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Abstract 

This project presents the design and implementation of a real-time digital pitch shifter 
tailored for electric guitar applications. The system is built around the ESP32-S3 microcontroller, 
leveraging its processing power and integrated I2S interfaces to handle high-fidelity audio 
streams. The front-end captures analog guitar signals using the PCM1808 analog-to-digital 
converter (ADC), sampling at 44.1 kHz with 24-bit resolution to ensure professional audio 
quality. The digitized audio is processed on the ESP32-S3, where pitch shifting algorithms are 
applied to transpose the guitar signal up or down in semitone steps while preserving the natural 
tone and timing. Processed audio is output through a PCM5102 digital-to-analog converter 
(DAC), delivering the shifted signal back to standard analog outputs suitable for amplifiers and 
effects chains. 

The pitch shifting core employs a time-domain algorithm based on granular delay line 
techniques, optimized to minimize latency and phase artifacts that typically affect real-time pitch 
processing. By focusing on mono-channel operation and tuning system parameters for guitar 
frequency ranges, the design achieves low latency suitable for live performance environments. 
The user interface allows real-time control over pitch shift amount via external controls, offering 
seamless integration into a guitarist’s setup. 

This project demonstrates the feasibility of compact, low-cost, yet high-quality pitch 
shifting using modern microcontrollers and audio components. It serves as a foundation for 
further exploration into digital guitar effects, including harmonizers, octave pedals, and dynamic 
pitch modulation tools, expanding creative possibilities for musicians. 
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1 Introduction   

1.1 Problem 

There are new guitar players every year that learn how to use the guitar and continue to 

advance their skills. Players become more advanced and eventually learn more technical skills. 

Unfortunately, there are different types of guitars that can perform in different ways. Guitarists 

without access to a tremolo system face significant limitations in their ability to create expressive 

vibrato and pitch-bending effects, which are essential for adding emotional depth and dynamic 

variation to their playing. Without these techniques, the guitar’s sound can feel static or 

restrained, especially in genres like rock, blues, and jazz, where pitch manipulation is crucial. 

Traditional tremolo systems, though effective in addressing this issue, require invasive 

modifications to the guitar body, such as routing or altering the bridge. These changes not only 

compromise the guitar’s original design but can also affect its sound and value. Additionally, 

such systems may not be suitable for all playing styles, or for guitarists who prefer a more 

minimalist approach. As a result, players seeking greater versatility in their instrument face the 

difficult choice between sacrificing their guitar’s aesthetics or settling for limited expressive 

capabilities. This is the gap the proposed project aims to fill. 

1.2 Solution 

 The solution to the aforementioned issue is a compact, attachable digital pitch-shifting 

device that uses a sonic sensor to detect the proximity of the guitarist’s hand to the bridge of the 

guitar. This will be so that the user can attach this component to any electric guitar with a jack 

cable that would normally be attached to an amplifier. The user would connect their guitar in the 
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system and this will begin the modulation of any signal put through by having the sensor and 

microcontroller work together in an algorithm. This software will pitch the guitar up and down 

according to what the user decides.  

 As the player moves their hand closer or farther from the sensor, the pitch of the guitar 

signal is dynamically adjusted, allowing for real-time pitch shifts up or down. The distance is 

calculated and adjusted for any small movements made. This enables the guitarist to perform 

expressive techniques like vibrato and pitch bending, similar to those provided by traditional 

tremolo systems, but without the need for invasive body modifications. Additionally, the device 

includes a switch or button that lets the player toggle between upward or downward pitch shifts, 

offering greater flexibility in controlling the pitch. As seen in Figure 1, the core of our project 

resides in the microcontroller. The amplifications will be the output of what the microcontroller 

assessed the sensor to measure and the setting it is on, switched from buttons on the system.  

This lightweight solution enhances the player's creativity while preserving the guitar’s natural 

design and playability. Furthermore, the additional buttons or switches can enable further effects 

such as reverb, chorus, or delay, giving the player more creative control over their sound. These 

augmentations enhance the guitarist’s ability to experiment with a wider range of tones and 

textures without needing to modify the guitar's body or permanently alter its design. 
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1.2  Visual Aid 

 

Figure: Design Overview 
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1.3  High Level Requirements  

The project may only be successful under the following conditions:  

Real-Time Pitch Shifting with Low Latency 

● The system must process incoming guitar signals and shift their pitch without 

perceptible delay (<10ms total latency) to ensure natural playability. 

High-Fidelity Audio Processing 

● The pitch-shifted output must maintain at least 48 kHz sampling rate and 12-bit 

depth for ADC and 8-bit depth for DAC. (ESP32 microcontroller) 

User-Controlled Pitch Adjustment 

● The device must allow adjustable pitch shifting from -2 to +2 semitones. 
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2 Design 

2.1 Block Diagram 

  

 

              Figure: Block Diagram 

Our design consists of 5 different subsystems that include the ADC & preamplification of a 

signal to be controlled by the microcontroller. A sensor that sends back data to the 

microcontroller and then finally to our guitar’s amplifier through a DAC. All being powered by 

our LDO step down subsystem to ensure correct rated voltages.  
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2.2 Functional Overview & Block Diagram Requirements  

 
Figure: Enclosed Design 
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Figure: Final Iteration PCB 

2.2.1 Input Stage Subsystem   

The preamp subsystem is designed to condition the guitar's signal before it is processed by the 

ESP32 microcontroller. A guitar preamp pedal is used to boost the signal, ensuring it reaches a 

level suitable for the ESP32-S3. In this subsystem, the guitar's signal is first connected to a 1kΩ 

resistor, while a 3.3V voltage source is fed through another resistor to create a DC offset. These 

signals are then processed by two op-amps, which both amplify and buffer the voltage. This 

ensures the signal is stabilized, eliminating any negative voltage and reducing unwanted noise. 

The conditioned signal is then fed into an ADC, which converts the analog signal into a digital 

format that the ESP32 microcontroller can interpret. The entire preamp subsystem is powered by 
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a 3.3V power supply from the power subsystem, ensuring stable operation. This setup guarantees 

that the microcontroller receives a clean, noise-free signal within its limited voltage range for 

accurate processing. 

 

Requirements  Verifications  

● The preamp must condition the guitar 
signal before processing by the 
ESP32-S3. 

● A guitar preamp pedal must boost the 
signal to a suitable level for the 
ESP32-S3. 

● A 1kΩ resistor must be used to 
connect the guitar signal, and a 3.3V 
voltage source must be applied 
through another resistor to create a DC 
offset. 

● The preamp must include two 
op-amps to amplify and buffer the 
signal, ensuring stability and noise 
reduction. 

● The circuit must eliminate any 
negative voltage to protect the ADC 
input. 

● The ADC must convert the 
conditioned analog signal into a digital 
format readable by the ESP32. 

● The output signal must remain within 
the ESP32’s allowable voltage range 
for accurate processing. 

● ADC Testing: 
○ Use an oscilloscope to measure 

the ADC input and verify that 
it accurately digitizes the 
analog signal. 

● Op-Amp Functionality Check: 
○ Measure input and output 

voltages of the op-amps to 
confirm amplification, 
buffering, and noise reduction. 

● Noise and Distortion Analysis: 
○ Perform frequency and 

spectrum analysis to check for 
unwanted noise or signal 
distortion. 
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Figure: Input Stage Subsystem Schematic 
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Graph: Preamp Circuit Simulation 

Green: Input Signal, Blue: DC offset, Red: Preamp Output 

 

2.2.2 Microcontroller Subsystem 

The ESP32 microcontroller acts as the core processing unit, making both the signal input/output 

operations and performing real-time signal processing critical to the system's functionality. A key 

responsibility of the ESP32 is managing audio data, utilizing its Analog-to-Digital Converter 

(ADC) and Digital-to-Analog Converter (DAC) interfaces. The analog guitar signal is first 

digitized by the ADC, then processed using pitch-shifting algorithms. Following processing, the 

signal is reconverted into an analog form via the DAC, allowing it to be output to a guitar 

amplifier for playback.  Beyond audio signal processing, the ESP32 interfaces with an HC-SR04 

ultrasonic sensor to capture real-time hand proximity data. It generates a high trigger pulse on a 
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GPIO pin to initiate the sensor's distance measurement cycle. The pulse remains active to ensure 

continuous data readings, which are then returned to the microcontroller. The ECHO pin output 

is subsequently read by the ESP32 to calculate the distance between the sensor and the player's 

hand. This distance is used as a dynamic input, modulating the pitch-shifting parameters in real 

time.  For precise and stable operation, the microcontroller relies on both internal and external 

clock sources to synchronize its processes and improve the accuracy of real-time pitch 

adjustments. The system is powered on and configured via a button in the IO Subsystem, which 

also allows the user to select between different operating modes or settings. Additionally, the 

microcontroller integrates strapping data from the software to ensure proper initialization during 

startup.  The ESP32 also manages user interactions, such as effect toggling or parameter 

adjustments, through GPIO pins connected to external buttons or switches. This enables flexible 

user control over the system's functionality in a seamless manner. 

 

Requirements  

● The ESP32 must act as the core 
processing unit, managing both signal 
input/output operations and real-time 
signal processing. 

● The ADC must accurately digitize the 
analog guitar signal for processing. 

● The DAC must correctly reconstruct 
the processed digital signal into an 
analog format for playback through a 
guitar amplifier. 

● The ESP32 must run pitch-shifting 
algorithms in real time with minimal 
latency. 

● The microcontroller must interface 
with an HC-SR04 ultrasonic sensor to 
capture real-time hand proximity data. 

Verifications  

● Real-Time Processing Validation: 
○ Measure processing latency 

using a logic analyzer to 
ensure pitch-shifting 
algorithms execute in real time 
without audible delay. 

● Ultrasonic Sensor Integration Testing: 
○ Use an oscilloscope to verify 

that the ESP32 generates the 
correct trigger pulse for the 
HC-SR04 sensor. 

○ Capture ECHO pin responses 
and confirm accurate distance 
calculations based on expected 
hand positions. 

○ Check that detected distance 
values properly modulate 
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● The ESP32 must generate a high 
trigger pulse to initiate distance 
measurement and continuously receive 
ECHO pin data for distance 
calculation. 

● Hand proximity data must 
dynamically modulate pitch-shifting 
parameters in real time. 

● Internal and external clock sources 
must ensure precise and stable 
operation, improving pitch adjustment 
accuracy. 

● The system must be powered on and 
configured via a button in the IO 
Subsystem. 

● The ESP32 must support multiple 
operating modes and settings, 
selectable via external buttons or 
switches. 

● Strapping data from software must be 
correctly interpreted during startup to 
ensure proper initialization. 

● User interactions, such as effect 
toggling or parameter adjustments, 
must be handled via GPIO pins for 
seamless control. 

 

pitch-shifting parameters in 
software. 

● Clock Synchronization Testing: 
○ Verify the stability of internal 

and external clocks using an 
oscilloscope to ensure timing 
consistency. 

● User Input Response Testing: 
○ Press external buttons and 

switches to confirm proper 
operation of effect toggling 
and parameter adjustments. 

○ Log GPIO inputs to ensure 
accurate command 
interpretation by the ESP32. 
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Figure: Microcontroller Subsystem Schematic 
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2.3.3 I/O Subsystem 

The I/O subsystem integrates multiple components to facilitate user interaction and system 

functionality. The ultrasonic sensor is a key input device, providing real-time distance 

measurements for processing. Pull-down resistors are implemented to ensure that push buttons 

remain in a consistent low state when not pressed, preventing unintended signals. A Vbus 

connection is included to enable USB connectivity, allowing for programming and power 

delivery to the system. Additionally, an LCD screen is incorporated to display essential 

information, including component statuses and labeled outputs, ensuring clear user feedback.  To 

enhance system configuration, GPIO strapping is implemented, allowing certain pins to define 

system behavior during startup. These strapping pins help configure the boot mode, clock 

settings, and other essential parameters, ensuring that the system initializes correctly and 

operates as intended without requiring manual intervention each time the device is powered on. 

 

Requirements  

● The I/O subsystem must integrate 
multiple components to facilitate user 
interaction and system functionality. 

● The ultrasonic sensor must provide 
real-time distance measurements as an 
input for processing. 

● Pull-down resistors must be 
implemented on push buttons to 
maintain a consistent low state when 
not pressed, preventing unintended 
signals. 

● A Vbus connection must be included 
to enable USB connectivity for 
programming and power delivery. 

● An LCD screen must display essential 
information, including component 

Verifications  

● Ultrasonic Sensor Input Testing: 
○ Use an oscilloscope to verify 

that the sensor’s signal is 
correctly received and 
interpreted by the ESP32. 

○ Check real-time data output to 
confirm accurate distance 
measurements. 

● Push Button Stability Testing: 
○ Measure voltage levels at the 

button inputs with a multimeter 
to verify that pull-down 
resistors prevent floating 
signals. 

○ Observe button response in 
software to confirm proper 
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statuses and labeled outputs, for clear 
user feedback. 

● GPIO strapping must be implemented 
to define system behavior during 
startup. 

● Strapping pins must correctly 
configure boot mode, clock settings, 
and other essential parameters to 
ensure proper system initialization 
without requiring manual intervention. 

 

state changes. 
● USB Connectivity Testing: 

○ Test programming 
functionality through the USB 
interface to ensure reliable data 
transfer. 

○ Verify that the system powers 
on correctly via USB power 
delivery. 

● LCD Display Validation: 
○ Check that the LCD screen 

correctly initializes and 
displays expected information. 

○ Simulate different system 
states to ensure real-time 
updates on the display. 

● GPIO Strapping Verification: 
○ Measure GPIO strapping pin 

states at startup to confirm 
correct boot mode and clock 
configuration. 

○ Power cycle the system 
multiple times to verify 
consistent initialization 
behavior. 
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Figure: I/O Subsystem Schematic 

 

Figure: Sensor Schematic  
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2.3.4 Output Stage Subsystem 

The output stage of our project is responsible for converting the modified digital audio signal 

from the ESP32 microcontroller back into an analog signal that the guitar amplifier can process. 

This is achieved using a Digital-to-Analog Converter (DAC), which reconstructs the waveform 

from the .wav file generated based on sensor measurements. To ensure accurate signal 

reproduction, the DAC operates using the same internal and external clocks as the 

microcontroller and ADC, maintaining synchronization and preventing artifacts in the audio 

output.  Since the ESP32 DAC outputs a signal between 0V and 3.3V, it must be shifted and 

conditioned to match the input requirements of the guitar amplifier. The amplifier’s instrument 

input expects a signal level of approximately 100mV to 1V peak-to-peak. To achieve proper 

signal conditioning, the DAC output undergoes DC offset removal using a capacitor, ensuring 

that the signal is centered around 0V rather than the ESP32’s 1.65V bias. Additionally, a voltage 

divider or an op-amp circuit is used to scale the signal to the appropriate voltage range.This stage 

is essential for preserving the integrity of the digitally modified audio while ensuring that the 

output signal is properly formatted and voltage-matched for seamless amplification. 

 

Requirements  

● The system must convert the modified 
digital audio signal from the ESP32 
into an analog signal using a DAC. 

● The DAC must reconstruct the 
waveform accurately based on the 
.wav file generated from sensor 
measurements. 

● The DAC must operate using the same 
internal and external clocks as the 
ESP32 and ADC to maintain 

Verifications  

● Signal Conversion Testing: 
○ Use an oscilloscope to verify 

that the DAC outputs a 
properly reconstructed 
waveform corresponding to the 
digital input signal. 

○ Clock Synchronization 
Verification: 

○ Measure timing signals using 
an oscilloscope or logic 
analyzer to ensure the DAC, 
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synchronization and prevent audio 
artifacts. 

● The ESP32 DAC output, which ranges 
from 0V to 3.3V, must be conditioned 
to match the guitar amplifier’s 
instrument input requirements 
(approximately 100mV to 1V 
peak-to-peak). 

● A DC blocking capacitor must be used 
to remove the ESP32’s 1.65V DC 
offset and ensure the signal is centered 
around 0V. 

● A voltage divider or an op-amp circuit 
must scale the signal to the appropriate 
voltage range for the amplifier input. 

ESP32, and ADC remain 
synchronized. 

● Signal Level Adjustment: 
○ Measure the DAC output 

voltage range and confirm that 
it is properly conditioned to the 
amplifier’s required input 
range. 

○ Check the effect of the voltage 
divider or op-amp circuit in 
scaling the signal 
appropriately. 

● DC Offset Removal Testing: 
○ Use an oscilloscope to verify 

that the capacitor removes the 
DC offset and centers the 
signal around 0V. 

○ Audio Quality Assessment: 
○ Connect the output to the 

guitar amplifier and test for 
distortion, noise, or loss of 
clarity. 
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Figure: Output Stage Subsystem Schematic 
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2.3.5 Power Subsystem 

 

Figure: Power Subsystem Schematic 

The power management system ensures stable operation of both the ESP32 microcontroller and 

the HC-SR04 ultrasonic sensor using a 5V power supply. Since the ESP32 operates at 3.3V, a 

Low Dropout Regulator (LDO) is used to step down the 5V supply, providing a stable 3.3V 

output. The LDO regulator efficiently converts the voltage while minimizing power loss and 

ensuring a steady supply to the microcontroller. The HC-SR04 sensor, which requires 5V, is 

powered directly from the same 5V source to maintain proper functionality. A common ground is 

shared across all components to ensure reliable communication. Additionally, since the 

HC-SR04’s Echo pin outputs a 5V signal, a voltage divider is used to safely step down the signal 

to 3.3V, preventing damage to the ESP32’s GPIO while allowing accurate signal detection. 

 

Requirements  

● The system must provide a stable 3.3V 
supply to the ESP32 microcontroller 
using an LDO regulator from a 5V 

Verifications  

● Voltage Measurement: 
○ Use a multimeter or 

oscilloscope to verify the LDO 
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input source. 
● The HC-SR04 ultrasonic sensor must 

be powered directly from the 5V 
supply to ensure proper operation. 

● The LDO regulator must efficiently 
convert 5V to 3.3V with minimal 
power loss. 

● A common ground must be shared 
across all components to maintain 
reliable operation and signal integrity. 

● The HC-SR04 Echo pin’s 5V output 
must be safely stepped down to 3.3V 
using a voltage divider, preventing 
damage to the ESP32’s GPIO. 

● The system must maintain stable 
voltage levels under expected load 
conditions. 

 

output is 3.3V ± 5% under 
different load conditions. 

○ Measure the 5V supply to 
ensure it remains stable when 
powering the ESP32 and 
HC-SR04. 

● Current Load Testing: 
○ Measure the current draw of 

the ESP32 and HC-SR04 to 
ensure the LDO regulator can 
handle the expected load. 

● Signal Integrity Testing: 
○ Use an oscilloscope to check 

the Echo pin voltage before 
and after the voltage divider to 
confirm it steps down from 5V 
to 3.3V. 

○ Verify that the stepped-down 
signal is correctly detected by 
the ESP32 GPIO. 

 

 

 

2.3  System Software Logic & Requirements  

2.3.1 Overview 

This system implements real-time pitch-shifting of audio signals based on the ESP32-S3 chip. 
The system captures and outputs audio signals through the integrated ADC (Analog-to-Digital 
Converter) and DAC (Digital-to-Analog Converter) of the ESP32-S3. It performs pitch-shifting 
of the audio using a phase vocoder algorithm. The performer can dynamically adjust the 
pitch-shifting parameters by moving their hand to trigger the ultrasonic sensor installed on the 
guitar. The system also supports interaction and information display through a serial port or an 
LCD screen. 
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2.3.2 Interface 

Audio Input Interface: Captures the analog audio signal of the electric guitar using the ADC 
interface of the ESP32-S3.   
Audio Output Interface: Converts the processed audio signal to an analog signal through the 
DAC interface of the ESP32-S3 and outputs it to the guitar amplifier.   
User Interaction Interface: Connects an LCD screen via UART or I2C to display information 
such as the current pitch shift value and device status.   
Sensor Interface: Connects an ultrasonic sensor to capture gesture or distance data via GPIO, 
which is used to dynamically control pitch-shifting. 
 

2.3.3 Design Decisions  

Pitch-Shifting Algorithm Selection: The phase vocoder algorithm is used for pitch-shifting, 
which allows pitch adjustment while maintaining the original audio duration, making it suitable 
for real-time audio processing scenarios.   
Audio Buffer Design: A ring buffer (RingBuffer) is used to manage audio data, ensuring the 
continuity of the audio stream and preventing data loss or overflow.   
FFT Implementation: Custom FFT and IFFT functions are implemented for spectral analysis and 
synthesis to ensure the flexibility and scalability of the algorithm.   
User Interaction Design: Supports parameter display and debugging through a serial port or an 
LCD screen. 

2.3.4 Requirements & Verification   

Requirements  

● Real-time pitch-shifting of audio 
input, supporting non-contact pitch 
control via gesture data captured by 
the ultrasonic sensor.   

● Display of device status, including the 
current pitch shift value and system 
status, through an LCD screen or 
serial port. 

Verifications  

● Functional Testing: Test the integrity 
and quality of audio input and output 
to ensure accurate pitch-shifting. 
Verify the function of adjusting 
pitch-shifting parameters through hand 
gestures.   

● Performance Testing: Test the latency 
of audio processing to ensure the 
system meets real-time audio 
processing requirements.   
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● User Testing: Validate the system's 
usability and functionality through 
user feedback to ensure it meets 
practical usage requirements. 

 

2.4  Tolerance Analysis  

The sonic sensor plays a crucial role in controlling the pitch shift by detecting the 
distance between the guitarist’s hand and the sensor. Accurate and timely readings are 
essential for real-time pitch-shifting control. The sonic sensor’s performance is highly dependent 
on distance measurement accuracy, which is usually ±1 cm under ideal conditions. A deviation 
larger than this could lead to inconsistent pitch shifts or delays in detecting changes in the 
guitar’s position, making it difficult to achieve smooth pitch modulation. Furthermore, the 
response time of the sensor is critical for real-time interaction with the system. A delay in sensor 
updates could introduce latency in the pitch-shifting feedback loop, causing noticeable lag 
between the guitar player's action and the system's response. 

To quantify the impact of measurement accuracy and timing drift, we’ll use the sensor’s distance 
measurement model. The sensor typically uses an ultrasonic wave to measure distance, where the time is 
given by: 

 𝑑 =  𝑣*𝑡
2

Where: 

● d is the distance to the object, 
● v is the speed of sound (approximately 343 m/s), 
● t is the time of travel. 

If the sensor has an accuracy of ±1 cm, this means that the error in distance measurement is 
approximately ±0.01 m.  

Δ  𝑡 =  2*Δ𝑑
𝑣

Δ  𝑡 =  2*(0.01)
(343)  ≈  58. 3 µ𝑠

This time error could affect the precision of pitch-shifting calculations if it accumulates over time, 
especially in events of constant pitch shifting sequences where real-time updates are necessary. Even 
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small errors in time measurement could result in audio discrepancies between sensor updates and the 
microcontroller. To ensure minimal impact, the system should handle this error through calibration of the 
sensor or microcontroller’s sensitivity. By adjusting the threshold of distance and pitch shifting, we can 
increase the tolerance of the sensor readings so even small changes made in distance will be ignored and 
avoid triggering any unwanted changes. 
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3 Cost & Schedule  

3.1 Cost Analysis  

3.1.1 Parts & Materials  

The process of picking out parts was obtained through the My.ECE portal, ECE service shop, 

and online retailers. 

3.1.2 Estimated Hours of Compensation  

The members in the project are all Grainge College of Engineering students who are studying 

Electrical Engineering. The post-graduate average pay according to the Grainger College of 

Engineering website, the average starting salary for an Electrical Engineering graduate is 

$87,769 per year [5] which equates to $42.20 per hour.  

 

 

Category       Estimated Hours  

 Eric (100) William (120) Fan (95) 

Schematic Design 0 30  0 

Software Design  0 0 30  

Layout Design  15 15 0 
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Assembly & 

Troubleshooting 

55 55 50 

Documentation  30 20 15 

 

 

Table: Estimated Hours  

 

Using the hours in table above and the rated pay found through research, we can compute the 

estimated cost for overall labor as:  

$42.20(Hourly Rate) * 315(Total Hours) = $4,960  

Note that this is an averaged amount taking taxes into consideration.   

3.1.3 Resources 

Description Part Number Unit Price Quantity Total Cost Vendor 

ESP32-S3 
Microcontroller 

ESP32-S3-WROOM-1-N8 $4.95 2 $9.90 Link 

ESP32-S3 Development 
Board 

ESP32-S3-DEVKITC-1-N3
2R8V 

$15.00 
1 $15.00 Link 

24 bit ADC PCM1808PW $1.91 2 $3.82 Link 

32 bit DAC PCM5102APW $4.47 2 $8.94 Link 

Voltage Regulator 
(3.3V) 

TLV1117-33IDCYG3 $0.71 2 $1.42 Link 

TVS Diodes SP0503BAHTG $0.63 2 $1.26 Link 

Op-Amps TLV172IDCKT $1.34 5 $6.70 Link 

Ultrasonic Sensor HC-SR04 $3.40 2 $6.80 Link 

AC Adapter (5V)  $7.99 1 $7.99 Link 

DC Barrel Jack  $6.99 1 $6.99 Link 

30 

https://www.digikey.com/en/products/detail/espressif-systems/ESP32-S3-WROOM-1-N8/15200089
https://www.digikey.com/en/products/detail/espressif-systems/ESP32-S3-DEVKITC-1-N32R8V/15970965
https://www.digikey.com/en/products/detail/texas-instruments/PCM1808PW/1095997
https://www.digikey.com/en/products/detail/texas-instruments/PCM5102APW/3902495
https://www.digikey.com/en/products/detail/texas-instruments/TLV1117-33IDCYG3/1677131
https://www.digikey.com/en/products/detail/littelfuse-inc/SP0503BAHTG/1154322
https://www.digikey.com/en/products/detail/texas-instruments/TLV172IDCKT/6579535
https://www.amazon.com/dp/B0C5JJV53K?ref=ppx_yo2ov_dt_b_fed_asin_title&th=1
https://www.amazon.com/dp/B09W8X9VGK?ref=ppx_yo2ov_dt_b_fed_asin_title
https://www.amazon.com/dp/B09ZBN38FS?ref=ppx_yo2ov_dt_b_fed_asin_title


 

 
LED (Variety)  $8.99 1 $8.99 Link 

Resistor (10k)  $0.30 10 $3.00 ECEB 

Resistor (1k)  $0.30 10 $3.00 ECEB 

Capacitor (10uF)  $0.20 10 $2.00 ECEB 

Capacitor (1uF)  $0.20 5 $1.00 ECEB 

      

Total Cost    $86.81  

 

3.1.4 Total Cost 

The total cost of expected labor and for parts will be $5046.81. 

3.2 Schedule  

 

Date Task Group Member 

Week 2/24 ● Finalize PCB 
schematic and begin 
drafting layout of 
design 

● Order parts for 
breadboard prototype 

● Research algorithms 
for software 
implementation 

William 
Zhengjie 

Week 3/03 ● Construct breadboard 
prototype 

● Finalize software 
interface and backend 

● Begin PCB layout 
design 

William 
Zhengjie 

Eric 

Week 3/10 ● Finalize PCB layout 
design 

● Submit audit for PCB 
order  

Eric 
Zhengjie 
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https://www.amazon.com/Emitting-Assortment-Individual-Assorted-Breadboard/dp/B096JZHV6Y?crid=3UX8GQIIBIZZJ&dib=eyJ2IjoiMSJ9.GSXNOY5ZU6HfOAYPkY3lGYxt0qfCSdeyfoGP4iM1jN-i90UCDhn9_4UaCb_7Zl2SrmbM-uaKBSymdUkgO3qaT6MzEWYwiVsrGjCjlz1wGlp8LAnN0dqlPOpPjJjwhOQ4fXgUDC5QC9n7ZvlnlRlXo3pq6ZFVgp0iI0QVS2Mae46YqNfsCTPa2LKo2bd-zErZ5zDpXL1izjVKKbrtuxFbnMoqHqN8sJKlwrdDzwQRo_w.kBhyiFqsyhXx0eW9FXZSf0JAwDKRD-htFGg23h0pcM0&dib_tag=se&keywords=Breadboard%2BLED&qid=1741244130&sprefix=breadboard%2Bled%2Caps%2C113&sr=8-6&th=1


 

 

Week 3/17 Spring Break 
 

N/A 

Week 3/24 ● Assemble PCB William 
Eric 

Week 3/31 ● Assemble PCB Eric 
Zhengjie 

Week 4/7 ● Assemble PCB William 
Zhengjie 

Week 4/14 ● Unit test power 
system 

● Unit test analog to 
digital input system 

● Unit test digital to 
analog output system 

William 
Zhengjie 

Eric 

Week 4/21 ● Program Board 
● Conduct test with 

guitar 

William 
Zhengjie 

Eric 

Week 4/28 ● Troubleshoot/Refine 
● Add additional 

features (if time 
allows) 

 

William 
Zhengjie 

Eric 

 

 

 
 

32 



 

 

4 Ethics & Safety  

4.1 Ethics  

Ethical Considerations 

Our digital pitch-shifting guitar project must follow ethical guidelines set by the IEEE and ACM 

Codes of Ethics to ensure fairness, responsibility, and safety in both its development and use. 

1. Intellectual Property and Fair Use 

○ Since our project may involve existing signal processing techniques or 

open-source software, we must ensure that we properly cite and follow all 

licensing agreements. 

○ The IEEE Code of Ethics emphasizes honesty in authorship and respect for 

intellectual property. To follow this, we will credit all sources, avoid plagiarism, 

and ensure that any external components we use are legally allowed. 

2. User Safety and Responsible Design 

○ High audio output levels could damage hearing if not properly managed. To 

prevent this, we will limit volume levels, implement safety features, and test the 

device under different conditions. 

○ The ACM Code of Ethics encourages designing systems that improve quality of 

life while minimizing harm. Our design will ensure that users are protected from 

sudden loud noises or unintended hardware malfunctions. 

3. Accessibility and Inclusivity 
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○ Our device should be usable by all musicians, regardless of experience level. We 

will provide clear documentation, an easy-to-use interface, and setup guides to 

help users understand how to operate it safely and effectively. 

○ Ensuring inclusivity aligns with the ACM Code of Ethics, which states that 

computing professionals should make technology accessible to a wide audience. 

4.2 Safety  

Our project includes electronic and software components, each of which presents potential safety 

risks. To ensure safe operation, we will follow industry standards and regulations while 

implementing features to minimize hazards. 

4.2.1 Circuit Protection Safety   

Our device operates on low-voltage DC power, but protection against short circuits, overvoltage, 

and overheating is still essential to prevent damage or injury. To mitigate these risks, fuses, 

voltage regulators, and a physical containment box are used to safeguard both the device and 

the user. Additionally, capacitors and resistors are strategically placed in the circuit to help filter 

voltage spikes, stabilize power delivery, and limit excessive current flow, further reducing 

potential electrical hazards. 

4.2.2  Personal Health Safety  

Prolonged exposure to loud audio can lead to permanent hearing damage, with OSHA Noise 

Exposure Standards indicating that sounds above 85 dB can be hazardous over extended periods. 

To mitigate this risk, our design will incorporate built-in volume limits and gain control features 

to prevent excessive sound levels from being output. Additionally, warning indicators or visual 

34 



 

 
feedback may be integrated to alert users when sound levels approach unsafe thresholds.  

Beyond device features, personal safety measures will be emphasized in the user manual, 

educating musicians on the risks of prolonged exposure to high sound levels. Recommendations 

may include taking regular breaks, using hearing protection (e.g., earplugs), and maintaining safe 

listening distances. These precautions will help ensure that users can enjoy enhanced audio 

experiences without compromising their long-term hearing health.         
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