Subsystem Overview 
	2.4.1 Actuation 
	2.4.2 Sensors 
	2.4.3 Control 
	2.4.4 UI 
	2.4.5 Power 

	 
	2.5 Tolerance Analysis 

	3. Schedule and Cost 
	3.1 Schedule 
	3.2 Cost 
	3.2.1 Labor 
	3.2.2 Parts 
	3.2.3 Total 


	4. Ethics and Safety 
	4.1 Ethical Guidelines 
	4.2 Safety Standards 
	4.3 Regulations 
	4.4 Respect and Compliance 

	 
	5. References 


