
ECE 445
Spring 2025
Final Report:

Digital Pitch Shifter for Guitar

Team #60:
William Chang (wqchang2)

Eric Moreno (emoren40)
Zhengjie Fan (zfan11)

TA: Shengyan Liu

Professor: Michael Oelze

Table Of Contents

Table Of Contents.. 1
Abstract.. 2
1 Introduction...3

1.1 Problem... 3
1.2 Visual Aid..5
1.3 High Level Requirements... 6

2 Design..7
2.1 Block Diagram... 7
2.2 Functional Overview & Block Diagram Requirements... 8

2.2.1 Input Stage Subsystem...9
2.2.2 Microcontroller Subsystem..14
2.3.3 I/O Subsystem.. 18
2.3.4 Output Stage Subsystem..21
2.3.5 Power Subsystem...24

2.3 System Software Logic & Requirements.. 25
2.3.1 Overview...25
2.3.2 Interface..26
2.3.3 Design Decisions.. 26
2.3.4 Requirements & Verification..26

2.4 Tolerance Analysis..27
3 Cost & Schedule... 29

3.1 Cost Analysis... 29
3.1.1 Parts & Materials...29
3.1.2 Estimated Hours of Compensation... 29
3.1.3 Resources...30
3.1.4 Total Cost..31

3.2 Schedule..31
4 Ethics & Safety..33

4.1 Ethics... 33
4.2 Safety...34

4.2.1 Circuit Protection Safety... 34
4.2.2 Personal Health Safety.. 34

5 References.. 36

1

Abstract

This project presents the design and implementation of a real-time digital pitch shifter
tailored for electric guitar applications. The system is built around the ESP32-S3 microcontroller,
leveraging its processing power and integrated I2S interfaces to handle high-fidelity audio
streams. The front-end captures analog guitar signals using the PCM1808 analog-to-digital
converter (ADC), sampling at 44.1 kHz with 24-bit resolution to ensure professional audio
quality. The digitized audio is processed on the ESP32-S3, where pitch shifting algorithms are
applied to transpose the guitar signal up or down in semitone steps while preserving the natural
tone and timing. Processed audio is output through a PCM5102 digital-to-analog converter
(DAC), delivering the shifted signal back to standard analog outputs suitable for amplifiers and
effects chains.

The pitch shifting core employs a time-domain algorithm based on granular delay line
techniques, optimized to minimize latency and phase artifacts that typically affect real-time pitch
processing. By focusing on mono-channel operation and tuning system parameters for guitar
frequency ranges, the design achieves low latency suitable for live performance environments.
The user interface allows real-time control over pitch shift amount via external controls, offering
seamless integration into a guitarist’s setup.

This project demonstrates the feasibility of compact, low-cost, yet high-quality pitch
shifting using modern microcontrollers and audio components. It serves as a foundation for
further exploration into digital guitar effects, including harmonizers, octave pedals, and dynamic
pitch modulation tools, expanding creative possibilities for musicians.

2

1 Introduction

1.1 Problem

There are new guitar players every year that learn how to use the guitar and continue to

advance their skills. Players become more advanced and eventually learn more technical skills.

Unfortunately, there are different types of guitars that can perform in different ways. Guitarists

without access to a tremolo system face significant limitations in their ability to create expressive

vibrato and pitch-bending effects, which are essential for adding emotional depth and dynamic

variation to their playing. Without these techniques, the guitar’s sound can feel static or

restrained, especially in genres like rock, blues, and jazz, where pitch manipulation is crucial.

Traditional tremolo systems, though effective in addressing this issue, require invasive

modifications to the guitar body, such as routing or altering the bridge. These changes not only

compromise the guitar’s original design but can also affect its sound and value. Additionally,

such systems may not be suitable for all playing styles, or for guitarists who prefer a more

minimalist approach. As a result, players seeking greater versatility in their instrument face the

difficult choice between sacrificing their guitar’s aesthetics or settling for limited expressive

capabilities. This is the gap the proposed project aims to fill.

1.2 Solution

 The solution to the aforementioned issue is a compact, attachable digital pitch-shifting

device that uses a sonic sensor to detect the proximity of the guitarist’s hand to the bridge of the

guitar. This will be so that the user can attach this component to any electric guitar with a jack

cable that would normally be attached to an amplifier. The user would connect their guitar in the

3

system and this will begin the modulation of any signal put through by having the sensor and

microcontroller work together in an algorithm. This software will pitch the guitar up and down

according to what the user decides.

 As the player moves their hand closer or farther from the sensor, the pitch of the guitar

signal is dynamically adjusted, allowing for real-time pitch shifts up or down. The distance is

calculated and adjusted for any small movements made. This enables the guitarist to perform

expressive techniques like vibrato and pitch bending, similar to those provided by traditional

tremolo systems, but without the need for invasive body modifications. Additionally, the device

includes a switch or button that lets the player toggle between upward or downward pitch shifts,

offering greater flexibility in controlling the pitch. As seen in Figure 1, the core of our project

resides in the microcontroller. The amplifications will be the output of what the microcontroller

assessed the sensor to measure and the setting it is on, switched from buttons on the system.

This lightweight solution enhances the player's creativity while preserving the guitar’s natural

design and playability. Furthermore, the additional buttons or switches can enable further effects

such as reverb, chorus, or delay, giving the player more creative control over their sound. These

augmentations enhance the guitarist’s ability to experiment with a wider range of tones and

textures without needing to modify the guitar's body or permanently alter its design.

4

1.2 Visual Aid

Figure: Design Overview

5

1.3 High Level Requirements

The project may only be successful under the following conditions:

Real-Time Pitch Shifting with Low Latency

● The system must process incoming guitar signals and shift their pitch without

perceptible delay (<10ms total latency) to ensure natural playability.

High-Fidelity Audio Processing

● The pitch-shifted output must maintain at least 48 kHz sampling rate and 12-bit

depth for ADC and 8-bit depth for DAC. (ESP32 microcontroller)

User-Controlled Pitch Adjustment

● The device must allow adjustable pitch shifting from -2 to +2 semitones.

6

2 Design

2.1 Block Diagram

 Figure: Block Diagram

Our design consists of 5 different subsystems that include the ADC & preamplification of a

signal to be controlled by the microcontroller. A sensor that sends back data to the

microcontroller and then finally to our guitar’s amplifier through a DAC. All being powered by

our LDO step down subsystem to ensure correct rated voltages.

7

2.2 Functional Overview & Block Diagram Requirements

Figure: Enclosed Design

8

Figure: Final Iteration PCB

2.2.1 Input Stage Subsystem

The preamp subsystem is designed to condition the guitar's signal before it is processed by the

ESP32 microcontroller. A guitar preamp pedal is used to boost the signal, ensuring it reaches a

level suitable for the ESP32-S3. In this subsystem, the guitar's signal is first connected to a 1kΩ

resistor, while a 3.3V voltage source is fed through another resistor to create a DC offset. These

signals are then processed by two op-amps, which both amplify and buffer the voltage. This

ensures the signal is stabilized, eliminating any negative voltage and reducing unwanted noise.

The conditioned signal is then fed into an ADC, which converts the analog signal into a digital

format that the ESP32 microcontroller can interpret. The entire preamp subsystem is powered by

9

a 3.3V power supply from the power subsystem, ensuring stable operation. This setup guarantees

that the microcontroller receives a clean, noise-free signal within its limited voltage range for

accurate processing.

Requirements Verifications

● The preamp must condition the guitar
signal before processing by the
ESP32-S3.

● A guitar preamp pedal must boost the
signal to a suitable level for the
ESP32-S3.

● A 1kΩ resistor must be used to
connect the guitar signal, and a 3.3V
voltage source must be applied
through another resistor to create a DC
offset.

● The preamp must include two
op-amps to amplify and buffer the
signal, ensuring stability and noise
reduction.

● The circuit must eliminate any
negative voltage to protect the ADC
input.

● The ADC must convert the
conditioned analog signal into a digital
format readable by the ESP32.

● The output signal must remain within
the ESP32’s allowable voltage range
for accurate processing.

● ADC Testing:
○ Use an oscilloscope to measure

the ADC input and verify that
it accurately digitizes the
analog signal.

● Op-Amp Functionality Check:
○ Measure input and output

voltages of the op-amps to
confirm amplification,
buffering, and noise reduction.

● Noise and Distortion Analysis:
○ Perform frequency and

spectrum analysis to check for
unwanted noise or signal
distortion.

10

Figure: Input Stage Subsystem Schematic

11

12

13

Graph: Preamp Circuit Simulation

Green: Input Signal, Blue: DC offset, Red: Preamp Output

2.2.2 Microcontroller Subsystem

The ESP32 microcontroller acts as the core processing unit, making both the signal input/output

operations and performing real-time signal processing critical to the system's functionality. A key

responsibility of the ESP32 is managing audio data, utilizing its Analog-to-Digital Converter

(ADC) and Digital-to-Analog Converter (DAC) interfaces. The analog guitar signal is first

digitized by the ADC, then processed using pitch-shifting algorithms. Following processing, the

signal is reconverted into an analog form via the DAC, allowing it to be output to a guitar

amplifier for playback. Beyond audio signal processing, the ESP32 interfaces with an HC-SR04

ultrasonic sensor to capture real-time hand proximity data. It generates a high trigger pulse on a

14

GPIO pin to initiate the sensor's distance measurement cycle. The pulse remains active to ensure

continuous data readings, which are then returned to the microcontroller. The ECHO pin output

is subsequently read by the ESP32 to calculate the distance between the sensor and the player's

hand. This distance is used as a dynamic input, modulating the pitch-shifting parameters in real

time. For precise and stable operation, the microcontroller relies on both internal and external

clock sources to synchronize its processes and improve the accuracy of real-time pitch

adjustments. The system is powered on and configured via a button in the IO Subsystem, which

also allows the user to select between different operating modes or settings. Additionally, the

microcontroller integrates strapping data from the software to ensure proper initialization during

startup. The ESP32 also manages user interactions, such as effect toggling or parameter

adjustments, through GPIO pins connected to external buttons or switches. This enables flexible

user control over the system's functionality in a seamless manner.

Requirements

● The ESP32 must act as the core
processing unit, managing both signal
input/output operations and real-time
signal processing.

● The ADC must accurately digitize the
analog guitar signal for processing.

● The DAC must correctly reconstruct
the processed digital signal into an
analog format for playback through a
guitar amplifier.

● The ESP32 must run pitch-shifting
algorithms in real time with minimal
latency.

● The microcontroller must interface
with an HC-SR04 ultrasonic sensor to
capture real-time hand proximity data.

Verifications

● Real-Time Processing Validation:
○ Measure processing latency

using a logic analyzer to
ensure pitch-shifting
algorithms execute in real time
without audible delay.

● Ultrasonic Sensor Integration Testing:
○ Use an oscilloscope to verify

that the ESP32 generates the
correct trigger pulse for the
HC-SR04 sensor.

○ Capture ECHO pin responses
and confirm accurate distance
calculations based on expected
hand positions.

○ Check that detected distance
values properly modulate

15

● The ESP32 must generate a high
trigger pulse to initiate distance
measurement and continuously receive
ECHO pin data for distance
calculation.

● Hand proximity data must
dynamically modulate pitch-shifting
parameters in real time.

● Internal and external clock sources
must ensure precise and stable
operation, improving pitch adjustment
accuracy.

● The system must be powered on and
configured via a button in the IO
Subsystem.

● The ESP32 must support multiple
operating modes and settings,
selectable via external buttons or
switches.

● Strapping data from software must be
correctly interpreted during startup to
ensure proper initialization.

● User interactions, such as effect
toggling or parameter adjustments,
must be handled via GPIO pins for
seamless control.

pitch-shifting parameters in
software.

● Clock Synchronization Testing:
○ Verify the stability of internal

and external clocks using an
oscilloscope to ensure timing
consistency.

● User Input Response Testing:
○ Press external buttons and

switches to confirm proper
operation of effect toggling
and parameter adjustments.

○ Log GPIO inputs to ensure
accurate command
interpretation by the ESP32.

16

Figure: Microcontroller Subsystem Schematic

17

2.3.3 I/O Subsystem

The I/O subsystem integrates multiple components to facilitate user interaction and system

functionality. The ultrasonic sensor is a key input device, providing real-time distance

measurements for processing. Pull-down resistors are implemented to ensure that push buttons

remain in a consistent low state when not pressed, preventing unintended signals. A Vbus

connection is included to enable USB connectivity, allowing for programming and power

delivery to the system. Additionally, an LCD screen is incorporated to display essential

information, including component statuses and labeled outputs, ensuring clear user feedback. To

enhance system configuration, GPIO strapping is implemented, allowing certain pins to define

system behavior during startup. These strapping pins help configure the boot mode, clock

settings, and other essential parameters, ensuring that the system initializes correctly and

operates as intended without requiring manual intervention each time the device is powered on.

Requirements

● The I/O subsystem must integrate
multiple components to facilitate user
interaction and system functionality.

● The ultrasonic sensor must provide
real-time distance measurements as an
input for processing.

● Pull-down resistors must be
implemented on push buttons to
maintain a consistent low state when
not pressed, preventing unintended
signals.

● A Vbus connection must be included
to enable USB connectivity for
programming and power delivery.

● An LCD screen must display essential
information, including component

Verifications

● Ultrasonic Sensor Input Testing:
○ Use an oscilloscope to verify

that the sensor’s signal is
correctly received and
interpreted by the ESP32.

○ Check real-time data output to
confirm accurate distance
measurements.

● Push Button Stability Testing:
○ Measure voltage levels at the

button inputs with a multimeter
to verify that pull-down
resistors prevent floating
signals.

○ Observe button response in
software to confirm proper

18

statuses and labeled outputs, for clear
user feedback.

● GPIO strapping must be implemented
to define system behavior during
startup.

● Strapping pins must correctly
configure boot mode, clock settings,
and other essential parameters to
ensure proper system initialization
without requiring manual intervention.

state changes.
● USB Connectivity Testing:

○ Test programming
functionality through the USB
interface to ensure reliable data
transfer.

○ Verify that the system powers
on correctly via USB power
delivery.

● LCD Display Validation:
○ Check that the LCD screen

correctly initializes and
displays expected information.

○ Simulate different system
states to ensure real-time
updates on the display.

● GPIO Strapping Verification:
○ Measure GPIO strapping pin

states at startup to confirm
correct boot mode and clock
configuration.

○ Power cycle the system
multiple times to verify
consistent initialization
behavior.

19

Figure: I/O Subsystem Schematic

Figure: Sensor Schematic

20

2.3.4 Output Stage Subsystem

The output stage of our project is responsible for converting the modified digital audio signal

from the ESP32 microcontroller back into an analog signal that the guitar amplifier can process.

This is achieved using a Digital-to-Analog Converter (DAC), which reconstructs the waveform

from the .wav file generated based on sensor measurements. To ensure accurate signal

reproduction, the DAC operates using the same internal and external clocks as the

microcontroller and ADC, maintaining synchronization and preventing artifacts in the audio

output. Since the ESP32 DAC outputs a signal between 0V and 3.3V, it must be shifted and

conditioned to match the input requirements of the guitar amplifier. The amplifier’s instrument

input expects a signal level of approximately 100mV to 1V peak-to-peak. To achieve proper

signal conditioning, the DAC output undergoes DC offset removal using a capacitor, ensuring

that the signal is centered around 0V rather than the ESP32’s 1.65V bias. Additionally, a voltage

divider or an op-amp circuit is used to scale the signal to the appropriate voltage range.This stage

is essential for preserving the integrity of the digitally modified audio while ensuring that the

output signal is properly formatted and voltage-matched for seamless amplification.

Requirements

● The system must convert the modified
digital audio signal from the ESP32
into an analog signal using a DAC.

● The DAC must reconstruct the
waveform accurately based on the
.wav file generated from sensor
measurements.

● The DAC must operate using the same
internal and external clocks as the
ESP32 and ADC to maintain

Verifications

● Signal Conversion Testing:
○ Use an oscilloscope to verify

that the DAC outputs a
properly reconstructed
waveform corresponding to the
digital input signal.

○ Clock Synchronization
Verification:

○ Measure timing signals using
an oscilloscope or logic
analyzer to ensure the DAC,

21

synchronization and prevent audio
artifacts.

● The ESP32 DAC output, which ranges
from 0V to 3.3V, must be conditioned
to match the guitar amplifier’s
instrument input requirements
(approximately 100mV to 1V
peak-to-peak).

● A DC blocking capacitor must be used
to remove the ESP32’s 1.65V DC
offset and ensure the signal is centered
around 0V.

● A voltage divider or an op-amp circuit
must scale the signal to the appropriate
voltage range for the amplifier input.

ESP32, and ADC remain
synchronized.

● Signal Level Adjustment:
○ Measure the DAC output

voltage range and confirm that
it is properly conditioned to the
amplifier’s required input
range.

○ Check the effect of the voltage
divider or op-amp circuit in
scaling the signal
appropriately.

● DC Offset Removal Testing:
○ Use an oscilloscope to verify

that the capacitor removes the
DC offset and centers the
signal around 0V.

○ Audio Quality Assessment:
○ Connect the output to the

guitar amplifier and test for
distortion, noise, or loss of
clarity.

22

Figure: Output Stage Subsystem Schematic

23

2.3.5 Power Subsystem

Figure: Power Subsystem Schematic

The power management system ensures stable operation of both the ESP32 microcontroller and

the HC-SR04 ultrasonic sensor using a 5V power supply. Since the ESP32 operates at 3.3V, a

Low Dropout Regulator (LDO) is used to step down the 5V supply, providing a stable 3.3V

output. The LDO regulator efficiently converts the voltage while minimizing power loss and

ensuring a steady supply to the microcontroller. The HC-SR04 sensor, which requires 5V, is

powered directly from the same 5V source to maintain proper functionality. A common ground is

shared across all components to ensure reliable communication. Additionally, since the

HC-SR04’s Echo pin outputs a 5V signal, a voltage divider is used to safely step down the signal

to 3.3V, preventing damage to the ESP32’s GPIO while allowing accurate signal detection.

Requirements

● The system must provide a stable 3.3V
supply to the ESP32 microcontroller
using an LDO regulator from a 5V

Verifications

● Voltage Measurement:
○ Use a multimeter or

oscilloscope to verify the LDO

24

input source.
● The HC-SR04 ultrasonic sensor must

be powered directly from the 5V
supply to ensure proper operation.

● The LDO regulator must efficiently
convert 5V to 3.3V with minimal
power loss.

● A common ground must be shared
across all components to maintain
reliable operation and signal integrity.

● The HC-SR04 Echo pin’s 5V output
must be safely stepped down to 3.3V
using a voltage divider, preventing
damage to the ESP32’s GPIO.

● The system must maintain stable
voltage levels under expected load
conditions.

output is 3.3V ± 5% under
different load conditions.

○ Measure the 5V supply to
ensure it remains stable when
powering the ESP32 and
HC-SR04.

● Current Load Testing:
○ Measure the current draw of

the ESP32 and HC-SR04 to
ensure the LDO regulator can
handle the expected load.

● Signal Integrity Testing:
○ Use an oscilloscope to check

the Echo pin voltage before
and after the voltage divider to
confirm it steps down from 5V
to 3.3V.

○ Verify that the stepped-down
signal is correctly detected by
the ESP32 GPIO.

2.3 System Software Logic & Requirements

2.3.1 Overview

This system implements real-time pitch-shifting of audio signals based on the ESP32-S3 chip.
The system captures and outputs audio signals through the integrated ADC (Analog-to-Digital
Converter) and DAC (Digital-to-Analog Converter) of the ESP32-S3. It performs pitch-shifting
of the audio using a phase vocoder algorithm. The performer can dynamically adjust the
pitch-shifting parameters by moving their hand to trigger the ultrasonic sensor installed on the
guitar. The system also supports interaction and information display through a serial port or an
LCD screen.

25

2.3.2 Interface

Audio Input Interface: Captures the analog audio signal of the electric guitar using the ADC
interface of the ESP32-S3.
Audio Output Interface: Converts the processed audio signal to an analog signal through the
DAC interface of the ESP32-S3 and outputs it to the guitar amplifier.
User Interaction Interface: Connects an LCD screen via UART or I2C to display information
such as the current pitch shift value and device status.
Sensor Interface: Connects an ultrasonic sensor to capture gesture or distance data via GPIO,
which is used to dynamically control pitch-shifting.

2.3.3 Design Decisions

Pitch-Shifting Algorithm Selection: The phase vocoder algorithm is used for pitch-shifting,
which allows pitch adjustment while maintaining the original audio duration, making it suitable
for real-time audio processing scenarios.
Audio Buffer Design: A ring buffer (RingBuffer) is used to manage audio data, ensuring the
continuity of the audio stream and preventing data loss or overflow.
FFT Implementation: Custom FFT and IFFT functions are implemented for spectral analysis and
synthesis to ensure the flexibility and scalability of the algorithm.
User Interaction Design: Supports parameter display and debugging through a serial port or an
LCD screen.

2.3.4 Requirements & Verification

Requirements

● Real-time pitch-shifting of audio
input, supporting non-contact pitch
control via gesture data captured by
the ultrasonic sensor.

● Display of device status, including the
current pitch shift value and system
status, through an LCD screen or
serial port.

Verifications

● Functional Testing: Test the integrity
and quality of audio input and output
to ensure accurate pitch-shifting.
Verify the function of adjusting
pitch-shifting parameters through hand
gestures.

● Performance Testing: Test the latency
of audio processing to ensure the
system meets real-time audio
processing requirements.

26

● User Testing: Validate the system's
usability and functionality through
user feedback to ensure it meets
practical usage requirements.

2.4 Tolerance Analysis

The sonic sensor plays a crucial role in controlling the pitch shift by detecting the
distance between the guitarist’s hand and the sensor. Accurate and timely readings are
essential for real-time pitch-shifting control. The sonic sensor’s performance is highly dependent
on distance measurement accuracy, which is usually ±1 cm under ideal conditions. A deviation
larger than this could lead to inconsistent pitch shifts or delays in detecting changes in the
guitar’s position, making it difficult to achieve smooth pitch modulation. Furthermore, the
response time of the sensor is critical for real-time interaction with the system. A delay in sensor
updates could introduce latency in the pitch-shifting feedback loop, causing noticeable lag
between the guitar player's action and the system's response.

To quantify the impact of measurement accuracy and timing drift, we’ll use the sensor’s distance
measurement model. The sensor typically uses an ultrasonic wave to measure distance, where the time is
given by:

 𝑑 = 𝑣*𝑡
2

Where:

● d is the distance to the object,
● v is the speed of sound (approximately 343 m/s),
● t is the time of travel.

If the sensor has an accuracy of ±1 cm, this means that the error in distance measurement is
approximately ±0.01 m.

Δ 𝑡 = 2*Δ𝑑
𝑣

Δ 𝑡 = 2*(0.01)
(343) ≈ 58. 3 µ𝑠

This time error could affect the precision of pitch-shifting calculations if it accumulates over time,
especially in events of constant pitch shifting sequences where real-time updates are necessary. Even

27

small errors in time measurement could result in audio discrepancies between sensor updates and the
microcontroller. To ensure minimal impact, the system should handle this error through calibration of the
sensor or microcontroller’s sensitivity. By adjusting the threshold of distance and pitch shifting, we can
increase the tolerance of the sensor readings so even small changes made in distance will be ignored and
avoid triggering any unwanted changes.

28

3 Cost & Schedule

3.1 Cost Analysis

3.1.1 Parts & Materials

The process of picking out parts was obtained through the My.ECE portal, ECE service shop,

and online retailers.

3.1.2 Estimated Hours of Compensation

The members in the project are all Grainge College of Engineering students who are studying

Electrical Engineering. The post-graduate average pay according to the Grainger College of

Engineering website, the average starting salary for an Electrical Engineering graduate is

$87,769 per year [5] which equates to $42.20 per hour.

Category Estimated Hours

 Eric (100) William (120) Fan (95)

Schematic Design 0 30 0

Software Design 0 0 30

Layout Design 15 15 0

29

Assembly &

Troubleshooting

55 55 50

Documentation 30 20 15

Table: Estimated Hours

Using the hours in table above and the rated pay found through research, we can compute the

estimated cost for overall labor as:

$42.20(Hourly Rate) * 315(Total Hours) = $4,960

Note that this is an averaged amount taking taxes into consideration.

3.1.3 Resources

Description Part Number Unit Price Quantity Total Cost Vendor

ESP32-S3
Microcontroller

ESP32-S3-WROOM-1-N8 $4.95 2 $9.90 Link

ESP32-S3 Development
Board

ESP32-S3-DEVKITC-1-N3
2R8V

$15.00
1 $15.00 Link

24 bit ADC PCM1808PW $1.91 2 $3.82 Link

32 bit DAC PCM5102APW $4.47 2 $8.94 Link

Voltage Regulator
(3.3V)

TLV1117-33IDCYG3 $0.71 2 $1.42 Link

TVS Diodes SP0503BAHTG $0.63 2 $1.26 Link

Op-Amps TLV172IDCKT $1.34 5 $6.70 Link

Ultrasonic Sensor HC-SR04 $3.40 2 $6.80 Link

AC Adapter (5V) $7.99 1 $7.99 Link

DC Barrel Jack $6.99 1 $6.99 Link

30

https://www.digikey.com/en/products/detail/espressif-systems/ESP32-S3-WROOM-1-N8/15200089
https://www.digikey.com/en/products/detail/espressif-systems/ESP32-S3-DEVKITC-1-N32R8V/15970965
https://www.digikey.com/en/products/detail/texas-instruments/PCM1808PW/1095997
https://www.digikey.com/en/products/detail/texas-instruments/PCM5102APW/3902495
https://www.digikey.com/en/products/detail/texas-instruments/TLV1117-33IDCYG3/1677131
https://www.digikey.com/en/products/detail/littelfuse-inc/SP0503BAHTG/1154322
https://www.digikey.com/en/products/detail/texas-instruments/TLV172IDCKT/6579535
https://www.amazon.com/dp/B0C5JJV53K?ref=ppx_yo2ov_dt_b_fed_asin_title&th=1
https://www.amazon.com/dp/B09W8X9VGK?ref=ppx_yo2ov_dt_b_fed_asin_title
https://www.amazon.com/dp/B09ZBN38FS?ref=ppx_yo2ov_dt_b_fed_asin_title

LED (Variety) $8.99 1 $8.99 Link

Resistor (10k) $0.30 10 $3.00 ECEB

Resistor (1k) $0.30 10 $3.00 ECEB

Capacitor (10uF) $0.20 10 $2.00 ECEB

Capacitor (1uF) $0.20 5 $1.00 ECEB

Total Cost $86.81

3.1.4 Total Cost

The total cost of expected labor and for parts will be $5046.81.

3.2 Schedule

Date Task Group Member

Week 2/24 ● Finalize PCB
schematic and begin
drafting layout of
design

● Order parts for
breadboard prototype

● Research algorithms
for software
implementation

William
Zhengjie

Week 3/03 ● Construct breadboard
prototype

● Finalize software
interface and backend

● Begin PCB layout
design

William
Zhengjie

Eric

Week 3/10 ● Finalize PCB layout
design

● Submit audit for PCB
order

Eric
Zhengjie

31

https://www.amazon.com/Emitting-Assortment-Individual-Assorted-Breadboard/dp/B096JZHV6Y?crid=3UX8GQIIBIZZJ&dib=eyJ2IjoiMSJ9.GSXNOY5ZU6HfOAYPkY3lGYxt0qfCSdeyfoGP4iM1jN-i90UCDhn9_4UaCb_7Zl2SrmbM-uaKBSymdUkgO3qaT6MzEWYwiVsrGjCjlz1wGlp8LAnN0dqlPOpPjJjwhOQ4fXgUDC5QC9n7ZvlnlRlXo3pq6ZFVgp0iI0QVS2Mae46YqNfsCTPa2LKo2bd-zErZ5zDpXL1izjVKKbrtuxFbnMoqHqN8sJKlwrdDzwQRo_w.kBhyiFqsyhXx0eW9FXZSf0JAwDKRD-htFGg23h0pcM0&dib_tag=se&keywords=Breadboard%2BLED&qid=1741244130&sprefix=breadboard%2Bled%2Caps%2C113&sr=8-6&th=1

Week 3/17 Spring Break

N/A

Week 3/24 ● Assemble PCB William
Eric

Week 3/31 ● Assemble PCB Eric
Zhengjie

Week 4/7 ● Assemble PCB William
Zhengjie

Week 4/14 ● Unit test power
system

● Unit test analog to
digital input system

● Unit test digital to
analog output system

William
Zhengjie

Eric

Week 4/21 ● Program Board
● Conduct test with

guitar

William
Zhengjie

Eric

Week 4/28 ● Troubleshoot/Refine
● Add additional

features (if time
allows)

William
Zhengjie

Eric

32

4 Ethics & Safety

4.1 Ethics

Ethical Considerations

Our digital pitch-shifting guitar project must follow ethical guidelines set by the IEEE and ACM

Codes of Ethics to ensure fairness, responsibility, and safety in both its development and use.

1. Intellectual Property and Fair Use

○ Since our project may involve existing signal processing techniques or

open-source software, we must ensure that we properly cite and follow all

licensing agreements.

○ The IEEE Code of Ethics emphasizes honesty in authorship and respect for

intellectual property. To follow this, we will credit all sources, avoid plagiarism,

and ensure that any external components we use are legally allowed.

2. User Safety and Responsible Design

○ High audio output levels could damage hearing if not properly managed. To

prevent this, we will limit volume levels, implement safety features, and test the

device under different conditions.

○ The ACM Code of Ethics encourages designing systems that improve quality of

life while minimizing harm. Our design will ensure that users are protected from

sudden loud noises or unintended hardware malfunctions.

3. Accessibility and Inclusivity

33

○ Our device should be usable by all musicians, regardless of experience level. We

will provide clear documentation, an easy-to-use interface, and setup guides to

help users understand how to operate it safely and effectively.

○ Ensuring inclusivity aligns with the ACM Code of Ethics, which states that

computing professionals should make technology accessible to a wide audience.

4.2 Safety

Our project includes electronic and software components, each of which presents potential safety

risks. To ensure safe operation, we will follow industry standards and regulations while

implementing features to minimize hazards.

4.2.1 Circuit Protection Safety

Our device operates on low-voltage DC power, but protection against short circuits, overvoltage,

and overheating is still essential to prevent damage or injury. To mitigate these risks, fuses,

voltage regulators, and a physical containment box are used to safeguard both the device and

the user. Additionally, capacitors and resistors are strategically placed in the circuit to help filter

voltage spikes, stabilize power delivery, and limit excessive current flow, further reducing

potential electrical hazards.

4.2.2 Personal Health Safety

Prolonged exposure to loud audio can lead to permanent hearing damage, with OSHA Noise

Exposure Standards indicating that sounds above 85 dB can be hazardous over extended periods.

To mitigate this risk, our design will incorporate built-in volume limits and gain control features

to prevent excessive sound levels from being output. Additionally, warning indicators or visual

34

feedback may be integrated to alert users when sound levels approach unsafe thresholds.

Beyond device features, personal safety measures will be emphasized in the user manual,

educating musicians on the risks of prolonged exposure to high sound levels. Recommendations

may include taking regular breaks, using hearing protection (e.g., earplugs), and maintaining safe

listening distances. These precautions will help ensure that users can enjoy enhanced audio

experiences without compromising their long-term hearing health.

35

5 References

1. SparkFun Electronics, "Ultrasonic Distance Sensor - HC-SR04," [Online]. Available:

https://www.sparkfun.com/ultrasonic-distance-sensor-hc-sr04.html. [Accessed:

13-Feb-2025].

2. Espressif Systems, ESP32-S3 Datasheet, [Online]. Available:

https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf.

[Accessed: 13-Feb-2025].

3. Espressif Systems, ESP-IDF I2S API Reference (ESP32-S3), [Online]. Available:

https://docs.espressif.com/projects/esp-idf/en/stable/esp32s3/api-reference/peripherals/i2s

.html. [Accessed: 13-Feb-2025].

4. Digi-Key Electronics, What Is the I2S Communication Protocol?, [Online]. Available:

https://www.digikey.com/en/maker/tutorials/2023/what-is-the-i2s-communication-protoc

ol. [Accessed: 13-Feb-2025].

5. "Salary Averages." Electrical & Computer Engineering at Illinois, University of Illinois

Urbana-Champaign, https://ece.illinois.edu/admissions/why-ece/salary-averages.

[Accessed 4-Mar-2025].

6. Ellis, D. (2010, October 26). *A phase vocoder in Matlab*. Columbia University.

Retrieved February 20, 2025, from

https://www.ee.columbia.edu/~dpwe/resources/matlab/pvoc/

7. Johnston, P. (2022, December 22). *Creating a circular buffer in C and C++*. Embedded

Artistry. Retrieved March 2, 2025, from

https://embeddedartistry.com/blog/2017/05/17/creating-a-circular-buffer-in-c-and-c/

36

https://www.sparkfun.com/ultrasonic-distance-sensor-hc-sr04.html
https://www.sparkfun.com/ultrasonic-distance-sensor-hc-sr04.html
https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s3/api-reference/peripherals/i2s.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s3/api-reference/peripherals/i2s.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s3/api-reference/peripherals/i2s.html
https://www.digikey.com/en/maker/tutorials/2023/what-is-the-i2s-communication-protocol
https://www.digikey.com/en/maker/tutorials/2023/what-is-the-i2s-communication-protocol
https://www.digikey.com/en/maker/tutorials/2023/what-is-the-i2s-communication-protocol
https://ece.illinois.edu/admissions/why-ece/salary-averages
https://embeddedartistry.com/blog/2017/05/17/creating-a-circular-buffer-in-c-and-c/

	Table Of Contents
	Abstract
	
	1Introduction
	1.1Problem
	1.2 Visual Aid
	1.3 High Level Requirements

	2Design
	2.1 Block Diagram
	2.2 Functional Overview & Block Diagram Requirements
	2.2.1Input Stage Subsystem
	2.2.2Microcontroller Subsystem
	2.3.3I/O Subsystem
	2.3.4Output Stage Subsystem
	2.3.5Power Subsystem

	2.3 System Software Logic & Requirements
	2.3.1Overview
	2.3.2Interface
	2.3.3Design Decisions
	2.3.4Requirements & Verification

	2.4 Tolerance Analysis

	3Cost & Schedule
	3.1Cost Analysis
	3.1.1Parts & Materials
	3.1.2Estimated Hours of Compensation
	3.1.3Resources
	3.1.4Total Cost

	3.2Schedule

	
	4Ethics & Safety
	4.1Ethics
	4.2Safety
	4.2.1Circuit Protection Safety
	4.2.2 Personal Health Safety

	
	
	
	
	
	5References

