
1

Custom Flight Controller for FPV Drone
ECE 445 Design Document - Spring 2025

__

Project #42
Hulya Goodwin, Muhammad Rabbani, Jaelynn Abdullah

Professor: Viktor Gruev
TA: Jason Jung

2

Contents
1. Introduction

1.1. Problem 3
1.2. Solution 3
1.3. Visual Aid 4
1.4. High Level Requirements 5

2. Design
2.1. Physical Design 6
2.2. Block Diagram 7
2.3. Functional Overview & Block Diagram Requirements

2.3.1. Control Subsystem 7
2.3.2. Power Subsystem 9
2.3.3. Sensor Subsystem 11
2.3.4. Camera Subsystem 14
2.3.5. Alarm Subsystem 15
2.3.6. User Subsystem 15
2.3.7. Speed/Motor Subsystem 17

2.4. Hardware Design
2.4.1. Signal Integrity and Protection 18
2.4.2. Microcontroller Choice 19
2.4.3. Weight & Size Management

2.5. Software Design
2.5.1. Modifying BetaFlight for the Humidity Sensor

2.6. Tolerance Analysis
3. Cost and Schedule

3.1. Cost Analysis

3

3.2. Schedule
4. Discussion of Ethics and Safety

1. Introduction

1.1. The Problem
First Person View Drones, or FPV drones, first were invented in 1999, but the term FPV
was coined officially in 2002/2003 by an online forum user “Cyber-Flyer” [1]. Quickly
after, these drones went from something engineers were building themselves to being
commercially available. As FPV drones became more accessible for hobbyists and the
technology was getting better, these drones became even more popular. It’s common to
even see one flying across the quad on a warm Spring day. The problem with this
popularity is that the average person who wants to pick up this hobby can be intimidated
by all of the expensive drones that aren’t beginner friendly. In the FPV Reddit thread
FPV drone users have said to have crashed at least 8 drones before they finally got the
hang of how to use them safely without damage. [2] The cost of building an FPV drone is
estimated to be between $400-1800, which can be a steep price for beginners who will
most likely crash their first drones. [3] This makes getting into the hobby of FPV drone
flying daunting for people who may not have an income that would allow them to
spend-at minimum estimation- $400*6 = $2400 just to get the hang of flying drones
without crashing them. When looking at the current drone market, there are categories of
‘quadcopters’, ‘GPS’, ‘FPV’, ‘Mini”, etc. There is a gap in the current market for
beginner friendly drones that are specialized to be cheap, durable, and an easy way to
ease into the FPV drone hobby.

1.2. The Solution
To address this gap in the current market for FPV, we will create our own custom flight
controller and put together a drone to display its functionality. This custom flight
controller (FC) will have all the necessary components to control the FPV drone ie.
camera, IMU, radio controller/transmitter. On top of these basic components, we will add
a humidity sensor to the FC, to let the user know if it’s going to rain while they’re flying.
The FC will be compatible with the most common Open Source software for FPV drones,
which is Betaflight, so that new users can get accustomed to the software they will most
likely be using for their more advanced future FPV drones as well. If the user is content

4

with our FC, they can easily continue to use it for their future drones, since they can
customize their frames/ESCs because our FC will be compatible with a range of
Electronic Speed Controllers (ESCs) and drone frames.

1.3. Visual Aid

5

Figure 1, High Level Visual Aid of Solution

As seen in Figure 1, the overall delivered project will be a functional drone that runs
based off of the custom FC. The drone frame will be purchased, along with the motors,
propellers, electronic speed controllers (ESCs), and the radio transmitter. The FC will be
mounted onto the drone frame as seen in Figure 1.

1.4. High Level Requirements
To determine that we have successfully made the custom FC, our project must complete
the following requirements:

1. Demonstrate a functional flight controller that controls the motors to make
balanced motions in the entire 360° plane. Motors can be powered and controlled
for up to a full minute.

2. Demonstrates that the flight controller receives/sends accurate data from/to the
microcontroller and integrated sensors. Video can stream 20+ FPS and sensors
receive accurate live data within 5% error. Latency is below 100ms.

3. Drone has a functional system that turns on an LED and beeps when humidity
sensors sense 90% air humidity or any raindrops. Humidity alert is audible and
visible to users up to 10 feet away.

6

2. Design
2.1. Physical Design of Drone

Figure 2. Physical Design of Drone

7

As seen in Figure 2, the physical design of the delivered project will be an X shaped
frame with 4 motors connected to propellers in their respective corners. Each motor will
have its own respective ESC, and all 4 ESCs are compacted into one chip in the center
that is mounted above the FC. The center of the drone frame will have the FC mounted
onto it, as well as the camera.

2.2. Block Diagram

Figure 2. Block Design of Proposed Project

2.3. Functional Overview and Block Diagram
Requirements

2.3.1. Control Subsystem
For the main control unit, we are opting for an ESP32S3 microcontroller to provide
communication between all the subsystems. By modifying the open-source Betaflight
software to add additional capabilities, it will be responsible for controlling the ESC to
control the speeds of the brushless motors and receiving data back on the motor speed,
triggering the alarm system in high humidity conditions, transmitting video data to the
user’s device, receiving input from the remote controller to change the direction of flight

8

through the radio receiver, and recording IMU data. The specific requirements and
verifications of these requirements can be found below in Figure 3.

Requirements Verifications

The ESP32 must be able to take in data
from the sensor subsystem i.e. the
speed/orientation of the drone and the
humidity sensor and send the alert signal
to the alarm subsystem if humidity is too
high.

● Use a multimeter to ensure that the
pin on the microcontroller will be
an input to the alert subsystem and
send a voltage>1 V to be accepted
as a logical 1.

● Connect the micontroller’s sensor
ports as outputs of the
microcontroller to the computer’s
terminal and send the IMU data to
the terminal through UART. See the
data changes as we
move the IMU’s speed/orientation.

The ESP32 must be able to take in the RF
data from the Radio Receiver on how to
move the drone through UART.

● Set up a UART port on the ESP32
that prints incoming CRSF data to
the computer’s monitor using
Arduino Framework.

● Check on BetaFlight’s Ports Tab in
Betaflight Configurator and ensure
the UART connected to ESP32 has
Serial RX enabled and set the
receiver protocol to CRSF under
the "Receiver" tab.

The ESP32 must be able to convert the
analog camera’s data to a digital signal. ● Connect the video output of the

camera to Channel 1 of the
oscilloscope and connect the
oscilloscope ground to the camera
ground. Adjust the oscilloscope’s

9

time base to 50 µs/div (to see
horizontal sync pulses), voltage
scale to 0.2V - 1V/div (PAL signal
is about 1V peak-to-peak), and the
trigger to negative edge (to lock
onto sync pulses).

● Make sure that there are sync
pulses (A PAL composite signal
has regular dips at 0V), that the
image data varies in voltage
(representing brightness levels),
that the horizontal sync occurs
every 64 µs, and that the vertical
sync occurs every 20 ms to match
PAL timing on the oscilloscope.

● Write Aruduino code that sets up
the A2D converter and prints the
digital outputs to the serial monitor,
we will know that they’re right if
they’re in the 12 bit range of
0-4095.

The ESP32 must be able to receive data
from the ESCs on the speed of the motors. ● In Betaflight Configurator: Go to

Configuration Tab → ESC/Motor
Features and enable Bi-directional
DShot. In the Ports Tab, enable
ESC Telemetry (RX) on the
appropriate UART that’s set to
receive the data from the ESCs. Go
to the Motors Tab in Betaflight and
verify that ESC telemetry values
(RPM, voltage, temperature) update
when motors are running.

The ESP32 must be able to send the
digitized camera data to the user’s phone
through Wifi.

● In the code to connect the ESP32 to
Wifi, have print statements that
print out if Wifi is connected and
print the IP Address that the ESP is
connected to.

10

● Ping the IP address on a nearby
computer.

● Open a web browser on a phone
and type in
http://IP_address/camera_data to
stream the data on the phone.

The radio receiver must be able to get the
data from the radio transmitter (determines
direction of movement) within the range
of a 500Hz- 1000Hz receive refresh range
from the user subsystem.

● Check the LED on the radio
receiver and ensure it’s a solid
light, indicating a stable connection
to the radio transmitter.

● In Betaflight Configurator, go to
the Receiver tab to check the
receiver’s status and make sure that
the receiver is enabled and properly
bound to the transmitter and that
the correct ExpressLRS protocol is
selected under the Ports tab in
Betaflight.

● Go to the Receiver tab in
BetaFlight and observe the real
time receiver’s input on the screen.
Test by moving the radio
transmitter’s stick and seeing how
quickly that data appears on screen
at ranges of 1fr, 4ft, and 10ft away.

The radio receiver must be able to send
the received RF data into the ESP32
through UART.

Verify the same way that we verify the
ESP32 is inputting that data.

 Figure 3. R and V table for Control Subsystem

2.3.2. Power Subsystem
The power subsystem is responsible for powering the components on board. The 12V
LiPo battery is lightweight and a commonly used component for FPV drones. The total
calculated current draw is around 33A with a predicted flight time of around 1.5 minutes.
The regulators will step down the voltage to 5V and 3.3V to power the different

http://ip_address/camera_data

11

subsystems. All specific requirements and verification of the requirements can be seen in
Figure 4.

__
Requirements Verifications
LiPo 14.8V 450 mAh Battery must
provide continuous current of 33A and
deliver 14.8V to power the flight
controller with a maximum amount of
32A to Motors and 1A for remaining
sensors and camera subsystem.

● Connect an ammeter to the power
ports of the Motors, camera and
sensors to ensure that the expected
current is provided.

● Put a multimeter on the Power pin
of the ESP32 to ensure it gets 3.3V.

Voltage Regulator 12V to 5V must
provide clean 5V to power receiver and
camera subsystem (+/- .3V)

● Connect a multimeter to the input
pin of the 12-5 regulator and make
sure the input is 12V +/- .3V.

● Connect a multimeter to the output
pin of the 12-5 regulator and make
sure the output is 5V +/- .3V.

Voltage Regulator 5V to 3.3V must
provide clean 3.3V to power
microcontroller and sensor subsystem (+/-
.1V)

● Connect a multimeter to the input
pin of the 5-3.3 regulator and make
sure the input is 5V +/- .1V.

● Connect a multimeter to the output
pin of the 5-3.3 regulator and make
sure the output is 3.3V +/- .1V.

Figure 4. R and V table for the Power Subsystem

2.3.3. Sensor Subsystem

12

The IMU will measure the drone’s acceleration and angle as it is controlled by the
user. Using this data, we can detect at what speed the drone is under maximum load, what
angle the drone is at to allow the user to correct the flight path, and the position of the
drone.

The humidity detector will be a crucial component as it will be connected to the
alarm subsystem that alerts the user of a high humidity level and alerts the user to bring
the drone back to them and power it off.

The exact requirements and their respective verification methods can be seen
below in Figure 5.

Requirements Verifications

Humidity Detector must be able to
accurately represent the relative
humidity(RH) percentage in the air around
the PCB by taking 6 measurements/second
of the RH and saving this value into a
16-bit register.

● Connect the humidity sensor to the
ESP32 through I2C protocol:
Sensor’s Vdd is connected to 3.3V,
Sensor’s GND is connected to
ESP32’s GND, Sensor’s SDA is
connected to ESP32’s SDA (Data
Line) and the sensor’s SCL is
connected to the ESP32’s SCL
(Clock Line)

● In Arduino IDE, download the
SHT3x library (our sensor’s
library) and write code to receive
the temperature and humidity
measurements from the sensor
that’s uploaded to the ESP32. Then
check the Arduino Serial Monitor
to see these measurements and
verify their accuracy in given
environments.

The humidity sensor must be able to
communicate relative humidity% to the
Control sub-system and send the ALERT

● Connect the ALERT pin of the
sensor to a GPIO pin on the ESP32
and configure this GPIO pin as an
interrupt input to detect when the
ALERT pin is triggered in Arduino

13

interrupt to the ESP32 if RH is above
90%.

IDE.
● Simulate a high humidity

environment and ensure that the
ALERT interrupt goes off when RH
is 90%.

The IMU’s Accelerometer + Gyroscope
must be able to accurately represent the
acceleration of the physical drone by
taking measurements in the X,Y,Z axis
with maximum measurable acceleration
before saturation set to +16g (g equals
about 9.81 m/s^2)

● Write Arduino code to configure
the accelerometer to +16g and print
out the measured X,Y,Z values in
terms of gravity. Move the IMU
around at different forces to
simulate different g’s and verify
that the raw data should be in the
range of -32768 to 32767 for +16g.

● Write Arduino code to configure
the gyroscope to 2000m/s and print
its measurements to the serial
monitor. Ensure when it’s flat on a
surface the X,Y,Z values are 0.
Rotate the IMU on only the x-axis
and ensure only X values change,
etc.

Must be able to accurately represent the
pitch, yaw, and roll of the physical drone
throughout the full scale 360° range within
an error of ±15% to the Microcontroller
through I2C protocol at 400 kHz.

● Betaflight provides a real-time
view of the pitch, yaw, and roll of
the drone in the "Flight Data" tab,
under the "Angle" indicator. To
verify this data: gently move the
IMU in all directions (pitch up,
pitch down, roll left, roll right, yaw
left, yaw right) and observe the
changes in the 3D model or the
angle indicator in the Betaflight
Configurator and verify that the
pitch, roll, and yaw values match
the expected orientation based on
our physical movements.

● To test error margin, rotate the
drone to known angles (e.g., 0°,
90°, 180°, 270° for each axis), and
compare the Betaflight displayed
values to the expected angles.

14

Ensure the displayed angles stay
within the required ±15% margin of
error.

Figure 5. R and V table for the Sensor Subsystem

2.3.4. Camera Subsystem
The camera subsystem is what will define ‘FPV’ for our drone. This allows new

users to view what the drone sees. The Caddx Ant Lite 1200TVL FPV Camera will be
responsible for measuring analog video data and sending it to the Control Subsystem to
be digitized. The exact requirement(s) and their respective verification methods can be
seen below in Figure 6.
__
Requirements Verifications

Analog camera must be able to capture
20+ FPS video feed from on top of the
drone.

● Connect the analog data output of
the camera to a monitor to watch it
if we can find an old enough
monitor that supports RCA cables.

● Connect the video output of the
camera to Channel 1 of the
oscilloscope and connect the
oscilloscope ground to the camera
ground. Adjust the oscilloscope’s
time base to 50 µs/div (to see
horizontal sync pulses), voltage
scale to 0.2V - 1V/div (PAL signal
is about 1V peak-to-peak), and the
trigger to negative edge (to lock
onto sync pulses).

● Make sure that there are sync
pulses (A PAL composite signal
has regular dips at 0V), that the
image data varies in voltage
(representing brightness levels),
that the horizontal sync occurs
every 64 µs, and that the vertical
sync occurs every 20 ms to match
PAL timing on the oscilloscope.

Figure 6. R and V Table for Camera Subsystem

15

16

2.3.5. Alarm Subsystem
The alarm subsystem is what we will define as the LED and Active Button. This

allows for both visual and audible feedback to the user for when humidity levels are
dangerous/potentially damaging for the drone to fly in. A basic red LED and 5V Active
Buzzer will be used for our Alarm Subsystem. The exact requirement(s) and their
respective verification methods can be seen below in Figure 7.

Requirements Verifications

5V Active Buzzer must be able to receive
high DC input from ESP32 Alert in
response to humidity sensor to create
sound of 100 dB audible within 100 ft.

● Apply a 5V high signal directly to
the buzzer, using a standalone
multimeter and voltage source.

● Use a calibrated sound level meter
to measure the buzzer’s dB output
to 5V at 3ft, 10ft, 100ft distances

● Measure voltage from designated
GPIO pin during ESP32 Alert to
ensure 3.3V-5V

● Ensure Alarm buzzes from ESP32
Alert once all connected

Red LED must be able to light up on high
DC input from ESP32 Alert in response to
humidity sensor

● Apply a 5V high signal directly to
the LED, using a standalone
multimeter and voltage source.

● View the LED output to 5V at 3ft,
10ft, 100ft distances

● Measure voltage from designated
GPIO pin during ESP32 Alert to
ensure 3.3V-5V

● Ensure LED lights from ESP32
Alert once all connected

Figure 7. R and V table for the Alarm Subsystem

2.3.6. User Subsystem
On the user end, the user will be responsible for controlling the drone via a remote

controller that has a transmitter. The user can view the camera during operation while

17

wearing the cardboard goggles that display their smartphone. The requirements and their
verifications can be seen in Figure 8 below.

__
Requirements Verifications

Radio Transmitter must be able to
wirelessly send data to the Radio Receiver
in accordance with physical joystick
inputs under 100ms latency.

● In BetaFlight, under the Receiver
section, set the Receiver Mode to
Serial-based Receiver and choose
CRSF for the receiver protocol and
set the Serial Receiver Provider to
CRSF. Also, set the Serial Baud
Rate to 400,000.

● In the Ports Tab on BetaFlight, find
the UART that the ELRS receiver
is connected to and enable Serial
RX for the appropriate UART port.
In the Receiver tab in Betaflight
Configurator while moving the
joystick of the LiteRadio2
transmitter, observe the channels
(e.g., Throttle, Roll, Pitch, Yaw)
and make sure that the values
change in real-time as we move the
joysticks. This confirms that the
receiver is receiving signals from
the transmitter and correctly
mapping them to the flight
controller.

● Measure the seconds between the
joystick movement and mapping
onto the channel, ensuring it’s
consistently less than 100ms at
different distances with range of the
transmitter.

Smartphone must be able to receive live
video stream from the ESP32’s Wifi in
20+FPS quality and below 100ms latency.

● Make sure that the user’s phone can
connect to Wifi (any Wifi) and then
specifically the Wifi of the ESP32.

● Open the video stream on our
smartphone and start counting
frames in a 10-second interval to

18

ensure that the number of frames
displayed in this interval equals or
exceeds 200 frames (for 20 FPS).

● Setup an LED in front of the
camera and flash the LED on and
off every second. Start a stopwatch
as soon as the LED flashes and
observe the time it takes for the
flash to appear on the smartphone
screen. The latency is the time
between the moment we initiate the
flash and the moment we see it on
the smartphone.

Cardboard VR Goggles must fit the
smartphone and give the optical illusion of
VR goggles and be sturdy enough to
support the weight of the smartphone for
multiple wears.

● Insert our smartphone into the
compartment of the VR goggles
and ensure that the smartphone fits
snugly without excessive extra
room or pressure on the screen
based on its dimensions.

● Wear the goggles for 30 minute
increments multiple days in a row
to ensure that they won’t break
after multiple long wears.

Figure 8. R and V table for the User Subsystem

2.3.7. Speed/Motor Subsystem
The motors subsystem consists of the speed controller, the brushless motors, and

quadcopter frame. Located in all 4 corners of the quadcopter frame will be the brushless
motors that are controlled by the ESC to control the direction and speed of travel. The
directions of travel will include up, down, left, right, straight, and backwards using the
joysticks on the remote controller. Each motor draws up to 8A and must be continuous
during flight. The requirements and their verifications can be found in Figure 9 below.
__
Requirements Verifications

Electronic Speed Control must be able to
receive control inputs from the ESP32
from the Radio Transmitter to send
varying Dshot signals to speed up or slow

● In Betaflight Configurator,
manually adjust the throttle slider
in the Motors tab (in the Motors tab
set Master Switch to do this) to test

19

down the motors/propellers. each motor and verify that it is
receiving and responding to the
DShot signal. Make sure that the
motor’s speed increases or
decreases as we vary the throttle
signal in Betaflight, which will
show the Dshot values should
change accordingly.

● Disable Master Switch and use the
radio transmitter to see how the
motors will move and if the Dshot
values are changing in the
BetaFlight Configurator.

Quadcopter X-Frame must be able to
house motors, propellers, PCB, and
battery and must be able to move
throughout the 3D plane according to
motor controls.

● Take measurements of the motors,
propellers, PCB, and battery to
make sure that they will fit onto the
frame.

● When moving the joysticks of the
radio transmitter, make sure that the
drone moves in a balanced manner
in any X,Y,Z direction.

Figure 9. R and V table for the Speed/Motor Subsystem

2.4. Hardware Design
2.4.1. Signal Integrity and Protection

 Since noise and there are critical parts needed to operate in order ensure the
success of our project, voltage regulators as well as additional resistors and capacitors
were used across power traces. From the battery, a 5V voltage regulator and a 3.3V
voltage regulator. Our camera, receivers, and other peripherals need a constant 5V to
operate while our microcontroller and sensors require a constant 3.3V. 100 microfarad
decoupling capacitors are placed at the input and 10 nanofarad decoupling capacitors
output terminals of the voltage regulators in order to prevent static-hazard glitches as well
as send in cleaner signals.

For the EN and VDD pins, we are using 10 kOhm resistors as pull-up resistors to ensure
we have a constant high during operation. Similar to the using I2C and UART lines, we

20

will be using 10 kOhm to ensure the signals are clean at the input due to the importance
of sensor data for our drone.

2.4.2. Microcontroller Choice
Our team originally planned on using an STM32F4 Microcontroller. However, that would
require a VTX, VRX, and OSD in order to stream the video to the user. We decided to
minimize parts in the interests of minimizing weight of the FC, to use an ESP32
Microcontroller. Seen in Figure 10, the ESP32S3 has Wifi capabilities that we will be

Figure 10. Wifi Capabilities of an ESP32S3 from it’s Datasheet[3]

21

utilizing to stream the video to the user’s phone. Rather than use a VTX, we can use the
built-in A/D converter on the ESP32 to convert the analog video into a digital signal that
the ESP32 can digest and send over Wifi. This reduces the number of components
required by 2, which is important on a scale so small for the FC. The biggest hesitation
on switching to ESP32 was if BetaFlight will be compatible with it, but we have made it
work and changed our original idea.

2.4.3. Weight & Size Management
Our main limitations with our FPV drone to achieve lift under its total physical weight
are our motor RPM, propellor size, and battery capacity. Most sensors and control
subsystems are chosen beforehand to achieve functionality. Their total weight (PCB &
ESC) comes out to around 42.5 grams. For ease and efficiency, we chose a standard 5”
frame to house our components as all components laid out fit comfortably within such a
standard frame. With 5” propellers, we can decide on an efficient motor paired with a
compatible battery. A motor with high documentation weighing below 50 grams we
found was the EMAX RS2205S 2300KV. Pairing this with the LiPo battery, Or 14.8V 4S
650mAh 80C, gives us a total compatible system of motor and battery weighing under
100 grams total. This gives us ample room in terms of weight for our 5” frame and
additional components as this motor consistently provides 360+ grams of thrust at 50%
PWM [7]. Details of weight management can be found in Figure 14.

2.5. Software Design
2.5.1. Humidity Sensor Addition to BetaFlight

BetaFlight is one of the most common FPV drone softwares that’s available to the public.
As it has lots of documentation, we decided to use it. In order to add the humidity sensor,
which isn’t already included in the software we will follow the steps below:

1. Clone the BetaFlight repository to our local repositories, then push to a shared
repo for the 3 of us.

2. Since the SHT30 humidity sensor uses the I2C protocol, we need to ensure I2C
support is enabled in Betaflight by opening the src/main/ folder and checking if
I2C support is already enabled, which we should already have. But if it isn’t
enabled, in our configuration file, config.h, we can enable it by defining: #define
I2C_SPEED and #define USE_I2C

3. Based on how BetaFlight handles other sensors, we can create a SHT30.h and
SHT30.c driver file in the Drivers folder of BetaFlight. The SHT30.c file will need
to include the SHT30.h and the i2c.h file as it will need i2c to get the data.

4. We can define a struct that will hold the 16 bits of humidity data and temperate
from the humidity sensor to use in the driver file.

22

5. We can make the modified BetaFlight (configure it) and flash it to the flight
controller.

2.6. Tolerance Analysis
2.6.1. Noise Impacting Video Transmission

The part of the design that’s the biggest risk to our design is the video transmission
from our analog camera to our smartphone. Between noise from ESC, we need to ensure
we have a filter to limit the amount of noise from the circuit for the worst case scenario.
With Betaflight, they do not recommend filtering lower than 70 Hz, however, most high
frequencies that would affect our VTX occur higher than 150-200 Hz. In addition, we
will simulate a noise that has an amplitude of 500 mV. To filter this noise out, we are
using a LPF that has a 1k ohm resistor and 470 microFarad capacitor. This configuration
will allow an attenuation of ~.5V. With this, we can ensure that the ESC has a clean DC
power source, and in the best case scenario that there is no noise, there still will be
around 14V being supplied to the ESC, which is within the operating regime.

Figure 11, Schematic of LPF

23

Figure 12, Waveform of voltage input with noise (green sine wave) and filtered output (blue line)

2.6.2. Motor Thrust vs. Weight
Another risk to our design is achieving lift despite the drone’s weight. The table below

shows our motor paired with a similar ESC and similar 5” propellors with thrust measurements
at different percentage PWM’s [7]. As seen below, all propellors provide 350+ [g] thrust at 50%
PWM, achieving lift with our design specifications.

Another risk to our design is achieving lift despite the drone’s weight. The table below
shows our motor paired with a similar ESC and similar 5” propellors with thrust measurements
at different percentage PWM’s [7]. As seen below, all propellors provide 350+ [g] thrust at 50%
PWM, achieving lift with our design specifications.

Additionally, calculating the total weight of our drone and its parts, we find that our
weight is well below 350g. This gives us plenty of weight room to prevent potential risks.

24

Figure 13, Table of thrust tests and measurements for RS2205S Motor

Figure 14, Table of all drone parts and average weights

25

3. Cost And Schedule
3.1. Cost Analysis

3.1.1. Labor
Our team is made out of two Computer Engineers and one Electrical

Engineer. Looking at the UIUC report about starting pay of $109,176 and $87,769
respectfully, after taking the average of these two salaries and assuming 30 days
per month as well as 8 hour work days, we can assume (if we are charging hourly
and not on a salary) that each member of the team has an hourly rate of around
$34. [5] Each week, members are expecting to work 6 hours for 12 weeks, giving
us a total of $7344 for labor.

3.1.2. Parts List
Item Manufacturer Cost Quantity Description

RS2205
2300KV
Brushless
Motors

EMax $8.5 4 Brushless
motors for drone

Lumenier Mini
Razor Pro ESC
45A

GetFPV $59.99 1 ESC for motors

ICM-20948 DigiKey $7.11 1 9-axis IMU that
has
accelerometer,
gyro, and uses
I2C and SPI
protocol

SHT30-DIS-B10
kS Humidity
Sensor

DigiKey $2.70 1 Humidity Sensor
for drone that
uses I2C
protocol

Caddx Ant Lite
1200TVL FPV
Camera

GetFPV $16 1 Mini camera for
FPV camera

ELRS
LiteReceiver
V1.1

BetaFPV $9 1 Radio Receiver

26

ESP32-S3-WRO
OM-U1

DigiKey $2.95 4 Microcontroller

LiteRadio 2
Radio
Transmission

BetaFPV $24 1 Radio
Transmission

LiPo 14.8V 4S
650 mAh 80C

Flyfive33 $15 1 14.8V battery

5 Inch Propellers
(16 Pack)

Gemfan
Hurricane

$13 1 Propellers for
motors

5-Inch Frame In-house $13.47 1 Frame for Drone

Tax (11.5%)

Shipping (5%)

 Total: $241.26

3.1.3. Total

 The grand total for this project would be $7575.26. Considering that drone
projects are a very expensive hobby, this was around the estimate we were expecting.

3.2. Schedule

Week Tasks Person

February 23 - March 1st ● Finalize and order
parts

● Flash Betaflight onto
ESP32 using GitHub
port

● Begin schematic
design

● Jaelynn

● Jaelynn &
Muhammad

● Hulya

March 2nd - March 8th ● Begin breadboard
demo for placement

● Update schematic
design and create PCB

● All

● Hulya & Jaelynn

27

March 9th - March 15th ● Second round of PCB
Design

● Have transmitter work
with ESC and motors

● Have IMU and
humidity sensor
integrated to
Betaflight using I2C
and SPI

● Demo breadboard

● All

● Jaelynn &
Muhammad

● Muhammad

● All

March 16th - March 22nd ● SPRING BREAK

March 23rd - March 29th ● Debug PCB
● Redesign PCB
● Have LED and Alarm

system integrated to
Betaflight using GPIO

● Have frame designed

● Hulya
● Hulya & Jaelynn
● Muhammad &

Jaelynn

● Muhammad

March 30th - April 5th ● Correct weight
balancing

● Have camera
integrated to
Betaflight using GPIO

● Debug PCB
● Redesign PCB

● Muhammad

● Muhammad

● Hulya
● Hulya & Jaelynn

April 6th - April 12th ● Order second round of
PCB

● Have Humidity
Sensor calibrated to
activate LED and
Alarm system at
desired humidity
environment

● Ensure Motors are
calibrated to Radio
Transmitter

● Jaelynn & Hulya

● Muhammad & Hulya

● Muhammad &
Jaelynn

April 13th - April 19th ● Test flights
● Solder new PCB
● Debug PCB
● Ensure live-streaming

of camera to Wifi
(standalone)

● All
● Hulya & Jaelynn
● Hulya & Jaelynn
● Muhammad

28

April 20th - April 26th ● Test flights
● Final debugging
● Ensure entire system

achieves high level
requirements

● All
● All
● All

April 27th - May 3rd Mock Demo All

May 4th - May 10th Final Presentation
Final Paper

All

4. Ethics And Safety

4.1.1. Ethics
With open-source hardware and software, we have a responsibility to ensure that

our final product should be available for the public to continue the development of
beginner friendly drones in accordance with IEEE 7.8.I.2 [6]. Moreover, with our criteria,
we want to ensure that the user has honest performance reports with the appropriate
tolerancing to upkeep safety and the integrity of our project.

Additionally, we have a responsibility to address ethical concerns regarding
military applications and privacy violations. While our drone is meant for civilian
recreational use, we acknowledge the potential misuse of our FPV drone in illegal and
unauthorized aerial reconnaissance and surveillance. To prevent such abuse, we provide
strict guidelines to any users and implement altitude restrictions and geofencing
capabilities through our intended drone flight capability range. The limited range of our
drone will allow us to mitigate any risk of potential military or surveillance abuse.
Through this, we uphold IEEE 7.8.I.1 by prioritizing public welfare to ensure responsible
technological use [6].

4.1.2. Safety
With our project, there are important considerations to keep in mind to ensure that

the drone targeted towards new users protects the user and the environment in which the
drone will take flight. Through our design, we considered thermal generation, safe
voltage delivery within the flight controller, and battery management to prevent fire
hazards. With the total load from the battery reaching around 33A, ensuring that users do

29

not experience electrical shock while operating the drone is the highest priority. The
battery will be housed and the right copper path size will be used to prevent shorting.
Any wired connections will be bundled and twisted as needed to prevent loose
connections. These and other safety considerations are based around 7.8.I.1 in IEEE’s
Code of Ethics to ensure the safety and use ethical design practices [6]. Moreover, by
recognizing that the users are newer, in accordance with IEEE 7.8.I.6 [6], considerations
were made into the design to limit the amount of training experience required to fly the
drone and diagnose issues that occur. The alarm system and the built-in protection for the
parts we want to order heavily contribute to our goal of protecting our users.

4.2. Safety Procedure
 Ensuring the safety of users and the environment is a top priority when operating
our FPV drone. The following safety procedures align with IEEE Code of Ethics
guidelines and should be followed strictly to prevent accidents, injuries, or damage to
property.

1. Pre-Flight Safety Checks

Before operating the drone, ensure the following:

● Battery Inspection: Check for any physical damage, swelling, or loose
connections before inserting the battery. Only use manufacturer-approved
batteries.

● Wiring and Connections: Inspect all power and signal wires for loose
connections or exposed conductors. Secure any loose wiring to prevent in-flight
disconnections.

● Propeller Check: Ensure that propellers are properly mounted and free from
cracks or defects. Tighten them securely before flight..

2. Safe Flight Operation

● Authorized Flight Areas: Always check and follow local regulations regarding
drone usage. Do not fly in restricted areas (e.g., near airports, military zones, or
crowded public spaces).

● Weather Conditions: Avoid flying in strong winds, rain, or low-visibility
conditions that can lead to loss of control.

● Emergency Protocols: Familiarize yourself with emergency shutdown procedures
in case of malfunction. If the drone becomes unresponsive, safely disarm it.

30

● Visual Line of Sight: Maintain a clear view of the drone at all times unless
operating in designated FPV (First Person View) zones with a trained spotter.

● Altitude and Range Limits: Keep the drone within legal altitude limits (e.g., 400
feet in the U.S.) and avoid exceeding the controller’s signal range.

3. Electrical and Fire Safety

● Battery Handling:
○ Never short-circuit or puncture the battery.
○ Do not charge batteries unattended or near flammable materials.
○ Store batteries in fireproof containers when not in use.

● Voltage and Current Protection:
○ Ensure proper insulation of electrical components.
○ Use recommended voltage levels to prevent overheating.
○ Keep electronic components cool to avoid thermal runaway.

4. Post-Flight Procedures

● Battery Disconnection: Remove the battery after landing to prevent accidental
activation.

● Component Inspection: Check for signs of wear, overheating, or damage after
each flight. Replace faulty components immediately.

● Data Logging and Diagnostics: Review flight logs for irregularities and adjust
settings accordingly.

5. Ethical and Regulatory Compliance

● FCC and Aviation Regulations: Follow all communication and frequency
transmission regulations to prevent signal interference.

● Privacy Considerations: Avoid recording or flying over private property without
consent.

● Safe Community Use: Respect local drone-flying communities and avoid reckless
behavior that may endanger others.

By following these safety procedures, users can ensure the safe and responsible operation
of the FPV drone while protecting themselves and the environment.

31

References

[1] CurryKitten. “The History of FPV.” CurryKitten.
https://www.currykitten.co.uk/the-history-of-fpv/ (accessed Mar. 5, 2025).

[2] “How many drones have you crashed since you started flying?” Reddit.
https://www.reddit.com/r/fpv/comments/12qhckv/how_many_drones_have_you_crashed_since_
you (accessed Mar. 5, 2025).

[3] Le, S. Supporting, I. 11, G. Wi-Fi, and Le), “ESP32-S3 Series Datasheet 2.4 GHz Wi-Fi +
Bluetooth Including.” Available:
https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf

[4] O. Liang. "How to get started with an FPV drone – the ultimate beginner’s guide."
https://oscarliang.com/fpv-drone-guide/#How-Much-Does-an-FPV-Drone-Cost (accessed Mar. 5,
2025).

[5] ECE Illinois. “Salary Averages.” University of Illinois Urbana-Champaign.
https://ece.illinois.edu/admissions/why-ece/salary-averages (accessed Mar. 5, 2025).

[6] IEEE. “IEEE Policies: Section 7 – Statement of Policy.” IEEE.
https://www.ieee.org/about/corporate/governance/p7-8.html (accessed Mar. 5, 2025).

[7] Max, et al. “Review - EMAX RS2205S 2300KV Motors.” Oscar Liang, 24 Apr. 2017,
https://oscarliang.com/emax-rs2205s-2300kv-motors/

https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf
https://oscarliang.com/emax-rs2205s-2300kv-motors/

	1. Pre-Flight Safety Checks
	2. Safe Flight Operation
	3. Electrical and Fire Safety
	4. Post-Flight Procedures
	5. Ethical and Regulatory Compliance

