

ECE 445 Spring 2025

SENIOR DESIGN LABORATORY

Final Report

Schedulable Automatic Fish Feeder

TEAM #18

BRANDON MACINTOSH(bm53@illinois.edu)

COLBY STEBER(csteber2@illinois.edu)

JEREMY RICHARDSON(jrr13@illinois.edu)

TA: Sanjana Pingali

7 May 2025

mailto:bm53@illinois.edu
mailto:csteber2@illinois.edu
mailto:jrr13@illinois.edu

Abstract

​ This paper presents the design, development, and implementation of the Schedulable

Automatic Fish Feeder (SAFF) aimed at improving the convenience and reliability of feeding

aquarium animals. The system integrates a microcontroller-based PCB, a user interface for

scheduling feed times, and manual feeding through an app, manual feeding on the unit, a

mechanical mechanism to dispense the food, a backup battery for temporary power loss, and a

camera to view the aquarium. Key design goals included cost-efficiency, commercializability,

ease of use, modular construction, and system reliability. The final prototype features a working

camera module, backup battery, a web app interface to schedule times, and feed accessible at

auto-fish.food, a micro-metal gear motor to control rotation of the feeder, and a manual feed

button on the physical device. Testing demonstrated consistent and accurate feed dispensation

across multiple trials, validating the design's functionality and effectiveness. The project offers a

scalable and practical solution for hobbyists and aquarium enthusiasts seeking an automated,

customizable, ethical feeding system.

ⅱ

Contents

1. Introduction…………………………………………………………………………………….​1

1.1 Purpose……………………………………………………………………………………​1
1.2 Functionality………………………………………………………………………………​1
1.3 Subsystem Overview……………………………………………………………………...​2

1.3.1 Microcontroller Subsystem………………………………………………………….​2
1.3.2 Motor and Sensor Subsystem……………………………………………………….​3
1.3.3 User Interface Subsystem…………………………………………………………...​3
1.3.4 Power Subsystem……………………………………………………………………​4
1.3.5 Camera Subsystem…………………………………………………………………..​4

2. Design…………………………………………………………………………………………..​5
2.1 Equations and Simulations………………………………………………………………..​5

2.1.1 Power Switching Simulation………………………………………………………..​5
2.1.2 Estimating the Remaining Food in the Rotator……………………………………..​6

2.2 Design Description & Justification………………………………………………………..​7
2.2.1 Microcontroller Subsystem………………………………………………………….​7
2.2.2 Motor and Sensor Subsystem……………………………………………………….​8
2.2.3 User Interface Subsystem…………………………………………………………...​9
2.2.4 Power Subsystem…………………………………………………………………..​10
2.2.5 Camera Subsystem…………………………………………………………………​12

2.3 Design Alternatives………………………………………………………………………​13
2.3.1 Power Subsystem…………………………………………………………………..​13
2.3.2 Camera Subsystem…………………………………………………………………​13

3. Conclusion…………………………………………………………………………………….​14
3.1 Accomplishments………………………………………………………………………...​14
3.2 Uncertainties……………………………………………………………………………..​14
3.3 Future Work……………………………………………………………………………...​14
3.4 Ethical Considerations…………………………………………………………………...​15

Appendix A: Cost and Schedule…………………………………………………………………​16
Appendix B: Requirements & Verification………………………………………………………​19
References……………………………………………………………………………………….​24

ⅲ

1.​ Introduction

1.1 Purpose

Fish feeders currently on the market are limited on how much convenience they give fish

owners when they are away from their tank. If the user wants to feed their fish at a certain time,

they usually have to set a timer for 12 or 24 hours in advance to feed them. There is also no

reassurance that their fish is actually being fed and eating. Owners just have to assume that the

machine is working as intended. This poses a major problem when gone for extended periods of

time, such as spring break.

With our fish feeder, the user is able to feed their fish from any location by using a web

app, which also has the ability to schedule up to four exact times they want the feeder to dispense

food, allowing them to have customized feeding times. In addition, the feeder has a sensor that

detects when the food container rotates and sends a notification to the web app so the user can

ensure that their fish was fed. The feeder is connected to power through a USB-C cable and brick

supplied by the user. If the power goes out or if the feeder is not being supplied with DC power

from the USB-C port, it switches to battery power. This solution required a PCB, ESP32, rotating

canister, motor, hall effect sensor, web app, power system, and camera.

1.2 Functionality

The SAFF has a couple of high-level functionalities. The user is able to manually activate

the feeder via the physical manual feed button or the manual feed button on the app. The user is

able to view the camera feed via the view button on the app. The user is able to schedule times to

feed through the app to activate the feeder. The user receives a notification once the feeder has

completed a 360-degree revolution. The user is able to view the state of the feeder, whether it is

1

in standby or feeding. These relate to the overall purpose of the project by activating the feeder

with scheduled times or manually, along with viewing the camera feed from the feeder itself.

1.3 Subsystem Overview

Figure 1: Block Diagram

1.3.1 Microcontroller Subsystem

The microcontroller subsystem manages voltage control for the motor, camera, and hall

effect sensor while also handling data communication with the app and camera, as can be seen in

Figure 1 above. The microcontroller subsystem uses an ESP32 microcontroller with Wi-Fi

capabilities to communicate with the User Interface system. It sends 3.3 V to the sources of two

2SJ652 transistors. The drains of the transistors are connected to the motor and camera. When

the camera button is selected on the app, a signal is sent from the ESP32 to the gate of the

2

transistor, allowing for voltage to be delivered to the camera subsystem. Similarly, if the manual

feed button is pressed, the feed button on the app is pressed, or the scheduled feed time is

reached, a signal is sent to the gate of the other transistor, and 3.3 V is sent to the motor. When

the camera is powered, it will send data to the ESP32 through I2C. The hall effect sensor is

always powered and read by the ESP32.

1.3.2 Motor and Sensor Subsystem

This subsystem consists of a 3 V micro metal gearmotor that is connected to the main

PCB via a PMOS transistor [1][2]. The transistor takes input power from the linear regulator and

a signal to switch on from the ESP32. The output shaft holds the container of food. This

container has a magnet glued on the rotating section so that a hall effect sensor can detect when it

rotates to ensure that the food is actually dispensed.

1.3.3 User Interface Subsystem

The user interface subsystem is responsible for performing different actions based on user

inputs. The two main parts of this subsystem are the app and the physical button and switch on

the feeder. The feeder has a manual feed button on it that, if pressed, will give the motor power,

and food will be dispensed. The feeder also has two power switches. One turns on and off the

DC power, and the other turns on and off the battery power. The app has the ability to manually

feed as well, trigger the camera feed, and set the feeding schedule. When the manual feed button

is pressed on the app, a signal is sent from the app to the ESP32, which triggers the motor signal,

which initiates the feeding procedure. When the camera icon is selected on the app, a signal is

sent from the app to the ESP32, which triggers the camera signal and delivers the camera power.

The camera sends pixel data back to the ESP32, and the ESP32 sends that data to the app

continuously until the camera feed is closed. When a new feeding schedule is set, that data is

3

sent to the ESP32, and the feeding time is updated in the chip’s memory. The app also displays

information about the feeder, such as whether or not the feeder is connected to Wi-Fi and the

estimated amount of food left in the canister.

1.3.4 Power Subsystem

This subsystem consists of two Schottky diodes that are used to switch between USB-C

power and battery power, and another IC to control the charging of the battery. The battery is a

4.63 Wh, 3.7 V battery that is used as a backup power source for when power is lost through the

USB-C connector. There are two switches on the unit: one to shut off USB-C power and one to

shut off battery power. When USB-C power is restored, the charge IC checks the voltage of the

battery and begins to charge the battery if needed. When USB-C power is available, the unit uses

USB-C power. The battery is solely for backup and can provide ten hours of power under heavy

use.

1.3.5 Camera Subsystem

The camera subsystem supplies the camera feed that is viewed in the app. The camera

module being used is the OV2640. The OV2640 receives 3.3 V from the 2SJ652 transistor drain

when the ESP32 sends a signal. When the OV2640 receives power, it sends data back to the

ESP32 through the I2C Bus.

4

2.​ Design

2.1 Equations and Simulations

2.1.1 Power Switching Simulation

Shown below in Figure 2 is the simulation that was used to determine if the Schottky

diode that the self-service electronics shop had would work for our project. We can see that the

node after the diode is still producing 3.5 V, which is over our 3.3 V threshold.

Figure 2: Schottky Diode Simulation

5

2.1.2 Estimating the Remaining Food in the Rotator

A motor’s RPM can be affected by the amount of load it is carrying. Due to this, we

figured we could estimate how much food was in the feeder due to the difference in mass that the

food would have depending on how much was in the container. To do this, we wanted to record

and log two different times, and , explained below. 𝑡
1

𝑡
2

 𝑡
1
: 𝑇ℎ𝑒 𝑡𝑖𝑚𝑒 𝑖𝑡 𝑡𝑎𝑘𝑒𝑠 𝑡ℎ𝑒 𝑚𝑜𝑡𝑜𝑟 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎 𝑓𝑢𝑙𝑙 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑛𝑜 𝑓𝑜𝑜𝑑.

 𝑡
2
: 𝑇ℎ𝑒 𝑡𝑖𝑚𝑒 𝑖𝑡 𝑡𝑎𝑘𝑒𝑠 𝑡ℎ𝑒 𝑚𝑜𝑡𝑜𝑟 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎 𝑓𝑢𝑙𝑙 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑚𝑎𝑥 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦.

​ To develop a linear equation to predict the capacity of the feeder, we took these times and

created two sets of coordinates, and and plotted them, as shown in Figure 3. (𝑥
1
, 𝑦

1
) (𝑥

2
, 𝑦

2
)

Figure 3: (𝑥
1
, 𝑦

1
) 𝑎𝑛𝑑 (𝑥

2
, 𝑦

2
)

​ The x-coordinates were the times values that we logged and the y-coordinates

corresponded to the food capacity, 0% for empty and 100% for full. If we form a line fit, the

slope of that line is:

 ​ ​ ​ ​ ​ ​ ​ (1) 1
𝑡

2
−𝑡

1

6

If we account for the adjusted x-intercept, we get the equation:

 ​ ​ ​ ​ ​ ​ ​ (2) 𝑓(𝑥) =
𝑥−𝑡

1

𝑡
2
−𝑡

!

used to calculate the percentage of food remaining with x being the amount of time the motor

took to spin fully when feeding. An example of a linear fit of this equation is shown in Figure 4.

Figure 4: Linear Fit Between Points

2.2 Design Description & Justification
2.2.1 Microcontroller Subsystem

The ESP32 serves as the central controller for the feeder, managing all major

components, as shown in Figure 5 below. Its extensive documentation and wide range of

available libraries made development straightforward. Both the camera and motor are controlled

via 2SJ652-1E P-channel MOSFETs. The ESP32 toggles these MOSFETs by driving their gates,

pulling the gate to 0 V turns the MOSFET on, allowing power to flow to the components; pulling

the gate to 3.3 V turns the MOSFET off, cutting power. This setup ensures that the camera and

motor only draw current when needed, preventing unnecessary load on the ESP32 and avoiding

any potential impact on its processing performance.

7

In addition to output control, the ESP32 continuously reads analog signals from both a

hall effect sensor and a physical feed button mounted on the enclosure. It also manages

communication with the mobile app, enabling user interaction and system feedback.

Figure 5: Microcontroller Diagram

2.2.2 Motor and Sensor Subsystem

​ As mentioned above, the ESP32 reads the analog value from the hall effect sensor and is

set at a certain bit value. At no magnetic field, the hall effect sensor outputs half of the input

voltage. In this case, that would be 1.15 V. When the magnet gets closer, the magnetic field from

the north-facing pole of the magnet facing the hall-effect sensor drives the voltage higher. This is

the setting for when the opening of the container is facing straight up. This signal is sent to the

ESP32 to determine that the motor needs to stop rotating.

​ Using the same PMOS transistor as the camera, when the manual feed button is pressed,

a logic zero is sent to the gate of the MOSFET to turn on the MOSFET. Once the hall effect

sensor reads the magnet, the gate of the MOSFET is driven to logic one. These connections are

visualized below in Figure 6.

8

​ The hall effect sensor was selected due to being an analog value; the motor was selected

due to having a low voltage and low RPM in testing; and the transistor was selected because it

was readily available at the self-service electronics shop and had a correct turn-on voltage for our

application.

Figure 6: Motor and Sensor Schematic

2.2.3 User Interface Subsystem

​ The user interface has several components, including the physical feed button, green

power LED, and the web app. We were originally going to create a mobile app, however, we

opted to instead create a web app using Google’s Firebase as there is a lot of documentation

about it in relation to using an ESP32 microcontroller. Using Firebase, it is simple to create a

mobile app from a web app, so in the future, we can create a mobile app as well. Written in C++,

JavaScript, and HTML, the web app allows the user to control the feeder from anywhere by

going to auto-fish.food. After the user logs in with their email and password, they are presented

with a screen that includes the manual feed button, feed times, camera, and food remaining.

When the user presses a button on the app, it sends data to the real-time database on Firebase.

9

The ESP32 then receives this data through a Wi-Fi connection and stores it locally on the chip.

This allows the feeder to continue to feed at the scheduled times even when it is not connected to

Wi-Fi. As can be seen in Figure 7 below, when feeding is triggered either through the web app or

the physical button, the motor starts and the state is changed accordingly. There is a 1.5 second

delay before we check the hall effect sensor output again to allow for the food container to rotate

away from the magnet. Then, it continues to check if the magnet is detected, and if it is, then the

motor stops.

Figure 7: Feeding State Diagram

​
2.2.4 Power Subsystem

​ The power subsystem has five major components that need to be decided: how to input

voltage from the DC wall adapter, how to charge the battery, what battery, the switching circuit,

and the linear regulator. All connectors and switches were gathered from the self-service

electronics shop, since those items were readily available.

​ The linear regulator was the easiest choice out of all of them. The self-service electronics

shop had the AP2112K-3.3 and this met our needs for the PCB. The maximum current that the

10

ESP32 would draw, which is the major power factor, was 240 mA. This regulator produced up to

600 mA, so it worked well for this application. The whole system on the PCB is powered by 3.3

V.

​ The next part was the battery and charger. The idea was to have the largest battery

possible for the enclosure size that we were going to build, which was based on the feeders

available on the market. On Digi-Key, a battery was selected that met these measurements, was

over 4 Wh, and had a nominal voltage of 3.7 V. This would work well because the linear

regulator would produce 3.3 V, as long as there was an input of at least 3.3 V. As far as the

battery charger, when looking at batteries, Digi-Key recommended a single-cell battery charging

IC shown below in Figure 8. As long as the input was 4.3 V or greater, the charging IC would

work. This was the choice selected as it was a small package.

​ Finally, the connection to the DC wall adapter and a switching circuit was needed. Many

devices are shifting to USB-C, so a USB-C connector was chosen. The connector only needed to

have VBUS and Control Channels since it was only to be used for power. The cheapest,

right-angle mount USB-C connector was selected. As for the switching circuit, the simple

solution chosen was Schottky diodes. Since the device only needed to switch to battery power

(3.7 V) at the loss of USB-C power (5 V), since the potential was higher on the USB-C port,

diodes would work well. Schottky diodes were chosen due to their low voltage drop.

​

11

Figure 8: Power Schematic

2.2.5 Camera Subsystem

When the “View Feed” button on the app is selected, the ESP32 is triggered to ground the

gate of a 2SJ652-1E PMOS by sending it 0 V. This PMOS has a threshold voltage of 3.3 V, so

this will trigger it to allow 3.3 V to the drain which is connected directly to our OV2640. This

PMOS was chosen because it was available at the E-shop, and since the threshold voltage is 3.3

V, we could send 3.3V to the gate to close the drain when we do not want to use the camera [2].

When the camera gets powered, it initializes, starts capturing frames, and sends them

straight back to the ESP32. The ESP32 will take these frames and send them to a virtual machine

set up on Google Cloud. The virtual will create a web address that displays a video that

constantly updates with the new frames. Our web app will connect to this address in order to

view the feed. Google Cloud was used because it was the easiest option that did not cost money.

These interactions with the camera are visualized in Figure 9.

12

Figure 9: Camera Diagram

2.3 Design Alternatives
2.3.1 Power Subsystem

In the second revision of our PCB design, the USB-C adapter failed to deliver 5 V to the

board. Upon probing the connector, we observed that both CC1 and CC2 lines were floating,

with only one of the two lines sourcing 5 V, depending on the orientation of the USB-C plug.

This indicated that the USB-C source was unable to detect a valid pull-down on the CC lines,

preventing 5 V from being delivered. To address this, we added 5.1 kΩ pull-down resistors on

both CC1 and CC2. This allowed proper negotiation and enabled the 5 V VBUS line to power

the rest of the board.

2.3.2 Camera Subsystem

Originally, we planned to use the OV7670 camera module for this project, and it was

successfully integrated into our breadboard demo. However, after assembling our first PCB, we

realized that the ESP32 chip used on the board—the ESP32-S3-WROOM-1—differed from the

one used during initial prototyping. The ESP32-S3 lacks native support for the OV7670, making

integration much more difficult. In contrast, the OV2640 offered better compatibility with the

ESP32-S3 and supported higher image quality. As a result, we transitioned to using the OV2640

for the final design [7][8].

13

3.​ Conclusion

3.1 Accomplishments
​ The project was able to be completed successfully with every requirement met. The goal

of the project was to create a fish feeder that the user was able to view the camera feed of their

fish tank, along with different feeding functions. The user is able to view the camera feed,

manually feed, and schedule feeding times for the feeder to activate through the web app. The

user is also able to manually feed via the button on the feeder itself. The unit draws power from

the USB-C connector, but can also switch to an internal backup battery for short-term use. The

battery is also charged on board with a battery charging IC. All design requirements and original

functionality that were intended for the feeder were accomplished. The project was a complete

success.

3.2 Uncertainties
​ We were very happy with the results of the project, however, the framerate of the camera

was lower than we ideally would want if we were to commercialize the product. This is

discussed in the future work section. Other than that, there were no unsatisfactory results to the

project.

3.3 Future Work
​ Although the project delivered satisfying results, we identified several improvements that

would be necessary to elevate the SAFF to a commercial-grade product. First, replacing the basic

Schottky diodes sourced from the E-Shop with better alternatives would reduce voltage drop.

Combined with a larger-capacity battery, this change would significantly extend battery life

during power outages.

Also, the ESP32 chip used in this prototype was the ESP32-S3-WROOM-1-N16, which

lacks integrated PSRAM. Upgrading to a variant such as the ESP32-S3-WROOM-1-N16R8,

14

which includes 8MB of PSRAM, would enable more memory-intensive operations, including

higher-resolution image capture and improved camera framerates [4].

We selected 2SJ652-1E P-channel MOSFETs due to limited availability in the E-Shop,

but N-channel MOSFETs would be a better choice. They offer better efficiency and would allow

for simpler logic-level control—eliminating the need to continuously drive 3.3V to the gates to

keep the devices off.

While the ESP32 supports Bluetooth, we did not leverage this feature in this project. For

a commercial version, enabling Bluetooth would provide an alternative connection method

between the feeder and the user’s mobile app, improving usability and setup flexibility.

Lastly, this project was designed with the idea of adding optional accessories in the

future. In a commercial version, the feeder could include multiple USB-C ports, making it easy

for users to plug in additional features as they buy them. To support this, we would need to

switch the camera to a USB-C connector so it can be easily connected and recognized by the

system.

3.4 Ethical Considerations
One ethical concern with our fish feeder is that it takes away the hands-on interaction

between the owner and their fish. When people feed their fish manually, they are not just giving

them food; they are also checking in on their health, noticing any changes in behavior, and

building a sense of responsibility. This fish feeder removes that connection, allowing oversight

when it comes to issues like illness or poor water conditions. Also, feeding fish can be a calming,

enjoyable routine for the owner that alleviates feelings like anxiety or stress [5][6]. However, the

implementation of the camera in our design will hopefully mitigate some aspects of this concern

as the owner will be able to check in on the fish when they are away.

15

Appendix A: Cost and Schedule

Table 1: Cost of Parts

Description Manufacturer Part Number Quantity Extended Price

USB-C Port CUI Devices UJC-HP-3-SMT-TR 1 $0.75

LiPo Charger Texas Instruments BQ21040DBVR 1 $0.52

LiPo Battery Jauch Quartz LP503562JU+PCM+2
WIRES 50MM

1 $11.40

PMOS Transistor Onsemi 2SJ652-1E 2 $4.25

Camera OmniVision OV7670 1 $4.50

Linear Regulator Diodes
Incorporated

AP2112K-3.3TRG1 1 $0.56

BJT Comchip SS8050-G 2 $0.48

ESP-32 Espressif Systems ESP32-S3-WROOM-1 1 $5.06

Hall Effect Sensor SING F LTD 49E 1 $0.59

1kohm Resistor Stackpole
Electronics Inc

RMCF0805JT1K00 5 $0.50

10kohm Resistor Stackpole
Electronics Inc

RMCF0805JG10K0 8 $0.80

100kohm Resistor Stackpole
Electronics Inc

RMCF0805JT100K 2 $0.20

1uF Capacitor Samsung
Electro-Mechanic

s

CL21B105KBFNNNG 6 $0.60

10uF Capacitor Murata
Electronics

GRM21BR61H106ME43L 1 $0.26

0.1uF Capacitor Samsung
Electro-Mechanic

s

CL21F104ZAANNNC 1 $0.10

Rare Earth Magnet TRYMAG X003716VW9 1 $0.05

Micro Metal Gear
Motor

Fielect GA12-N20 1 $10.35

16

Push Button C&K PTS645SL43-2 LFS 3 $0.66

PCB Bare Connector Wurth Elektronik 61300811121 2 $0.72

4-pin Connector
Female

Molex 0039299043 1 $0.54

4-pin Connector
Male

Molex 0039012040 1 $0.27

10 Pin Connector Amphernol 10056845-110LF 2 $2.62

Misc Wire N/A N/A 1 $5

Printer Filament OVERTURE 850006233403 1 $15.99

Total Cost of Parts: $66.70
Quoted Machine Shop Labor Hours and Cost: 7.5hrs per day 3 days - $1262.70
Estimated Engineering Man Hours: 187 hours @ $100/hour: $18,700

Grand Total: $20,029.40

Table 2: Schedule

Week Task Person

2/2/25 - 2/8/25 Research power and hall effect sensors Colby

Research app control of ESP32 Brandon

Talk to Machine Shop about motor and container Colby

2/9/25 - 2/15/25 Project Proposal (2/13 11:59 PM) Everyone

Team Contract (2/14 11:59 PM) Everyone

Research hall effect sensors and USB-C Ports Colby

2/16/25 - 2/22/25 Proposal Review (2/17 10:00 AM) Everyone

Work on camera communication with ESP32 Jeremy/Brandon

Begin designing power delivery systems Colby

2/23/25 - 3/1/25 Start PCB design and order parts Colby

Obtain parts from self-service Everyone

17

3/2/25 - 3/8/25 Finalize initial PCB design & design rotator to deliver to
PCB shop. Test hall effect sensors and motors.

Colby

First-Round PCBway Orders (3/3 4:45 PM) Colby

Design Document (3/6 11:59 PM) Everyone

Get design working on breadboard Everyone

3/9/25 - 3/15/25 Finish camera communication with ESP32 Jeremy

Start developing the app Brandon

Make revisions to PCB design Colby

Second-Round PCBway Orders (3/13 4:45 PM) Colby

3/16/25 - 3/22/25 Spring Break Everyone

3/23/25 - 3/29/25 Continue work on the app Brandon

Bake/Solder First-Round PCB Colby

Bake/Solder Second-Round PCB Jeremy/Brandon

Debugging Second-Round PCB Jeremy

Make revisions to PCB design Colby

3/30/25 - 4/5/25 Third-Round PCBway Orders (3/31 4:45 PM) Colby

Individual progress reports (4/2 11:59 PM) Everyone

Bake/Solder Third-Round PCB Jeremy/Brandon

Debugging Third-Round PCB Jeremy

Get camera feed to display on app Jeremy

Finish app Brandon

4/6/25 - 4/12/25 Design and finish all enclosures and mounting devices Colby

Final Debugging of Third-Round PCB Jeremy

Fourth-Round PCBway Orders (4/7 4:45 PM) Colby

4/13/25 - 4/19/25 Fix existing bugs and assemble Everyone

Team Contract Assessment (4/18 11:59 PM) Everyone

4/20/25 - 4/26/25 Mock Demo (4/21 1:00 PM) Everyone

18

4/27/25 - 5/3/25 Final Demo Everyone

Work on final presentation Everyone

Mock Presentation Everyone

5/4/25 - 5/7/25 Final Presentation Everyone

Work on final paper Everyone

Final Papers (5/7 11:59 PM) Everyone

Appendix B: Requirements & Verification

Table 3: Microcontroller Subsystem

Requirements Verification Verification
Status (Y/N)

The ESP32 microcontroller

must be able to communicate

over I2C serial protocols with

the camera.

●​ Connect an oscilloscope that reads I2C
signals in between one of the data pins
connecting the OV7670 and ESP32.

●​ Ensure that the oscilloscope reading
confirms I2C communication.

●​ Repeat for each data pin on the
OV7670.

Y

The ESP32 microcontroller

must be able to communicate

over Wi-Fi to the app.

●​ Turn the feeder on by flipping the
power switch.

●​ Open the app.
●​ Verify the “Wi-Fi Connected” symbol

is visible on the app.

Y

The ESP32 microcontroller

must be able to communicate

through analog signals from

the manual feed button and

hall effect sensor.

●​ Connect a voltmeter on the output pin
of hall effect sensor

●​ Ensure that the voltage changes when a
magnetic field is present

●​ Connect a voltmeter on the output pin
of the manual feed button

●​ Ensure that the voltage is 3.3V once
the manual feed button is pressed

Y

19

The ESP32 microcontroller

must only send 3.3V +/- 0.1V

to the camera when the option

is selected on the app.

●​ Connect a voltmeter to the drain of the
transistor connected to the camera.

●​ Ensure that 0V +/- 0.2V is being read
on the voltmeter.

●​ Select the camera icon on the app.
●​ Ensure that 3.3V +/- 0.2V is being read

on the voltmeter.

Y

The ESP32 microcontroller

must only send 3.3V +/- 0.1V

to the motor when the manual

feed button is selected or

when the scheduled time is

reached.

●​ Connect a voltmeter to the drain of the
transistor connected to the camera.

●​ Ensure that 0V +/- 0.2V is being read
on the voltmeter.

●​ Select the camera option on the app.
●​ Ensure that 3.3V +/- 0.2V is being read

on the voltmeter.

Y

Table 4: Motor and Sensor Subsystem

Requirements Verification Verification
Status (Y/N)

3.3 V +/- 0.1 V is successfully

supplied to the motor from the

ESP32 when the feed button is

pressed.

●​ Connect a multimeter on the gate of the
transistor.

●​ Press the feed button.
●​ Ensure that 3.3V +/- 0.1V is being read

on the voltmeter.

Y

3.3 V +/- 0.1 V is successfully

supplied to the motor from the

●​ Connect a multimeter on the gate of the
transistor.

●​ Set a scheduled feed time in the app.
●​ Ensure that 3.3V +/- 0.1V is being read

on the voltmeter.

Y

20

ESP32 when the scheduled

feed times are reached.

The motor successfully

completes a minimum rotation

of 360-degrees once triggered

from the ESP32.

●​ Mark starting position of container
with a piece of tape.

●​ Select the manual feed button and
allow to complete the feed cycle.

●​ Measure end point. End point should
be the same as the start point.

Y

The motor successfully stops

within two seconds once the

hall effect sensor is triggered

via the magnet inside the

rotating cylinder.

●​ Connect multimeter to hall effect
sensor output.

●​ Press the manual feed button.
●​ Once hall effect value raises or lowers

from the value at any degree other than
0 degrees, start stopwatch.

Y

Table 5: User Interface Subsystem

Requirements Verification Verification
Status (Y/N)

Feeder successfully activates

within three seconds of the

manual feed button press on

the app via Wi-Fi.

●​ Open the app.
●​ Press the manual feed button on the

app.
●​ Ensure that the feeder dispenses the

food within three seconds.

Y

The ESP32 microcontroller

must only send 3.3V +/- 0.1V

●​ Connect a voltmeter to the drain of
the transistor connected to the
camera.

●​ Ensure that 0V +/- 0.2V is being
read on the voltmeter.

●​ Select the camera icon on the app.

Y

21

to the camera when the option

is selected on the app.

●​ Ensure that 3.3V +/- 0.2V is being
read on the voltmeter.

Feeder successfully activates

within three seconds of the

scheduled time set using the

app.

●​ Open the app.
●​ Choose the Schedule Feeding Time

icon.
●​ Schedule a new feeding time.
●​ Ensure that the feeder dispenses

within three seconds of the new
feeding time.

Y

Feeder successfully activates

within three seconds of the

manual feed button being

pressed on the feeder.

●​ Press the manual feed button on the
feeder.

●​ Ensure that the feeder dispenses
food within three seconds.

Y

Table 6: Power Subsystem

Requirements Verification Verification
Status (Y/N)

5V drawn from the wall is

converted to 3.3V +/- 0.1V

after going through the linear

regulator

●​ Connect a multimeter to the output of
the linear regulator.

●​ Unplug the battery and plug in wall
adapter.

●​ Ensure that 3.3V +/- 0.1V is being read
on the voltmeter.

Y

When wall power is

unavailable, the feeder

successfully switches to

battery power.

●​ Connect a multimeter to the output of
the linear regulator.

●​ Unplug the wall adapter and plug in a
fully charged battery.

●​ Ensure that 3.3V +/- 0.1V is being read
on the voltmeter.

Y

22

The power subsystem supplies

a stable voltage of 3.3 V +/-

0.1 V and 400 mA to the

system, even with the

temporary loss of DC power.

●​ Connect a multimeter to the output of
the linear regulator.

●​ Have both the wall adapter and battery
sockets plugged in.

●​ Simultaneously unplug and plug in
wall adapter.

●​ Ensure that 3.3V +/- 0.1V is being read
on the voltmeter and all the motor is
still functioning properly.

Y

Table 7: Camera Subsystem

Requirements Verification Verification
Status (Y/N)

3.3 V +/- 0.1 V is successfully

supplied to the camera module

from the ESP32 when the

camera icon is selected on the

mobile app.

●​ Connect a voltmeter to the drain of the
transistor connected to the camera.

●​ Ensure that 0V +/- 0.2V is being read
on the voltmeter.

●​ Select the camera option on the app.
●​ Ensure that 3.3V +/- 0.2V is being read

on the voltmeter.

Y

The camera feed is displayed

through the mobile app.

●​ Open the app.
●​ Choose the Camera Icon.
●​ Ensure that the camera feed is properly

displayed.

Y

23

References

[1] “Pololu - Micro Metal Gearmotors,” www.pololu.com.

https://www.pololu.com/category/60/micro-metal-gearmotors

[2] “2SJ652.” Mouser.com, mouser, www.mouser.com/datasheet/2/308/2SJ652-D-255514.pdf.

[3]S. Santos, “Firebase: Control ESP32 GPIOs from Anywhere | Random Nerd Tutorials,”

Random Nerd Tutorials, Jul. 21, 2022.

https://randomnerdtutorials.com/firebase-control-esp32-gpios/

[4] “ESP32-S3-WROOM-1 ESP32-S3-WROOM-1U Datasheet 2.4 GHz Wi-Fi (802.11 b/g/n)

and Bluetooth ® 5 (LE) module Built around ESP32-S3 series of SoCs, Xtensa ® dual-core

32-bit LX7 microprocessor Flash up to 16 MB, PSRAM up to 8 MB 36 GPIOs, rich set of

peripherals On-board PCB antenna.” Available:

https://www.espressif.com/sites/default/files/documentation/esp32-s3-wroom-1_wroom-1u_datas

heet_en.pdf

[5] H. Clements et al., “The effects of interacting with fish in aquariums on human health and

well-being: A systematic review,” PLOS ONE, vol. 14, no. 7, p. e0220524, Jul. 2019, doi:

https://doi.org/10.1371/journal.pone.0220524.

[6] “PetCoach - Ask a Vet Online for Free, 24/7,” Petcoach.co, 2019.

https://www.petcoach.co/article/why-overfeeding-fish-is-a-problem-and-how-to-avoid-it/

[7] Advanced Information Preliminary Datasheet OV2640 Color CMOS UXGA (2.0 MegaPixel)

CAMERACHIP TM O Mni Ision® with OmniPixel2 TM Technology General Description. 2006,

www.uctronics.com/download/cam_module/OV2640DS.pdf.

[8] “ESP32 Camera Driver.” GitHub, 25 Oct. 2022, github.com/espressif/esp32-camera.

24

https://www.pololu.com/category/60/micro-metal-gearmotors
http://www.mouser.com/datasheet/2/308/2SJ652-D-255514.pdf
https://randomnerdtutorials.com/firebase-control-esp32-gpios/
https://www.espressif.com/sites/default/files/documentation/esp32-s3-wroom-1_wroom-1u_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3-wroom-1_wroom-1u_datasheet_en.pdf
https://doi.org/10.1371/journal.pone.0220524
https://www.petcoach.co/article/why-overfeeding-fish-is-a-problem-and-how-to-avoid-it/
http://www.uctronics.com/download/cam_module/OV2640DS.pdf
http://github.com/espressif/esp32-camera

	1.​Introduction
	1.1 Purpose
	1.2 Functionality
	1.3 Subsystem Overview
	1.3.1 Microcontroller Subsystem
	1.3.2 Motor and Sensor Subsystem
	1.3.3 User Interface Subsystem
	1.3.4 Power Subsystem
	1.3.5 Camera Subsystem

	2.​Design
	2.1 Equations and Simulations
	2.1.1 Power Switching Simulation
	2.1.2 Estimating the Remaining Food in the Rotator

	2.2 Design Description & Justification
	2.2.1 Microcontroller Subsystem
	2.2.2 Motor and Sensor Subsystem
	2.2.3 User Interface Subsystem
	2.2.4 Power Subsystem
	2.2.5 Camera Subsystem

	2.3 Design Alternatives
	2.3.1 Power Subsystem
	2.3.2 Camera Subsystem

	3.​Conclusion
	3.1 Accomplishments
	3.2 Uncertainties
	3.3 Future Work
	3.4 Ethical Considerations

	Appendix A: Cost and Schedule
	
	Appendix B: Requirements & Verification
	
	

	
	References

