
 

 

 
 



 

Abstract 
This paper presents the design and development of a low-cost virtual synthesizer built around an 

ESP32-S3 microcontroller and controlled via a MIDI keyboard. Aimed at beginners in music production, 

the project addresses common barriers such as high software costs, limited hardware access, and 

complex mixing techniques. The synthesizer supports multiple waveforms and real-world instrument 

presets, enabling interactive sound design through onboard controls and visual feedback via an LCD. 

Housed in a portable, “boom-case” inspired briefcase, the system includes subsystems for audio output, 

power regulation, user input, and display. The device processes MIDI input in real-time with low latency 

and supports polyphony of eight notes. By integrating essential music creation features into an 

affordable, user-friendly format, the design makes music production more accessible for new creators. 
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1 Introduction 

1.1 Problem 
Music production has a high barrier to entry due to expensive software, lack of accessible tools, 

and the challenge of mixing and arranging sounds effectively. Industry-standard VSTs (Virtual Studio 

Technology) are costly, with popular options like Nexus ($120), Omnisphere ($499), and ElectraX ($150), 

which require a significant investment just to access high-quality sound libraries. Such an expense 

discourages beginners who may not be ready to make such a financial commitment while still learning 

the basics of music creation. 

Outside of the costs of software, beginners struggle to experiment with their musical ideas 

without proper hardware. MIDI controllers and synthesizers are great for refining compositions, but 

without them, creating structured music often leads to offbeat, unbalanced, or disorganized results. Trial 

and error becomes the main method of learning, making music creation inefficient and much harder to 

smoothly develop. 

Finally, mixing presents another challenge, as beginners often misjudge volume levels, layering, 

and effects. Poorly balanced mixes can make instruments overpower one another or disappear, while 

excessive effects like reverb can “blur” the sound. Without guidance, achieving a clean, professional mix 

becomes frustrating, slowing progress and limiting a musical artist’s creative potential. 

 

1.2 Solution 
Our virtual synthesizer lowers the barrier to entry for beginners by combining essential hardware 

and software features found in modern VSTs while remaining affordable and beginner-friendly. It 

includes a MIDI keyboard, allowing users to play notes and experiment with melodies smoothly. 

Customizable sounds and effects let users shape their own tones and explore sound design interactively, 

making learning more engaging and entertaining. 

The synthesizer offers multiple instrument options, such as synths, flutes, and pianos, enabling 

users to experiment across different musical styles. A user interface consisting of an LCD screen provides 

real-time feedback on selected instruments and effects, helping beginners understand how different 

settings work together and influence sound. By offering a cost-effective, all-in-one solution, this virtual 

synthesizer makes music production more accessible without the need for expensive software or 

complex setups. 
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1.3 High-Level Requirements 

Instrument Simulation and Sound Generation  
The virtual synthesizer will be capable of playing a selection of sound waveforms, which will be 

heard with no observable latency between playing on the keyboard and auditory feedback. 

Polyphony and Chord Support 
The virtual synthesizer will be capable of sounding multiple notes simultaneously in order to 

support playing chords. 

Octave Range and Note Accuracy 
The virtual synthesizer will be capable of playing multiple octave ranges of accurately pitched 

musical notes. 

2 Design 
As shown in Figure 1, the entire virtual synthesizer is housed in a customized briefcase made to 

resemble a retro-styled ‘Boombox’. The synthesizer will receive power from a North-American wall outlet 

using a consumer wall adapter. The user will also have to plug in the MIDI keyboard into the input hole 

on the side of the briefcase. The MIDI keyboard and AC adapter will be outside the briefcase, and will 

connect to the PCB itself through ports into the side of the briefcase. 

The inside of the briefcase contains our ESP32-S3 Microcontroller, MAX98357 I2S DAC and 

Amplifier, and all backsides of the speakers, LED’s, and user controls along with their necessary wiring. 

Realistically, the user will not have to open the briefcase in order to properly use the synthesizer, adding 

an extra layer of tidiness and creativity. 

Finally, when the virtual synthesizer is in use (assuming the briefcase is closed), the user will have 

the speakers, LED’s, LCD Screen, and user controls visible to them. Here, they can interact with the user 

controls subsystem, which consist of potentiometers and buttons to adjust volume, wave type, and 

special effects. The LED’s are also displayed here, which are separated into two sets of five. The first set is 

a frequency visualizer which lights up the corresponding LED when playing frequencies within a specified 

range. The second set of LEDs is a counter for how many keys are currently being pressed.  

 

Figure 1. The project is implemented in a briefcase housing with ports for external devices.  
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Figure 2: Block Diagram for Virtual Synthesizer with MIDI keyboard. 

Our block diagram is shown in Figure 2. The Power subsystem provides 3.3 V to the 

Microcontroller, User Controls, and Audio Output subsystems. A 5.0 V regulator provides power to the 

Display, MIDI Input, and Audio Output subsystems. The Microcontroller receives digital and analog inputs 

from the User Controls, as well as digital MIDI information from the MIDI Input via a USB controller 

peripheral on the microcontroller. The Microcontroller performs the signal processing required to output 

digital on/off signals to the Display LEDs, digital display information to the Display LCD screen via I2C bus, 

and also outputs a digital audio waveform to the Audio Output subsystem using I2S bus via the on-chip 

I2S peripheral. The user will operate the User Controls and receive visual and auditory feedback from the 

Display and Audio Output subsystems.  

 

2.1 Microcontroller Subsystem 
This subsystem handles the signal processing from the MIDI keyboard and user controls and 

outputs digital I2S signals to the I2S Digital-to-Analog-Converter (DAC) and Amplifier in the audio output 

subsystem. An ESP32-S3 receives MIDI audio through its USB Host Controller. The analog inputs 

(potentiometers) from the user controls subsystem are received by the EPS32-S3 internal ADCs. The 
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digital inputs from user controls are taken as digital inputs to the ESP32-S3. The ESP32-S3 will produce a 

waveform and perform digital signal processing on it, then outputs the waveform as an I2S audio signal 

through its I2S0 peripheral (See Section 2.7 for software details). 

The I2S bus is usually used to interface between chips on a PCB. However, we are using it here as 

a means of outputting an audio waveform. This was chosen as an alternative to using a microcontroller 

with a built-in Digital-to-Analog-Converter (DAC). These built-in DACs have low bit depths (typically 12 

bits), rendering them unsuitable for outputting more detailed audio waveforms. The I2S peripherals on 

the ESP32-S3 offer bit depths of up to 32 bits, allowing far more detail in the audio waveforms. The I2S0 

peripheral on the ESP32-S3 further offers two output modes: Pulse-Code Modulation (PCM, typical of 

the I2S bus) and Pulse-Density Modulation (PDM). While we have opted for the more typical PCM mode 

and will run the signal through a specialized converter, the PDM mode offers an alternative design which 

does not require an external DAC, as PDM is extremely simple to convert to analog: a low-pass filter is all 

that is required. We chose to use the external DAC instead of a simple low-pass filter because the 

conversion would be of higher quality, and the chosen DAC also includes an amplifier, which would have 

otherwise been separately required since we are using a passive speaker. The I2S bus will interface with 

our MAX98375A, which is an I2S DAC and Amplifier, in the Audio Output subsystem.  

 

Figure 3. The PCB schematic of the Microcontroller Subsystem.  
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Shown in Figure 3 is the Microcontroller subsystem schematic of our PCB, which was mostly 

non-functional. Note also that the number of LED outputs are only half that of our final design, and the 

number of buttons is one greater than our final implementation. These are because, after our PCB was 

determined non-functional, our design developed to include more Display subsystem functionality 

(increasing the LED count) and only required three buttons to effectively navigate the user interface.  

Also in Figure 3 is a power circuit which receives the 3.3 V line from the Power subsystem and 

runs it past some reactive components into the power pins of the ESP32-S3. These components and their 

values are recommended from the manufacturer of the ESP32-S3. On the PCB, the capacitors are placed 

close to the ESP32-S3 to minimize non-ideal effects of tracing.  

One reason for the PCB being non-functional is attributed to an absent part of the 

microcontroller schematic. In order to program and enable or reset the ESp32-S3, the CHIP_PU pin must 

have a controllable voltage, whereas in our design we left it floating. GPIO0 must have a controllable 

voltage as well, as it must be high for operation but brought low for programming the ESP32-S3 using the 

USB peripheral. Without these changes, our PCB design will not function.  

 

2.2 Power Subsystem 
The power subsystem draws power from a 120V 60Hz AC wall outlet using a consumer 12V 

adapter. The 12V supply will be regulated to 3.3 V and 5.0 V using voltage regulators. The regulated 5.0 V 

line will power the USB interface to the MIDI keyboard, the LCD screen for user interface, and the I2S 

DAC and Amplifier in the audio output subsystem. The 3.3 V line will power the ESP32-S3 and the user 

controls (buttons and potentiometers) that send signals to the ESP32-S3, as well as controlling the mode 

select pin on the I2S DAC and Amplifier (MAX98357A). The 3.3 V and 5.0 V regulators will be 

supplemented with capacitors and inductors as listed on their datasheets under their typical application. 

There are current draw requirements imposed on the 3.3 V and 5.0 V regulators. The ESP32-S3 

has a typical draw of 500 mA, and another 100 mA can be allocated for the user controls and DAC mode 

select, which don’t take much current.  The 3.3 V regulator must be capable of drawing at least 600 mA 

of current. The MIDI keyboard is powered through USB 2.0, which has a rated maximum current draw of 

500 mA. The LCD screen uses very little power when the backlight is off, but a typical current draw for an 

LCD1602 with a backlight on is 200 mA on the higher end (our selected LCD screen, chosen for its 

efficient pricing, does not have an available datasheet). The I2S DAC and Amplifier has a maximum 

current output of 1.6 A. Then, our 5.5V regulator requires a current rating for at least 2.3 A.  
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Figure 4. The PCB schematic of the Power subsystem. Vin represents the 12 V input from the wall 

adapter. 

​ Shown in Figure 4 is the PCB schematic of our Power subsystem. Although our PCB did not 

function due to design flaws in the Microcontroller subsystem, the inclusion of a testing connector (J6) 

and the relative independence of the power circuits allowed us to perform our verification procedures 

on the Power subsystem. The verification revealed mistakes during soldering of the 5.0 V regulator 

circuit, having swapped the positions of inductor L2 and resistor R23. During this incorrect operation, the 

feedback resistors R24 and R25 were damaged, reading incorrect resistances, such that the 5.0 V circuit 

was still non-functional even after the misplaced parts were corrected.  
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2.3 User Controls Subsystem 
The user controls receive 3.3 V from the power subsystem to operate. The synthesizer will use 

two potentiometers for user control, one dedicated for volume control and the other dedicated for 

post-effects. The volume potentiometer allows for a nearly continuous volume control range (nearly 

continuous, because the potentiometer signal will be converted through a 12-bit ADC and the volume 

will be adjusted digitally). Additionally, three buttons will be used to navigate through menus related to 

instrument selection and post-effects such as distortion. Each button will be connected to GPIO pins on 

the ESP32-S3, which will poll for activation. The buttons and potentiometers will be powered directly 

from the 3.3 V power line.  

​ Shown in Figure 5 is the PCB schematic for our User Controls subsystem. Note that some 

changes were made in the final implementation, due to the PCB being non-functional and our project 

ultimately implementing a development board in its place. While all Espressif documentation indicates 

that the ADC peripherals on the ESP32-S3 measure between 0-1.1 V, the development board proved 

capable of measuring the full digital range of 0-3.3 V. This eliminated the need for a Zener diode and its 

current limiting resistor. Additionally, while our PCB included four buttons, during our implementation 

only three buttons were required for effective user control.  

2.4 MIDI Input Subsystem 
The user’s note input will be taken through our MIDI Input subsystem, consisting of a MIDI 

keyboard. In order to connect the MIDI keyboard to the ESP32-S3 microcontroller, we use a USB female 

connector that allows the keyboard’s USB cable to interface with the microcontroller. The USB connector 

is responsible for splitting the MIDI signal into two data lines, D+ and D-. The USB’s VCC and GND pins are 

connected to the 5.0 V and GND pins from the Power subsystem. The two data outputs will then be 

connected to the corresponding USB-capable pins on the ESP32-S3, enabling it to read and process data 

inputted through the user themselves through the MIDI keyboard. When in USB host mode, the 

ESP32-S3 can read the key presses from the keyboard and relay this data to be processed. 

 

Figure 5. The PCB schematic for our User Controls subsystem.  
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Figure 6. The traces between the MIDI keyboard’s USB and the Microcontroller and Power subsystems.  

​ Shown in Figure 6 is the PCB schematic tracing between the USB connector from the MIDI 

keyboard and the 5.0 V line from the power subsystem and the USB-capable pins of the ESP32-S3. Note 

that this USB connector is the same connector intended to be used to program the ESP32-S3.  

2.5 Display Subsystem 
The LCD screen will be used to display information about the currently selected instrument and 

volume level on the synthesizer. When the user switches instruments, the LCD screen will update to 

show the instrument name, helping beginners easily understand what sound they are working with. 

Additionally, when the volume is adjusted, the screen will display the current volume level on a scale 

from 1 to 10, providing clear feedback to the user. The display module being used—the GeeekPi 

1602—communicates via I2C, which requires two data pin connections to the ESP32-S3, and 5 V power 

from the power subsystem. To enhance user feedback, we added five LEDs that will be responsible for 

counting how many keys are being played, as well as five LEDs that act as frequency visualizers, lighting 

up when a frequency corresponding to the LED’s range is played. Each LED channel includes a 

current-limiting resistor to prevent damage to components and ensure safe operation.  

The requirements of the current limiting resistor are calculated as 

 𝑅
𝑚𝑎𝑥

=
𝑉

𝑚𝑎𝑥
−𝑉

𝐹𝑊𝐷

𝐼
𝑚𝑖𝑛

= 3.6−1.9
0.005 = 540 Ω (1) 

 

 𝑅
𝑚𝑖𝑛

=
𝑉

𝑚𝑖𝑛
−𝑉

𝐹𝑊𝐷

𝐼
𝑚𝑎𝑥

= 3.0−1.9
0.020 = 55 Ω (2) 

 

where Vmax and Vmin are the ESP32-S3’s maximum and minimum digital high voltages, Imax and Imin are the 

maximum and minimum currents for safe active operation of the LEDs, and VFWD is the forward voltage of 

the LEDs.  
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Figure 7. The PCB schematic of our original LEDs design. 

 

Figure 8. The PCB schematic of our I2C connector which connects to the LCD screen. 

​ Shown in Figure 7 is the PCB schematic of our original LEDs circuit. Note that the schematic only 

has 5 LEDs where our final implementation has 10. The additional five LEDs were implemented after the 

PCB was determined to be non-functional. Note also that the GND connector for the LEDs has only two 

terminals, because the currents are not high and thus more than one GND wire could be placed in a  

single terminal. Shown in Figure 8 is the PCB schematic for our connector which interfaces with the LCD 

screen. The I2C bus only requires two data lines, and the screen requires 5.0 V power.  

2.6 Audio Output Subsystem 
The Audio Output subsystem is responsible for receiving a digital audio waveform via the I2S bus 

from the Microcontroller subsystem and converting it to an amplified analog audio waveform which will 

drive a 4 Ω speaker rated for 5 W, ensuring sufficient volume while maintaining a high level of sound 

clarity with no unnecessary noise. 

The I2S digital-to-analog conversion is performed by an external I2S DAC and Amplifier, the 

MAX98357A. The MAX98357A offers several options to separate the left and right channels from I2S, but 

because our project does not benefit from stereo audio, we will opt for the mono-channel audio setting 

of (left/2 + right/2). The MAX98357A also offers fixed amplifier gains: 15, 12, 9, 6, and 3 dB. As the MAX 

only provides a power rating for the gain of 12 dB, we must select an amplifier gain of 12dB.  
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Figure 9. The PCB schematic of the I2S bus between the ESP32-S3 and the MAX98357A.  

​ Shown in Figure 9 is the PCB schematic of the I2S bus between the ESP32-S3 and the 

MAX98357A. Following the MAX98357A datasheet, to select the mono-channel audio setting of (left/2 + 

right/2) we pulled up SD_MODE with a 634 kΩ resistor. To select an amplifier gain of 12 dB, the 

GAIN_SLOT pin was left floating by disconnecting the 0 Ω resistor R15. The resistor configuration 

connected to GAIN_SLOT is designed to be adjustable via soldering and capable of selecting any of the 

gains offered by the MAX98357A.  

2.7 Software Design 

System Architecture & Core Components 
The software design centers around three main functional modules: USB MIDI input, digital 

audio synthesis, and effect processing. The core idea of the virtual synthesizer is to take incoming MIDI 

messages and process them accordingly. These messages include note on/off commands, note velocity, 

and note numbers, which are read and routed to the audio synthesis system. To handle MIDI 

communication over USB, we referenced an open-source GitHub repository that includes the necessary 

drivers for the ESP32-S3 MIDI Input [11]. 

The synthesis system dynamically generates waveforms based on incoming note data from the 

MIDI keyboard. Each waveform, such as sine or square, is produced using a mathematical equation that 

calculates sample values according to the current note’s frequency. This also applies if multiple notes are 

being played simultaneously, superposing the waveforms. Audio effects are applied directly to the 

generated waveform using digital signal processing. These effects include reverb, delay, and chorus– 

reverb uses an echo buffer with feedback, delay is done through sample buffering in the time domain, 

and chorus uses a modulated delay line with a low-frequency oscillator (LFO) to create an effect of 

auditory depth. The final audio signal is streamed via I2S to our implemented DAC. 
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User Interaction & Embedded Integration​ 
​ Another main function of the software design was to manage user interaction, which is handled 

through a combination of physical controls and visual feedback elements to benefit the user as they are 

using the virtual synthesizer. An LCD screen, driven by I2C, provides real-time feedback on what the 

currently selected waveform is, the volume level on a scale of 0-10, and what audio effect is being 

modified at the moment. Using a set of digital input buttons, the user can toggle between selecting 

waveforms and effects, while the potentiometers adjust parameters such as volume and effect intensity. 

​ To enhance user feedback, an LED-based visual feedback system provides life performance data. 

This system is made of two separate sets of LEDs– the left-hand LED bar consists of six LEDs and shows 

the number of active notes currently being played, while the right-hand LED bar includes five LEDs that 

act as frequency bins, showing the frequencies of the notes currently being played. 

​ The embedded software leverages the ESP32-S3’s capabilities of multitasking and peripheral 

interfacing, where we have several different types of protocols working together to make the virtual 

synthesizer work as intended. As stated before, the LCD screen is integrated via I2C, the potentiometers 

use analog input from the user, and digital I/O for the buttons and LEDs. The USB MIDI handling is 

managed through an interrupt-driven approach, where a callback function is triggered only when a user 

plays a note, reducing CPU usage. Finally, the audio data itself is streamed using Direct Memory Access 

(DMA) versus CPU-driven audio transfers, as streaming directly from memory to the I2S peripheral 

reduces CPU load and allows for low-latency output, offering the user the best experience possible. 
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3 Design Verification 
​ Refer to Table 3 in Appendix A for the requirements and verifications. This section will be 

dedicated to explaining the purpose and reasoning behind each requirement.  

3.1 Microcontroller Verification 
​ The MAX98357A datasheet provides an equation for the voltage output in dBV given by Equation 

(3).  

 𝑂𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙 𝑙𝑒𝑣𝑒𝑙 (𝑑𝐵𝑉) =  𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙 𝑙𝑒𝑣𝑒𝑙 (𝑑𝐵𝐹𝑆) + 2. 1 𝑑𝐵
 +  𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑎𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑟 𝑔𝑎𝑖𝑛 (𝑑𝐵)

(3) 

Observing the output waveform from the MAX98357A will verify that the waveform is 

generating properly, but in order to test the volume control, an expected voltage amplitude will have to 

be calculated. From Equation (3), the output voltage can be calculated with a selected amplifier gain of 

12 dB and a volume setting of five, which halves the input signal level  

 − 3 𝑑𝐵𝐹𝑆 + 2. 1 𝑑𝐵 + 12 𝑑𝐵 = 11. 1 𝑑𝐵𝑉

 𝑉𝑝𝑝 = 10
11.1 𝑑𝐵𝑉
20 𝑑𝐵𝑉 𝑉 = 3. 589 𝑉

where Vpp is the peak-to-peak voltage of the output of the MAX98357A (i.e. the analog audio waveform).  

3.2 Power Verification 
​ The power requirements test voltage level, voltage ripple, and current draw. The voltage must be 

of accepted ranges for our components, especially the microcontroller, with minimal ripple for stable 

operation. The current draws are found by summing the expected current draws for each subsystem as 

listed in Section 2.1.  

​ The requirements related to the 5.0 V power line all failed verification. This was due to mistakes 

during soldering of the 5.0 V regulator circuit, having swapped the positions of inductor L2 and resistor 

R23. During this incorrect operation, the feedback resistors R24 and R25 were damaged, reading 

incorrect resistances, such that the 5.0 V circuit was still non-functional even after the misplaced parts 

were corrected. This was due to imprecise silkscreen labelling, as seen in Figure 10. The swapped 

components have overlapping silkscreen labels, making it difficult to determine which component 

belongs on which footprint.  

3.3 User Controls Verification 
​ The potentiometer wipers must provide a voltage range spanning the measurable range of the 

internal ADCs on the ESP32-S3. Originally, this range was expected to be 0-1.1 V, but after testing with 

the development board, it was found to be 0-3.3 V. The buttons must provide a digital-low voltage for 

the ESP32-S3 when in either the on or off state and a digital-high voltage for the other state. It is not 

critical to specify which state offers which digital voltage, since it is a simple matter to negate the inputs 

in the program run by the ESP32-S3.  
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3.4 Display Verification 
​ The LEDs must be distinctly and visibly lit when a digital-high voltage from the ESP32-S3 is 

supplied. The current through the LEDs have to be within operating ranges such that the LED will turn on 

but not burn out. The LCD screen must be capable of displaying information transmitted through the I2C 

bus from the ESP32-S3.  

3.5 Audio Output Verification 
​ The speakers must be capable of playing audible sounds according to a driving voltage, supplied 

by the MAX98357A as determined by the I2S output of the ESP32-S3.  

3.6 MIDI Input Verification 
The MIDI keyboard must be capable of transmitting MIDI note information through a USB 2.0 

cable. A DAW is an available method of testing that capability without requiring a functioning 

microcontroller to test that capability.  

4 Costs 

4.1 Parts 
Table 1: Bill Of Materials 

Part Description Manufacturer Price 

ESP32-S3 DevKit Espressif $15.00 

Gikfun 4-ohm 5W stereo 
speaker  

Gikfun $11.69 

6in USB 2.0 A female to USB 4 
pin adapter  

StarTech $7.79 

Aluminum Briefcase Housing Toyvian $25.89 

Max98357 I2S DAC Amplifier 
5pcs 

Teyleten Robot $13.88 

Wall Adapter [120V AC to 12V 
DC] 

GuanTing $6.99 

10k-ohm Potentiometer 2pcs ECE supply shop Already owned – $0 

220-ohm resistor 6pcs ECE supply shop Already owned – $0 

Red 1V LED 6x ECE supply shop Already owned – $0 

SPST button 5x E-Switch $8.70 
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POT Knobs 1/8" diameter ~3/8" 
hole length 

Vishay $4.70 

1/8" shaft diameter 7/8" shaft 
length 

ECE supply shop $15.56 

Voltage Regulator [12V to 3.3V] 
10pcs 

ANMBEST $4.99 

2V 2mA LED 5pcs Lumex Opto $8.85 

AOZ1280CI Voltage Regulator Alpha and Omega 
Semiconductor 

$1.86 

TPS54302 Voltage Regulator Texas instruments $1.06 

ESP32-S3 QFN Chip Espressif $3.35 

 16x2 I2C LCD display 2pcs Geeekpi $9.99 

MIDI Keyboard Midiplus Already owned – $0 

C_0805_2012Metric_Pad1.18x1.4

5mm_HandSolder 
Samsung 
 $0.1 

C_0805_2012Metric_Pad1.18x1.4

5mm_HandSolder 

Kemet 

 $0.32 

C_0805_2012Metric_Pad1.18x1.4

5mm_HandSolder 

Murata  

 $0.45 

C_0805_2012Metric_Pad1.18x1.4

5mm_HandSolder 

Samsung 

 $0.24 

C_0805_2012Metric_Pad1.18x1.4

5mm_HandSolder 

Samsung 

 $0.24 

C_0805_2012Metric_Pad1.18x1.4

5mm_HandSolder 

Yageo 

 0.13 

C_0805_2012Metric_Pad1.18x1.4

5mm_HandSolder 

Samsung 

 $0.56 

D_DO-201AD_P15.24mm_Horizo

ntal 

STMicro 

 $0.32 

D_DO-201AD_P15.24mm_Horizo

ntal 

Diotec Semiconductor 

 $0.59 

MountingHole_3.2mm_M3 N/A $0 

PinHeader_1x04_P2.54mm_Verti N/A $0 
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cal 

PinHeader_1x07_P2.54mm_Verti

cal N/a $0 

PhoenixContact_GMSTBVA_2,5_2

-G_1x02_P7.50mm_Vertical 

On Shore Technology 

 $0.69 

PhoenixContact_GMSTBVA_2,5_3

-G_1x03_P7.50mm_Vertical 

On Shore Technology 

 $1.92 

PhoenixContact_MCV_1,5_3-G-3.

5_1x03_P3.50mm_Vertical 

Wurth Elektronik 

 $2.12 

PhoenixContact_MCV_1,5_2-G-3.

5_1x02_P3.50mm_Vertical 

Phoenix Contact 

 $2.25 

PhoenixContact_MCV_1,5_5-G-3.

5_1x05_P3.50mm_Vertical 

Phoenix Contact 

 $2.36 

L_0805_2012Metric_Pad1.05x1.2

0mm_HandSolder 

Abracon 

 $0.1 

L_0805_2012Metric_Pad1.05x1.2

0mm_HandSolder 

TDK 

 $0.1 

L_0805_2012Metric_Pad1.05x1.2

0mm_HandSolder 

TDK 

 $0.1 

R_0805_2012Metric_Pad1.20x1.4

0mm_HandSolder 

Yageo 

 $0.5 

R_0805_2012Metric_Pad1.20x1.4

0mm_HandSolder 

ROHM Semiconductor 

 $1.25 

R_0805_2012Metric_Pad1.20x1.4

0mm_HandSolder 

Vishay 

 $0.1 

R_0805_2012Metric_Pad1.20x1.4

0mm_HandSolder Vishay $0.24 

R_0805_2012Metric_Pad1.20x1.4

0mm_HandSolder 

Panasonic 

 $0.52 

R_0805_2012Metric_Pad1.20x1.4

0mm_HandSolder 

Panasonic 

 $0.36 

R_0805_2012Metric_Pad1.20x1.4

0mm_HandSolder 

Vishay 

 $0.2 

R_0805_2012Metric_Pad1.20x1.4

0mm_HandSolder 

Vishay 

 $0.55 
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R_0805_2012Metric_Pad1.20x1.4

0mm_HandSolder Panasonic $0.1 

R_0805_2012Metric_Pad1.20x1.4

0mm_HandSolder 

Stackpole Electronics 

 $0.1 

R_0805_2012Metric_Pad1.20x1.4

0mm_HandSolder 

Vishay 

 $0.16 

R_0805_2012Metric_Pad1.20x1.4

0mm_HandSolder 

KOA Speer 

 $0.18 

 

4.2 Labor 
To calculate our labor cost, we are taking an estimate of 200 labor hours at an hourly pay rate of 

$25 an hour. Using the necessary equation, the labor costs come out to: 
 

 
$25
ℎ𝑟 ∗  2. 5  ∗ 200 ℎ𝑜𝑢𝑟𝑠 =  $12, 500

 

Below is a general layout of our schedule with the time frame, specific tasks, and division of 

labor specified. We are only mentioning the time we have left in project creation– from the creation of 

this design document until the end of the semester. 

 
Table 2. Weekly Schedule of Team 59 members.  

Time Frame Task Division of Labor 

Week of 3/3 Design document​
PCB design 
Breadboard 
Progress reports 

Patrick/Dylan 
Everyone 
Connor 
Everyone 

Week of 3/10 Breadboard Demo 
PCB design 
Finish power subsystem 
Working speakers 

Everyone 
Everyone 
Dylan/Patrick 
Connor/Patrick 

Week of 3/24 PCB design 
MIDI keyboard interfacing 
Synth development 

Everyone 
Connor 
Everyone 

Week of 3/31 PCB design 
Progress reports 
Finish other instruments  

Everyone 
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Week of 4/7 Final PCB order if needed 
User interface (LED/LCD) 

Everyone 
 

Week of 4/14 Team Contract assessment 
Housing for PCB and peripherals 

Everyone 

Week of 4/21 Mock Demo Everyone 

Week of 4/28 Final Demo Everyone 

Week of 5/5 Final Presentation Everyone 
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5 Conclusion 

5.1 Accomplishments 
Although our custom PCB ended up not working, we were still able to meet all of our high-level 

requirements using the ESP32-S3 DevKit. We successfully achieved polyphony with more than the 

originally promised 4 notes and extended that up to 8, allowing users to play chords without any 

noticeable lag or audio glitches. The synthesizer maintains smooth and accurate note playback across a 

full range of 128 notes, which is a much larger range than the original 3 octaves we proposed. All user 

controls, including volume adjustment and instrument switching, functioned reliably through the DevKit 

setup. The system also gave clear visual feedback using the LCD screen and LEDs, enhancing usability. 

Additionally, we achieved the reach goals of incorporating an extra set of LEDs for user feedback as well 

as accounting for note velocity in our feedback. Overall, even without the PCB, the core functionality of 

our design remained fully intact and user-friendly. 

5.2 Uncertainties 
Two key challenges we faced during the project were related to our PCB design and managing 

processing power for audio effects. Our PCB didn’t function as intended due to a floating pull-up pin, 

which prevented the chip from communicating with the rest of our circuit. However, we identified the 

issue through testing and were able to pivot quickly by using the DevKit to keep the project on track. We 

also ran into performance limitations when applying multiple pitch-based effects at once, which pushed 

the processing limits of the microcontroller. This helped us better understand the constraints of real-time 

audio processing and led us to prioritize effects that could run smoothly without sacrificing audio quality. 

Both challenges ultimately gave us valuable insight and made the final system more reliable and 

efficient. 

5.3 Ethical considerations 

Intellectual Property and Open-Source Usage 
 ​ Our virtual synthesizer relies on digital sound processing algorithms and MIDI communication 

protocols, some of which are covered under existing patents or open-source licenses. To ensure 

compliance with ethical standards, we carefully reviewed and adhered to any applicable open-source 

licensing agreements when using third-party code, libraries, or reference designs. Proper credit has been 

given where required, and we ensured that our project does not go against copyrighted 

assets/technologies. 

Accessibility and Affordability  
One of the main ethical thoughts behind this project is to make music production more 

accessible and affordable for individuals who may not have the financial support to purchase high-end 

virtual synthesizers or digital audio workstations (DAWs). By offering a low-cost, standalone synthesizer, 

we aimed to remove financial barriers for aspiring musicians while ensuring that the device remains 

user-friendly for those without advanced music creation experience. 
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Responsible Data Handling  
Although our synthesizer does not collect personal user data, any future implementation of 

features such as user presets, saved settings, or DAW integration may require minimal data storage. In 

such a case, we will follow ethical guidelines for data privacy and user transparency, ensuring that any 

stored information remains local to the device and is not transferred or used in any other situations 

without the user’s consent. 

5.4 Future work 
In the future, if this project were continued or expanded, we would work on getting a PCB 

mounted in the briefcase housing with standoffs and screws (drilled through the back panel). 

Additionally, more instrument waveforms and effects could be added to the current implemented roster. 

Possibly, this could include using an external memory to store wavetables for engineered sounds sourced 

from other works. An auxiliary connector could be included such that an external audio device (e.g. 

headphones or speakers) could be plugged in and play the audio output, while silencing the built-in 

speaker.  
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Appendix A​ Requirement and Verification Table 
 

Table 3: System Requirements and Verifications  

Requirement Verification Verification 
status  

(Y or N) 

When the MAX98357A output pins are 
connected across a passive 4 Ω speaker, 
and the microcontroller is set to output 
a digital sine wave of 440 Hz with a MIDI 
signal of maximum velocity at volume 
setting 5 through the 32-bit I2S bus, the 
voltage across the output should show a 
3.578 ± 5% Vpp amplitude sine wave of 
440 ± 5 Hz.  

Using an oscilloscope, attach the leads 
across the OUT_P and OUT_N pins 
(equivalently, attach to the speaker 
terminals). Set the ESP32-S3 to constantly 
emit the waveform specified in the 
requirement (this may be achieved through 
the other subsystems or by specially 
programming the ESP32-S3). A sine wave 
should be visible on the oscilloscope. Using 
the cursors on the oscilloscope, find the 
voltage difference peak to peak. To find the 
frequency, use the cursors to measure the 
time difference between two adjacent 
positive peaks. This represents the period of 
the waveform. Taking the inverse of this 
period will provide the frequency.  
 

Y 

The wall adapter must interface with a 
North American 120V 60Hz AC outlet 
and provide 12 ± 2 VDC (the tolerance is 
large because it only must satisfy the 
minimum input voltage to the voltage 
regulators).  

Use a voltmeter to measure the output 
voltage relative to ground. A barrel plug 
connector is provided with the adapter, the 
multimeter terminals may contact the 
terminals of the connector. 

Y 

The 3.3 V regulated line must supply 3.3 
± 0.3 V, consistent with the tolerance of 
the ESP32-S3.  

As this is a DC voltage, either an oscilloscope 
or voltmeter will suffice to measure the 
output voltage relative to ground.  

Y 

The 3.3 V regulated line must have a 
voltage ripple less than 50 mV.  

Using an oscilloscope, connect the terminals 
to the circuit ground and the 3.3V line. Use 
cursors on the oscilloscope to find the 
difference of peaks in the voltage waveform.  

Y 

The 3.3 V regulated line must be capable 
of outputting at least 600mA. 

After verifying the output voltage of the 
regulator, put a resistor in series with the 
output such that the current draw should be 
600mA. The resistor value is calculated as 

. Use a multimeter to measure 𝑅 ≤ 𝑉
600 𝑚𝐴

the current through the resistor.  

Y 
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The 5.0 V regulated line must supply 5.0 
± 5% V, consistent with the ratings for 
USB 2.0.  

As this is a DC voltage, either an oscilloscope 
or voltmeter will suffice to measure the 
output voltage relative to ground.  

N 

The 5.0 V regulated line must have a 
voltage ripple less than 50 mV.  

Using an oscilloscope, connect the terminals 
to the circuit ground and the 5.0V line. Use 
cursors on the oscilloscope to find the 
difference of peaks in the voltage waveform. 

N 

The 5.0 V regulated line must be capable 
of outputting at least 2300 mA. 

After verifying the output voltage of the 
regulator, put a resistor in series with the 
output such that the current draw should be 
2300mA. The resistor value is calculated as 

. Use a multimeter to measure 𝑅 ≤ 𝑉
2300 𝑚𝐴

the current through the resistor.  

N 

The 3.3 V and 5.0 V regulated lines must 
be capable of outputting their required 
currents listed above (600 mA and 2300 
mA) simultaneously. 

After verifying the current draws of each 
individual voltage regulator as listed above, 
use the same setup as in the prior tests 
(same resistor values) with both resistors 
going to a common ground. Measuring the 
current through both resistors, separately.  

N 

The potentiometer should output a 
voltage of 3.3 ± 5% at its maximum 
value, and a voltage value of 0 ± 0.1 V at 
its minimum value. 

Supply 3.3V to the user controls with a DC 
power supply. Using a voltmeter, attach one 
lead on the wiper and the other lead on the 
grounded terminal of the potentiometer. 
Turn the potentiometer to its maximum 
angle both ways, measuring the DC voltage 
across the wiper. 

Y 

The voltage across each button is 0-0.9V 
when the button is pressed, and greater 
than 2.4 V when the button is not 
pressed. 

Supply 3.3V to the user controls with a DC 
power supply. Attach the leads of a 
voltmeter across a button. Record the 
voltage as the button is pressed and not 
pressed. Repeat for each button.  

Y 

Must be capable of transmitting MIDI 
information through a USB 2.0 interface.  

Plug the USB cable into a computer running 
a MIDI-compatible DAW (digital audio 
workstation). Follow program instructions to 
connect the MIDI keyboard. The MIDI 
keyboard should be capable of playing sound 
through the DAW.  

Y 

Must be capable of displaying 
programmable characters to the LCD 
screen through the I2C bus.  

When interfaced with a source of I2C data 
(e.g. the ESP32-S3) and provided power, the 
display should show the characters being 
written to it.  

Y 
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The LEDs should light up for voltages 
within 3.0 and 3.6 V. (Applied across the 
LED and its current limiting resistor).  

Using a DC power supply, power the diode in 
series with its current limiting resistor. At 
supply voltages of 3.0 and 3.6 V, the diode 
must light up.  

Y 

The current allowed through the LED 
must be between 5-20 mA with a 
voltage of ~3.3V (from the ESP32-S3) 
across the diode and its current limiting 
resistor.  

Using a DC power supply, power the diode 
and its resistor with 3.6V. Use the 
multimeter to measure the voltage across 
the diode, using Ohm’s Law to find the 
current through the diode.  

Y 

Must be capable of playing a pure sine 
wave of 440 Hz. The frequency of the 
produced sound should be within ±2 Hz 
of the driving voltage.   

Using an ADALM2000 and Scopy, generate a 
5 V pure sine waveform of 440 Hz. Connect 
the ADALM2000 P+ and P- terminals across 
the speaker terminals. When running the 
waveform, the speaker should play an 
audible sine wave. The frequency can be 
verified with an instrument tuning phone 
application.  

Y 

Must be capable of playing a square 
wave of 440 Hz and a duty ratio of 50%. 
The frequency of the produced sound 
should be within ±2 Hz of the driving 
voltage.   

Using an ADALM2000 and Scopy, generate a 
5 V square waveform of 440 Hz and a 50% 
duty ratio. Connect the ADALM2000 P+ and 
P- terminals across the speaker terminals. 
When running the waveform, the speaker 
should play an audible sine wave. The 
frequency can be verified with an instrument 
tuning phone application.  

Y 
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Appendix B​ PCB Layout 

 

Figure 10. The KiCad PCB layout for the completed PCB (which was non-functional). 
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