

CO₂ffee: Coffee Bean Freshness

Tracker

By

Abrar Murtaza
Joshua Meier

Nathan Colunga

Final Report for ECE 445, Senior Design, Spring 2025

TA: Surya Vasanth

07 May 2025

Project No. 4

Abstract

For our Senior Design Project, we developed a coffee appliance that tracks bean

freshness by monitoring carbon dioxide (CO₂) released over time. The system

integrates multiple sensors and a data logging module to measure and record CO₂

levels, providing users with quantifiable insight into the beans’ freshness state. This

report outlines the design requirements, subsystem implementations, and verification

results, demonstrating that the system met all functional specifications and performed

as intended.

ii

Table Of Contents

1. Introduction...1

1.1 Problem.. 1

1.2 Solution.. 1

1.3 Visual Aid..3

1.4 High Level Requirements... 3

2 Design and Verification... 4

2.1 Block Diagram..4

2.2 Subsystem Overview..4

2.2.1 Subsystem 1 - Peripheral Devices (i.e. Sensors, Inputs, and Motors)..........4
2.2.2 Subsystem 2 - Controller.. 8
2.2.3 Subsystem 3 - Wireless Connection Module and User Interface...............11
2.2.4 Subsystem 4 - Power System...12
2.2.5 Physical Design...14

3. Costs..17

4. Conclusion.. 18

4.1 Accomplishments...18

4.2 Uncertainties.. 18

4.3 Ethical Considerations..18

4.4 Future Work.. 19

References.. 20

Appendix A Requirement and Verification Table.................... 22

iii

1. Introduction

1.1 Problem

Many coffee enthusiasts care deeply about achieving the ideal level of bean

freshness, as it significantly affects both flavor and overall quality. Beans roasted just

one day earlier may still be too fresh, while after a short period, they can become stale.

When purchasing freshly roasted beans from a roastery, customers are typically given

only an estimated usage window (often within a month), without precise guidance on

when the beans reach peak freshness. As a result, those who are particular about

coffee quality lack a reliable way to determine when their beans are optimally fresh.

Beans that are too new can result in overly acidic coffee [2], while older beans may lose

the distinct flavor notes that define the roast, leading to a flat or stale brew [2]. Without

a way to gauge freshness, users risk suboptimal extraction and inconsistent coffee

quality [1][3]. To address this issue, we developed a custom coffee container capable of

detecting the freshness of beans based on measurable factors. This allows users to

track freshness over time and brew their coffee when the beans are at their ideal state,

ensuring a more consistent and high-quality cup.

1.2 Solution

For our project, we created a container designed to track the amount of CO₂

remaining in coffee beans, as this correlates directly with their freshness [1]. This

measurement is based on the weight of beans added, as well as the detected

concentration of CO₂ that accumulates in the container over time. Our system consists

of an inner and outer container. The inner container is a standard roastery coffee bag

that holds the beans and helps preserve them for as long as possible, utilizing an

airtight seal combined with a degassing valve. The combination of the seal and valve

1

ensures that no oxygen enters the container with the beans, while allowing CO₂ to

escape from the inner container to maintain consistent pressure. The outer container

houses all electronic components, including the weight sensor (which measures the

weight of the beans and accounts for the inner container), the CO₂ sensor, the motor

for opening the outer container, and other required components, all of which are

enclosed in a dedicated section.

For operation, when the user wants to add a newly roasted bag of beans, they

press a button to open the outer container and place the coffee bag at the center of the

weight sensor located at the bottom. They then use a mobile interface to indicate that

new beans have been added, along with selecting the roast type (light, medium, or

dark). The user presses the button again to close the lid with the beans inside. The

container then measures the weight of the beans and the initial CO₂ concentration in

the outer container, which typically ranges from 400 to 1500 ppm at atmospheric levels

depending on location. While the container remains closed, CO₂ is gradually released

from the inner to the outer container. Every minute, the system updates the CO₂

concentration reading and uses this data to calculate the amount of CO₂ released per

gram of coffee beans. This rate of release is compared to the expected initial release

rate for the selected roast type, and the system calculates the percentage of CO₂

remaining in the beans. It is important to note that the system assumes 100% CO₂

retention upon placement into the container. This assumption is based on the expected

use case, where beans are added shortly after purchase, making the time since

roasting minimal and CO₂ loss negligible. The final design is shown in Figure 1.1.

2

1.3 Visual Aid

Figure 1.1 - CO₂ffee on the Right Among Other Coffee Appliances

1.4 High Level Requirements

●​ The freshness rating must be reported as a percentage, representing the CO₂

remaining in the beans relative to its original state (100%). This gives the user a

clear idea of the freshness of the beans.

●​ The weight sensor readings must accurately reflect bean withdrawal by ±2 %,

and combined with CO₂ sensor data, they must determine the CO₂ loss per

gram of beans. The weight being precise is important as it allows us to

accurately measure CO₂ released per gram of beans.

●​ The user can select from three bean types, and press a button to open/close the

outer lid for bean withdrawal. This is needed because different beans contain

different levels of CO₂ per gram and need to be reflected in the system. The

button is used in order for the user to retrieve beans from the system and for the

system to know that there are beans being withdrawn.

3

2 Design and Verification

2.1 Block Diagram

Figure 2.1 - Block Diagram of Components

2.2 Subsystem Overview

All subsystems and their connections and communications are shown in Figure 2.1.

2.2.1 Subsystem 1 - Peripheral Devices (i.e. Sensors, Inputs, and Motors)

The peripheral devices subsystem needed to consider four main components: the CO₂

sensor, weight sensor, servo motor, and button, all of which needed to be managed by the

controller. When picking out components, it was important to consider the available voltage

levels on the board, the precision of sensor data, and the overall small profile to fit in the

relatively small project.

4

​ Below, Figure 2.2 showcases the schematic of how the peripheral devices were

connected to the controller (ESP32). Figure 2.3 highlights the physical connections on the

board that were used to connect to each device.

Figure 2.2 - Peripheral Devices Schematic ​ ​ Figure 2.3 - Peripheral PCB Layout

To begin with, the servo motor was relatively simple to integrate into the system. It uses

a simple PWM control scheme and could therefore be connected to nearly every pin on the

ESP32 as most of them could support this data type. One of the main considerations when

picking out a component was the limits of the ESP32, as the controller could only output 3.3V

as a PWM, the selected motor must operate in this range. Under these considerations, the

HS-318 [4] servo motor was selected due to its compatibility with system requirements and

availability through the department’s component inventory. The testing of this component was

simple and once the ESP32 was verified to be programmable it was simply a test of plugging in

the motor and running a variety of scripts to get an idea of the range of the motor in turning

radius. After a general idea of the angles available, the motor was mounted to the container

and calibrated to open and close the lid within the desired degree amounts.

​ While the servo motor was simple to operate, the button was even simpler. It is the

simplest of I/O devices and could be used with any of the ESP32 pins. It was decided that the

button would be an SPST button (a button that holds its state until pressed again) as this would

make programming the interaction simpler as the system could simply periodically check the

button’s state. In the end, the button that was used in the system was an arbitrary button off of

5

Amazon that was used in previous personal projects and cost around 33¢ per button. Verifying

this component was simple as the script only needed to probe the button every hundred

milliseconds to determine its state and to be sure it was switching states when the button was

pressed.

​ When integrating the weight sensor there were not many options available. The most

common and affordable sensors were those used most commonly with Arduinos created by

Sparkfun and were, therefore, our first choice (specifically the SEN-13329 [5]). However, these

sensors required the usage of an external amplifier unit to turn the data from the load cell into

controller-readable data (SEN-13879 [6]). This forced us to integrate this amplifier onto the

board itself which was rather simple as the layout of the external amplifier was rather simple

and could be replicated on our board with relative ease. Below in Figure 2.4, the schematic of

this amplifier is shown. The PCB location of this amplifier can be seen in Figure 2.2 as a

“Weight Sensor Amplifier”. You may have noticed that there were two connections for weight

sensors in Figure 2.2, the “Weight Sensor Backup” connection is the connection that bypasses

the amplification circuit and was used before integrating the amplifier onto the PCB to debug

and test the overall system. The load cell when used initially outputs a range of numbers

without a unit and needs to be scaled to have a unit attached to the readings. This was done

using an additional scale where the weight of objects was compared to the readings from both

scales and the weight sensor was easily scalable to output the desired grams and was found to

be extremely accurate within 土2%.

Figure 2.4 - Weight Sensor Amplifier Schematic

6

​ The final component of the peripheral devices was the CO₂ sensor. This component

came with a few challenges. Once again there were very few options that were affordable and

nearly immediately the PASCO2V15 [7] was selected for its price and seemingly ease of use.

The sensor needed to be placed into the main container and because the sensor required a

supporting circuit and was a SMD component it would need a dedicated PCB to function

properly. The schematic of this PCB can be seen below in Figure 2.5 and the PCB and

mounted component can be seen in Figure 2.6. The sensor allowed for multiple communication

protocols and the UART communication method was decided to be used for simplicity which

restricted the pins that could be used on the ESP32 making its pin designation forced to be

IO16/17 as those were the only available pins that support this method. To verify this system

worked as intended multiple locations were tested for their CO₂ readings and compared

against expected values online for certain locations and it was therefore verifiable that the CO₂

sensor was accurate to the CO₂ readings (listed as 土5% on the datasheet below 3000 ppm).

Figure 2.5 - CO₂ Sensor Board Schematic

Figure 2.6 - CO₂ Sensor PCB Layout (left) and PCB Mounted in Container (right)

7

2.2.2 Subsystem 2 - Controller

​ The controller subsystem consists of two main components: the ESP32 microcontroller

and a USB-to-UART interface. We selected the ESP32 specifically for its built-in Wi-Fi

capabilities, which allow it to host its own wireless network and communicate data with a user

interface. The USB-to-UART interface includes a CP2102 bridge chip that enables micro-USB

connectivity and facilitates programming of the microcontroller by converting USB signals into

UART data. The primary role of this subsystem is to manage all peripheral devices (as shown in

Figure 2.7) and execute control tasks that drive the system's core functionality. Figure 2.7

shows the schematic diagram detailing the connections between the ESP32 and its

peripherals, while Figure 2.8 presents a high-level block diagram illustrating their interactions.

Figure 2.7 - ESP32 and Support Circuit for Programming

​ There are two main control tasks that govern the functionality of the system. The first is

the button and lid task, which continuously polls the button state every 500 milliseconds. When

the button is pressed, the lid is opened via a servo motor. Upon release, the lid closes, and

new baseline values—such as CO₂ concentration and bean weight—are recorded. This ensures

the system captures a stable reference point for subsequent freshness calculations. The

second core task is the CO₂ sampling task, which measures the CO₂ concentration inside the

container once per minute. This sampling rate is based on the sensor datasheet, which

8

indicates that accuracy significantly decreases with more frequent measurements. After each

valid sample, the system updates the freshness level of the coffee beans based on the

estimated CO₂ loss. The conceptual steps are as follows: the system first calculates the

difference between the current and baseline CO₂ concentrations in parts per million (ppm). This

value is then multiplied by the container volume to convert the CO₂ loss into milligrams. The

resulting mass is divided by the weight of the beans in grams to obtain the CO₂ lost per gram

of beans. Finally, the freshness score is computed as the ratio of remaining CO₂ to the

estimated initial CO₂ content per gram.

It is important to note that CO₂ sampling and freshness updates only occur while the lid

is closed. This ensures that the measurements reflect accumulated CO₂ released from the

beans rather than contamination from ambient air. If the lid is open, sampling is temporarily

skipped. Furthermore, if the CO₂ concentration exceeds 3000 ppm, the system initiates an

aeration routine. This routine opens the lid to release excess CO₂ and resets the baseline, since

sensor accuracy degrades beyond this threshold, as documented in the datasheet.

​

Figure 2.8 - ESP32 Interactions with Peripherals

To verify proper operation, a series of tests were conducted for each peripheral

connected to the ESP32 microcontroller. For the weight and CO₂ sensors, test programs

periodically recorded and displayed sensor readings to the terminal. These tests confirmed

consistent and accurate CO₂ readings across different environments. The weight sensor

demonstrated reliable performance, with detection accuracy within ±2% for all tested items.

9

The servo motor was also tested extensively, sweeping through its expected operating range

from 60° to 120° and responding correctly to button input to open and close the lid. Interaction

between the ESP32 and the mobile interface is discussed in the following section.

With the control software complete, the main freshness tracking algorithm was ready for

testing and verification. In the simulation shown in Figure 2.9, 340 grams of dark roast beans

were placed in the container and monitored over a 2-hour period to evaluate long-term

freshness tracking. As shown in the graph, CO₂ concentration increased as the beans released

gas, leading to a gradual decrease in freshness. A total of 2114 ppm of CO₂ was released,

resulting in a final freshness score of 99.59% after 2 hours. Although the CO₂ release curve

appears linear, this is due to the limited observation window; over longer periods, dark roast

beans are known to release CO₂ rapidly at first, followed by a slower, plateauing release rate.

Figure 2.9 - Freshness Tracking Simulation

10

2.2.3 Subsystem 3 - Wireless Connection Module and User Interface

​ The wireless connection module and mobile interface consist of the ESP32

microcontroller, which includes a built-in Wi-Fi module, and any web-enabled device such as a

phone or laptop that serves as the user interface (UI). The ESP32 hosts its own Wi-Fi network

and web page, while the UI connects to this network. These components operate in a

server-client relationship, where the ESP32 acts as the server and the UI as the client,

communicating via the HTTP protocol. The client sends HTTP requests, and the

ESP32—running an HTTP server—handles and responds to them appropriately.

Figure 2.10 - User Interface

The client can send three types of requests through the UI as depicted in Figure 2.10.

The first is the update request, which is a GET request that asks the server to prepare key data

such as freshness, CO₂ concentration, weight, and bean type. The server responds in JSON

format, and the UI formats this information in the main data box. The second is the new beans

request, which is a POST request that sends the roast type of newly added beans to the server.

This information is stored and used for future freshness calculations, and the server returns an

acknowledgment to the client. Lastly, the show logs request is another GET request that

returns a large raw text block containing system logs, which the UI displays for debugging and

transparency purposes.

11

Verifying this subsystem involves ensuring that the ESP32 successfully hosts its Wi-Fi

network and runs the HTTP server. A web-enabled device then connects to the network to test

whether HTTP requests receive the correct responses. The verification was successful, with all

requests returning valid responses and latency consistently remaining below 5 seconds, as

desired.

2.2.4 Subsystem 4 - Power System

​ We want our power system to ensure that each component receives enough power to

work correctly under their expected load. We compared the voltage and current ratings of each

component at maximum load and decided to use a 3.7V, 2.6Ah Li-ion battery. We can see the

respective voltages and maximum current draws of each component in Table 2.1 below.

Table 2.1 - Component Power Table

Component Operating Voltage Maximum Current Draw

ESP32 3.3V 500mA

Push Button 3.3V Negligible

PASCO2V15 CO₂ Sensor
(3.3V Rail)

3.3V 10mA

PASCO2V15 CO₂ Sensor
(5V Rail)

5V 300mA

Servo Motor 5V 1A

SEN-14729 Load Cell 5V 5mA

HX711 Load Cell Amplifier 5V 1.5mA

Our BMS consists of 2 components, the protection and charging circuits. The BQ297 is

a single-cell Li-ion battery protection IC that we incorporated to ensure that it has protection

from overcurrent. The TP4056 is a single cell linear battery charger that allows us to charge the

battery via the USB port that we also use to program the ESP-32. The schematics and layouts

of each component are shown in Figure 2.11 and 2.12 below.

12

Figure 2.11 - BQ297 Battery Protection Circuit Schematic and Layout

Figure 2.12 - TP4056 Linear Battery Charger Circuit Schematic and Layout

Now that we have the battery and BMS set up, we now need to Figure out how to

produce 3.3V and 5V from the 3.7V battery. We decided to use DC-DC converters as they have

high efficiency and minimal heat dissipation.

Starting with the 3.3V DC-DC converter, here in Eq 2.1 are the calculations for the

maximum current draw for the rail:

500mA (ESP-32) + 10mA (PASCO2V15) + 0mA (Button) = 510mA (Eq. 2.1)

Considering our max current draw of 510mA, we decided on the TPS631. The TPS631

outputs 3.3V and 1.5V max at 93+% efficiency with a 1.2mm x 2.1mm package and minimal

circuitry around it. The schematic and layout for the 3.3V conversion circuit using the TPS631

can be found in Figure 2.13 below.

13

Figure 2.13 - TPS631 3.3V Buck Converter Circuit Schematic and Layout

When we looked for a 5V boost converter for our system, we followed an extremely

similar process to our selection process for our 3.3V buck converter component. Starting with

the maximum current draw for the 5V system, calculations can be found in Eq. 2.2 below:

300mA (PASCO2V15) + 1A (Motor) + 5mA (Sen-14729) + 1.5mA (HX711) = 1.3065A (Eq 2.2)

With our considerations, we used the MP3423, allowing us to convert our 3.7V battery

to 5V and up to 3.1A at 94%+ efficiency (96%+ for our typical use case) in a 2mm x 2mm

package. The schematic and layout for this 5V boost converter system can be found in Figure

2.14 below.

Figure 2.14 - MP3423 5V Boost Converter Circuit Schematic and Layout

2.2.5 Physical Design

​ The final physical design did not change much compared to the original design found in

the Design Document (preliminary design shown in Figure 2.15). The concept of separating the

14

main container where the beans will be weighed and where CO₂ readings will be taken from the

Electronic Housing remained throughout the project and the only other considerations taken

into account were the mounting apparatuses needed to mount all PCBs and components both

in and out of the container. It is also worth noting that the reason that the PCB is shaped

somewhat like a circle is to prevent the PCB from not fitting within the bounds of the electronic

housing walls. Because the container was a circle and the PCB was also a small circle there

would be no way for the PCB not to fit in the container as a smaller circle will always fit in a

larger circle if it is inside and has one point tangent to the larger circle. The added section of

the PCB that breaks its circle structure was made after the physical layout was completed and

it was known that it would fit fine within the provided space.

Figure 2.15 - Preliminary Design of Physical Layout

The designing phase of the physical layout took place after the first PCB design phase

so the dimensions of the mounting holes and overall PCB was easily accessible. Taking these

dimensions to create the necessary standoffs for mounting and external access for the USB

port was straightforward for the electronic housing. The mounting holes for the battery were

similarly simple as a basic battery housing was used and its dimensions were readily available

on its datasheet.

As the PCB for the CO₂ sensor was also created before the design phase of the

physical layout it was similarly trivial to create a mounting bracket on the inside of the main

container with the dimensions created when designing the CO₂ PCB. The bracket was placed

on the inside right below the button as this location is presumably harder to see from the

perspective of the user making the final product slightly more appealing.

15

For mounting the weight sensor it was also only a matter of finding the datasheet and

orienting the hole at the bottom of the main container to allow the other side of the weight

sensor to be in the middle of the container with the correct screw hole size (M5). For the actual

weight plate itself, it was simply a disk that had a bit of space for the hole so the head of the

screw remained flush with the surface of the plate. M5 nuts were also used as adjustable

standoffs to easily determine how high each element needed to be for optimum placement and

minimum interference with one another.

Mounting the button was a simple matter of creating a hold in the container with the

correct dimensions found by measuring using wire and a measuring tape.

Mounting the servo motor also was just a matter of looking at the datasheet, finding its

dimensions, and creating both a bracket to firmly hold the motor in place on the exterior of the

main container as well as placing it so that the expected center of rotation for the lid is lined up

with the center of the containers circle. The lid itself was one of the harder components to

design as its mounting section had to line up with the servo motor’s mounting extra

components whose dimensions were not readily available and needed to be hand measured.

The lid was also designed to slightly self-correct itself into the container as the container’s lip

and lid’s edge were both angled to slide into one another with more accuracy.

Figure 2.16 shows the final product both inside and outside as annotated and Figure

2.17 shows the CAD models used to 3D print the container.

Figure 2.16 - Final Product Exterior (left) and

Interior (right)

Figure 2.17 - CAD Models of All

Container Components

16

3. Costs and Schedule

Table 3.1 - Total Cost Table

Part Costs and Description

Part Number
Manufacturer Part

Number Description
Quantit

y
Unit
Price

Extended Price
USD links

1568-1436-ND SEN-13879 LOAD CELL AMP HX711 1 $10.95 $10.95 link

336-5886-1-ND
CP2102N-A02-GQFN2

0R IC USB TO UART BRIDGE QFN20 1 $5.59 $5.59 link

296-43985-1-ND BQ29700DSER IC BATT PROT LI-ION 1CELL 6WSON 1 $0.52 $0.52 link

4518-8205ACT-ND 8205A MOSFET 2N-CH 20V 5A SOT23-6 1 $0.37 $0.37 link

5503-TPB4056B2X-ES1RCT-
ND TPB4056B2X-ES1R LINEAR BATTERY CHARGER 1 CELL 8- 1 $1.05 $1.05 link

1589-1642-1-ND MP3423GG-Z IC REG BOOST ADJ 9A 14QFN 1 $3.46 $3.46 link

296-TPS631000DRLRCT-ND TPS631000DRLR DC DC CONVERTER 1 $1.42 $1.42 link

1568-1900-ND SEN-14729 LOAD CELL 5KG STRAIGHT BAR TAL22 1 $13.12 $13.12 link

445-8657-1-ND MLZ2012M1R0HT000 FIXED IND 1UH 800MA 100 MOHM SMD 1 $0.10 $0.10 link

445-6757-1-ND MLZ2012N1R5LT000 FIXED IND 1.5UH 900MA 100MOHM SM 1 $0.10 $0.10 link

BH-18650-PC-ND BH-18650-PC BATTERY HOLDER 18650 PC PIN 1 $3.12 $3.12 link

1568-1488-ND PRT-12895 BATTERY LITH-ION 3.7V 2.6AH 1865 1 $6.62 $6.62 link

PASCO2V15AUMA1 Infineon Technologies CO₂ SENSOR IN PPM 1 $20.92 $20.92 link

Values include: 1, 22, 330,
1k, 2k, 2.2k, 10k, 91k, 150k,

511k, 787k -- Various resistors of different values 17 $0.10 $1.70 --

Values include
.1uF, 4.7uF, 100nF, 10uF,

22uF, 47uF -- Various capacitors of different values 19 $0.10 $1.90 --

Colors include:
Green, Red, Blue -- different colored LEDs 3 $0.14 $0.42 --

BC817-25LT1G onsemi TRANS NPN 45V 0.5A SOT23-3 2 $0.15 $0.30 link

10118194-0001LF Amphenol ICC (FCI) CONN RCPT USB2.0 MICRO B SMD R/A 1 $0.41 $0.41 link

HS-318 Hi-Tec 25 TOOTH SERVO MOTOR 1 $18.78 $18.78 link

TS02-66-50-BK-260-LCR-D
Same Sky (Formerly

CUI Devices) PUSHBUTTON THT 2 $0.10 $0.20 link

-- OVERTURE 1.75MM PLA 3D PRINTER FILAMENT 1 $24.00 $24.00 link

Total part cost: $115.05

 Labor Cost

Number of People Average hourly salary Estimated individual hours worked
–

3
$45 200

GRAND TOTAL COST: $27,115.05

17

https://www.digikey.com/en/products/detail/sparkfun-electronics/SEN-13879/6202732?s=N4IgTCBcDaIIwFYBsAOAtHALAZiWgcgCIgC6AvkA
https://www.digikey.com/en/products/detail/silicon-labs/CP2102N-A02-GQFN20R/9863478?s=N4IgTCBcDaIMxwGwFoCsAOdKCMyByAIiALoC%2BQA
https://www.digikey.com/en/products/detail/texas-instruments/BQ29700DSER/5973173?s=N4IgTCBcDa4JwDYC0AWAzHAHAViQRiQDkAREAXQF8g
https://www.digikey.com/en/products/detail/umw/8205A/24889988?s=N4IgTCBcDaICwFYCMAOAtCsAGBBBAwgCpoByAIiALoC%2BQA
https://www.digikey.com/en/products/detail/3peak/TPB4056B2X-ES1R/22228451?s=N4IgTCBcDaIKxwAwGYC0AVACgIQCyLgDZswANVAUQGUBGAJQGF1UA5AERAF0BfIA
https://www.digikey.com/en/products/detail/monolithic-power-systems-inc/MP3423GG-Z/5292358?s=N4IgTCBcDaIIwFYAcBOAtHAbAFjBtAcgCIgC6AvkA
https://www.digikey.com/en/products/detail/texas-instruments/TPS631000DRLR/15965499?s=N4IgTCBcDa4JwDYC0AVACgZQQZgIwAZCARAJQBkSBhFJAOSJAF0BfIA
https://www.digikey.com/en/products/detail/sparkfun-electronics/SEN-14729/9555603?s=N4IgTCBcDaIIwFYBsAOAtHAnABm2gcgCIgC6AvkA
https://www.digikey.com/en/products/detail/tdk-corporation/MLZ2012M1R0HT000/3077904?s=N4IgTCBcDaICxwKwFoAcA2RB2ZBGZAcgCIgC6AvkA
https://www.digikey.com/en/products/detail/tdk-corporation/MLZ2012N1R5LT000/2523495?s=N4IgTCBcDaICxwKwFoBsB2R7kEZkDkAREAXQF8g
https://www.digikey.com/en/products/detail/mpd-memory-protection-devices/BH-18650-PC/3029216?s=N4IgTCBcDaIEIAkC0BGAHANgKwAYkAUBhJAOQBEQBdAXyA
https://www.digikey.com/en/products/detail/sparkfun-electronics/PRT-12895/5271298?s=N4IgTCBcDaIIwFYBsAOAtHALC9A5AIiALoC%2BQA
https://www.infineon.com/cms/en/product/sensor/gas-sensors/co2-sensors/
https://www.digikey.com/en/products/detail/onsemi/BC817-25LT1G/918339
https://www.digikey.com/en/products/detail/amphenol-cs-fci/10118194-0001LF/2785389?s=N4IgTCBcDaIIwAY5wBxwJwBYC0C9wBkAxEAXQF8g
https://www.servocity.com/hs-318-servo/
https://www.digikey.com/en/products/detail/same-sky-formerly-cui-devices/TS02-66-50-BK-260-LCR-D/15634249?s=N4IgTCBcDaICoGUAMYC0A2dqCsTUCEBpVMdPAGQGEAlVAERAF0BfIA
https://www.amazon.com/OVERTURE-Filament-Consumables-Dimensional-Accuracy/dp/B07PGY2JP1/ref=sr_1_6?crid=3DRA79AG2C20D&dib=eyJ2IjoiMSJ9.P1xvZCsKYl-AnLGA-ZZ6ooL88kwlwuQ_FQWLKcDvLMyHuHdoySvocL3fCXT1QO2ooFLsYyAJGvCVC0CPS4k_uDSqYGjwtRRkf7MM6SBinz97ZFA3w6h8r36-ALT9qDMteMKl6i6VXQF9YZglfBzl0f1L592IweYLGbSIXSgzLTaosnjK0WALgq3V3-v0gQBgDWdqnZ3qwAkgYGlTv29Gbyxre7dZX5V4v5Ud1VDBG1QldPeJ7nelt5nB8Y0KDKhqbHy0hKhSoPlY5ykePFrWlS4D43WM_Pqvz8Qnvcf2cAHES8hgbIRfsgsb9lagnGW4J87WelDeMJp7duqaC0CX-tF8rh1soZBypSa9wwXNlX2oY0Bw5VfV1cf79NaG2KTtvZtmdafBOep3Ptg6WS_zvbtpupbfstQOVBq3rOWnoXPg_BdTpGy7vh4RWP0m3wGE.6BFlk6JmdkqQkvbDZOvu4aUSx1o5O5Eh0wNOZTgHamw&dib_tag=se&keywords=pla&qid=1741318003&sprefix=%2Caps%2C73&sr=8-6

Table 3.2 - Weekly Schedule

Week of Task Assignments

February 17

Abrar: Brainstormed possible freshness tracking algorithms

Nathan: Began schematic planning

Josh: Start selecting components for power subsystem

Proposal Review

February 24

Abrar: Polished the freshness tracking algorithm and procedures

Nathan: Designed first PCB schematic

Josh: Work on layout for first round of PCB

PCB Review

March 3

Abrar: Set up ESP-IDF environment to write code on ESP32

Nathan: Designed CO₂ sensor schematic and ordered PCB

Josh: Noting down specs/calculations of power components

First Round PCB and Design Document

March 10

Abrar: Programmed arduino for breadboard demo

Nathan: Preparing for Breadboard Demo

Josh: Helped wire components for Breadboard Demo

Breadboard Demo

March 17 Enjoy Spring Break Spring Break

March 24

Abrar: Wrote motor and button drivers and tests

Nathan: Assisted in bench testing PCB/began 3D design

Josh: Soldered PCB and helped test power

March 31

Abrar: Wrote weight and CO₂ sensor drivers and tests

Nathan: Further board testing and 3D modeling/updated CO₂

Josh: Helped with new CO₂ sensor PCB layout

Third Round PCBs / Individual Reports

April 7

Abrar: Designed UI, wrote code and tests for HTTP server/Wi-Fi

Nathan: Modular testing and 3D printing container

Josh: Added HX711 module onto PCB

Fourth Round PCBs

April 14

Abrar: Wrote final system logic, integrating all drivers

Nathan: Assembling of final container and final debugging

Josh: Helped test all individual subsystems

Team Contract Assessment

April 21

Abrar: Ran simulations to produce results with logs and graphs

Nathan: Assisted in final PCB testing and assembly

Josh: Helped assemble whole product and test everything together

Mock Demo

April 28

Abrar: Prepared results, including logs and graphs for final demo

Nathan: Final demo final touches and presentation prep

Josh: Soldered round 4 PCB and helped test it

Final Demo/Mock Presentation

May 5

Abrar: Finished up final presentation and paper

Nathan: Presentation work and final paper revision

Josh: Work on presentation and final paper

Final Presentation / Papers / Checkout

18

4. Conclusion

4.1 Accomplishments

​ Considering we finished everything that we expected to for our project, we do have a lot

of accomplishments. We were able to satisfy all of our high level requirements and develop a

product that a person could use practically. The user would be able to open the container, put

their beans in, select a bean type on the mobile interface, and close the container. Over time,

they could use the beans and track the freshness levels of the beans. This wouldn’t have been

possible without meeting all of our subsystem requirements, which we also completed.

4.2 Uncertainties

​ Although we would largely consider our project a success, there were still a couple of

issues and challenges we ran into throughout our design. In terms of hardware, soldering small

components proved to be a major challenge as it required steady hands and careful placement.

Poor soldering was also hard to detect and debug given the components were very small.

Additionally the CO₂ sensor datasheet was not very clear with the layout so we had to go

through a couple of iterations on the custom PCB for the CO₂ sensor before having it align with

the actual sensor. In terms of software, a big issue was ensuring thread safety for concurrency.

Since we have multiple threads running concurrently, all shared data between the threads

initially corrupted one another leading to bad data so we had to use mutual exclusion to protect

the data.

We also have some things we would update about the project if we had more time. The

first change is making the battery bigger to allow the system to be more portable and survive

longer without charging it. The second thing we would improve is our physical design

tolerances. Because we wanted to open the electronics housing easily when working on the

project, the bottom and top housing are not secured together. We would want to change this

19

so nothing falls apart when transporting it. The final thing is moving our interface to a Bluetooth

connection instead of Wi-Fi, as it draws less current overall and allows the user to use the

internet while still being connected to our device.

4.3 Ethical Considerations

Our coffee bean freshness detector assumes that beans start with 100% CO₂ retention,

estimating initial content based on the selected bean type; accordingly, freshness is reported

as an approximate percentage of remaining CO₂. In line with IEEE Code of Ethics I.5, we will

clearly inform users of these assumptions and limitations. To ensure safety per ACM Code 1.2,

our power system includes precautions such as housing inactive batteries in an isolated,

non-conductive box secured with screws and covers to prevent hazards. Additionally, following

IEEE Code I.1, all bean-contact surfaces will use food-safe materials, while the outer container

will be made from stable, non-reactive PLA to ensure sanitary storage.

4.4 Future Work

While no one in our group has any current plans of further development, this product

has a large capacity for improvements and refinements that could push it to be a marketable

product. Currently the structure itself is too large, bulky, unrefined, and contains exposed wires.

The effectiveness of the product also needs further testing and needs to be tested with an

actual user to determine and rectify any problems that may arise stemming from user error. The

market for this device might also be slightly niche as it only is attractive for the most avid coffee

lovers. However, these problems could be rectified and production of a marketable product

that satisfies its target demographic.

20

References

[1] "Measuring Carbon Dioxide (CO₂) Levels in Roasted Coffee," MTPak Coffee, May 2021.

[Online]. Available:

https://mtpak.coffee/2021/05/measuring-carbon-dioxide-CO₂-levels-roasted-coffee/.

[Accessed: May 7, 2025].

[2] "Is Your Coffee Too Fresh?" Clive Coffee. [Online]. Available:

https://clivecoffee.com/blogs/learn/is-your-coffee-too-fresh. [Accessed: May 7, 2025].

[3] M. Yeretzian, S. Aeschbacher, K. Jordan, and L. M. Blank, "How Fresh Is Fresh?

Understanding the Influence of Roasting, Grinding, and Storage on Coffee Aroma," J.

Agric. Food Chem., vol. 66, no. 47, pp. 11835–11844, 2018. [Online]. Available:

https://pubs.acs.org/doi/10.1021/acs.jafc.7b03310. [Accessed: May 7, 2025].

[4] "HS-318 Servo," ServoCity. [Online]. Available:

https://www.servocity.com/hs-318-servo/. [Accessed: May 7, 2025].

[5] "TAL220M4 Load Cell Datasheet," SparkFun Electronics. [Online]. Available:

https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/TAL220M4M5Update.pdf.

[Accessed: May 7, 2025].

[6] "HX711 Data Sheet," SparkFun Electronics. [Online]. Available:

https://cdn.sparkfun.com/assets/b/f/5/a/e/hx711F_EN.pdf. [Accessed: May 7, 2025].

[7] XENSIV PAS CO₂ 5V Sensor – Product Brief, Infineon Technologies, v01.00. [Online].

Available:

https://www.infineon.com/dgdl/Infineon-XENSIV_PAS_CO₂_5V_Sensor-ProductBrief-v

01_00-EN.pdf. [Accessed: May 7, 2025].

[8] Monolithic Power Systems, "MP3423 9 A, 600 kHz High‑Efficiency Synchronous

Step‑Up Converter with Output Disconnect," MP3423 Datasheet, [Online]. Available:

https://www.monolithicpower.com/en/mp3423.html. [Accessed: May. 6, 2025].

[9] Texas Instruments, "TPS631000DRLR 1.5‑A Output Current High‑Power‑Density

Buck‑Boost Converter," Digi‑Key Electronics. [Online]. Available:

https://www.digikey.com/en/products/detail/texas-instruments/TPS631000DRLR/159

65499. [Accessed: May. 6, 2025].

21

https://mtpak.coffee/2021/05/measuring-carbon-dioxide-co2-levels-roasted-coffee/
https://clivecoffee.com/blogs/learn/is-your-coffee-too-fresh
https://pubs.acs.org/doi/10.1021/acs.jafc.7b03310
https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/TAL220M4M5Update.pdf
https://cdn.sparkfun.com/assets/b/f/5/a/e/hx711F_EN.pdf
https://www.infineon.com/dgdl/Infineon-XENSIV_PAS_CO2_5V_Sensor-ProductBrief-v01_00-EN.pdf
https://www.infineon.com/dgdl/Infineon-XENSIV_PAS_CO2_5V_Sensor-ProductBrief-v01_00-EN.pdf
https://www.monolithicpower.com/en/mp3423.html
https://www.digikey.com/en/products/detail/texas-instruments/TPS631000DRLR/15965499
https://www.digikey.com/en/products/detail/texas-instruments/TPS631000DRLR/15965499

[10] Texas Instruments, "BQ2970 Cost‑Effective Voltage and Current Protection IC for

Single‑Cell Li‑Ion Batteries," BQ2970 Datasheet, [Online]. Available:

https://www.ti.com/product/BQ2970. [Accessed: May. 6, 2025].

[11] Top Power ASIC Corp., "TP4056 1 A Stand‑Alone Linear Li‑Ion Battery Charger,"

LCSC Electronics. [Online]. Available:

https://www.lcsc.com/product-detail/Battery-Management-ICs_TPOWER-TP4056_C3

82139.html. [Accessed: May. 6, 2025].

[12] SparkFun Electronics, "PRT‑12895 18650 3.7 V 2.6 Ah Lithium‑Ion Battery,"

Digi‑Key Electronics. [Online]. Available:

https://www.digikey.com/en/products/detail/sparkfun-electronics/PRT-12895/527129

8. [Accessed: May. 6, 2025].

22

https://www.ti.com/product/BQ2970
https://www.lcsc.com/product-detail/Battery-Management-ICs_TPOWER-TP4056_C382139.html
https://www.lcsc.com/product-detail/Battery-Management-ICs_TPOWER-TP4056_C382139.html
https://www.digikey.com/en/products/detail/sparkfun-electronics/PRT-12895/5271298
https://www.digikey.com/en/products/detail/sparkfun-electronics/PRT-12895/5271298

Appendix A ​Requirement and Verification Table

Requirements Verifications Verification

status

(Y or N)

Peripheral subsystems Subsystem Y

This subsystem must send

and receive reliable data to

the controller subsystem.

The CO₂ sensor outputs approximately 420 ppm at ambient and

increases in a higher concentration of CO₂ which can be done with

calibrated scales and coffee beans determining the loss of CO₂ and

increase in ppm respectively. The decrease in weight should coincide

with the increase in ppm over time and during every ppm reset the

weight will be taken again. The resulting calculation from this process

should show that the CO₂ decreases the same amount within a 10%

error margin. This process will also be done to calibrate the container in

order to get an accurate freshness measurement. All values of the ppm

and weight measurements will be taken over time (no beans will be

removed during this process as a control) and the resulting CO₂ losses

will be compared.

Y

This sensor must output data consistent with previously tested objects

on a calibrated scale and correctly outputs data within 5%. Multiple trials

comparing results will be recorded and the average error will be

calculated and should be below 5% error.

Y

The servo motor must rotate a given angle provided by the controller

within 10 degrees. This motor will be run multiple times between two

angle values to be sure the angle does not diverge greatly from the

expected servo angles.

Y

The motor must respond

according to the button

input and CO₂ sensor

readings.

Container automatically opens before reaching 3000 ppm in the container

and opens upon the user pressing the button which opens the container

at the next available time in the operation cycle and closes when the

button is pressed again.

Y

23

The CO₂ sensor must

periodically record a

measurement of the ppm of

the CO₂ in the container and

immediately update the

server notifying the user.

The CO₂ sensor will be configured to update the ppm reading of the CO₂

every hour or whenever the user utilizes a forced update utilizing the web

server. This means that the user should be updated within approximately

1 minute from pressing the force update.

Y

Controller Subsystem Y

The esp32 Wi-Fi module

must have a reliable Wi-Fi

signal in order to update the

user of the coffee status and

receive the needed

information for calibration.

ESP32 has a single and is able to host servers that the user may interact

with. Which should be reachable as long as both the container and

phone are within an internet range. Which should have the ability to

communicate with the ESP32 with minimal delay at most 5 seconds

communication delay.

Y

The ESP32 must be easily

programmable to quickly

debug

There should be no other steps beyond simply plugging in the usb micro

b connection to the board and uploading a program to reprogram the

ESP32.

Y

The controller should be

interrupted by the user

pressing the outer button or

interacting on the app to

update or putting in new

beans.

Regardless of what current process the ESP32 is doing it should put the

user first and accommodate the users commands with minimal delay.

This should never result in a mixup in commands or a crash in the

software onboard.

Y

Wireless Connection Module and Mobile Interface Y

Reliable Wi-Fi connection to

have constant connection to

the controller subsystem in

order to send and receive

data.

Verify that the controller subsystem maintains a continuous and stable

Wi-Fi connection by monitoring connection status over a prolonged

period and under varying conditions (e.g., distance, interference). This

can include automated tests that repeatedly ping the controller and log

any disconnects or latency spikes.

Y

A server should be running

on the microcontroller to

receive requests from the

mobile interface.

Confirm that a server is running on the microcontroller by sending test

requests from the mobile interface and verifying that valid responses are

received within an acceptable response time. Log and analyze the

responses to ensure all endpoints behave as expected.

Y

24

Sensor readings and a

freshness report should be

displayed and user inputs

should be available on the

mobile interface.

Validate that sensor readings and the freshness report are correctly

displayed on the mobile interface by comparing live data against known

calibration values and verifying that the display updates. Also, test user

inputs (such as selecting bean types or triggering the lid) to confirm that

changes are immediately reflected on the interface and that commands

are properly executed by the controller.

Y

Power Subsystem Y

Supplies continuous power

to all subsystems at rated

voltages without dropping

current required during

operations when the motor

is activated. Is able to

recharge and continue

functioning without a jump

in voltage or current from

the recharge port.

The power supply for the 3.3 V should never diverge more than 0.2 V

even if the motor is running at peak power or if the user plugs in the

device. The 5V power supply should never diverge more than 0.4 V under

the same conditions. This allows for enough leeway for all devices to

operate at their rated voltages. This will be tested by monitoring the

voltage of the power lines when turning on the motor or plugging in the

devices as these are the times with the greatest disturbance in the

system.

Y

Protects the battery from

overcharge and protects

from surge in power

demand.

To test that the battery is safe from overcharge, the current to the battery

will be monitored while charging to be sure that the on board linear

charging IC is correctly operating. To test battery protection a similar

process will be done when a large demand is suddenly pulled from the

battery and the battery protection module correctly eases the battery into

the new power demand.

Y

25

	Abstract
	Table Of Contents
	1. Introduction
	1.1 Problem
	1.2 Solution
	1.3 Visual Aid
	1.4 High Level Requirements

	2 Design and Verification
	2.1 Block Diagram
	2.2 Subsystem Overview
	All subsystems and their connections and communications are shown in Figure 2.1.
	2.2.1 Subsystem 1 - Peripheral Devices (i.e. Sensors, Inputs, and Motors)
	2.2.2 Subsystem 2 - Controller
	2.2.3 Subsystem 3 - Wireless Connection Module and User Interface
	2.2.4 Subsystem 4 - Power System
	2.2.5 Physical Design

	3. Costs and Schedule
	
	4. Conclusion
	4.1 Accomplishments
	4.2 Uncertainties
	4.3 Ethical Considerations
	4.4 Future Work

	References
	Appendix A ​Requirement and Verification Table

