
1

ECE 445
Senior Design Laboratory

Final Design

Antweight Battlebot

Team number 15
Daniel Rodriguez
Carlos Carretero

5/7/2025
TA: John Li

Professor: Viktor Gruev

2

Abstract
This project involved designing and building an Antweight BattleBot for Professor Gruev’s
Battlebot competition. The bot was composed of five main subsystems: Control, Drivetrain,
Power, Chassis, and Weapon. It used an ESP32 for wireless control, L298N motor drivers with
N20 brushed DC motors for movement, and a top-mounted spinning blade as its weapon. The
chassis and components were 3D printed in PLA to meet the 2-pound weight limit. The final
design achieved wireless functionality and basic mobility, though drivetrain performance was
slightly below target specifications.

3

Abstract 2

Introduction 4

High-level requirements list 4

Design 6

Chassis 6
Design Procedure 6
Design Details 7

Drivetrain 7
Design Procedure 7
Design Details 8

Power 8
Design Procedure 9
Design Details 9

Control 10
Design Procedure 10
Design Details 11

Weapon 11
Design Procedure 11
Design Details 12

Verification 12

Chassis 12

Drivetrain 13

Power 14

Control 16

Weapon 17

Cost 18

Conclusion 18

Ethics 19

Safety 19

References 20

4

Introduction
The goal of our project was to design and build an Antweight BattleBot that meets the
requirements of Professor Gruev’s Battlebot competition. Our robot was intended to be compact,
fully wireless, and agile, capable of navigating the arena and engaging with other bots using an
active weapon system. Figure 1 shows a high-level block diagram of the five main subsystems
that define our design: Control, Drivetrain, Power, Chassis, and Weapon. Each subsystem was
developed to meet specific performance benchmarks, including a total weight under 2 pounds, a
WiFi signal strength between -50 dBm and -60 dBm, a forward velocity of 4.5 ft/s, and a wheel
rotation speed of 900 RPM.

Our project was guided by a strict set of rules and requirements outlined by the Antweight
BattleBot competition. These included a maximum total weight of 2 pounds and the exclusive
use of 3D-printed parts for both the chassis and weapon, limited to materials such as PET, PETG,
ABS, or PLA/PLA+. The robot had to be wirelessly controlled via a Bluetooth or Wi-Fi-enabled
microcontroller and include a visible LED indicator showing power status. The battery voltage
was not allowed to exceed 16 volts, and a manual disconnect was required for safety.

Originally, we planned to use the MCF8316A brushless motor driver to control more efficient
and powerful BLDC motors. However, due to complications in our custom PCB design, we were
unable to integrate the MCF8316A and pivoted to using L298N drivers with N20 brushed DC
motors instead. This change reduced drivetrain performance, resulting in a measured top speed
of 3.3 ft/s and a maximum wheel RPM of about 469. The Control subsystem used an ESP32
microcontroller for real-time wireless operation, while dual 7.4V 500mAh batteries powered
both motors and electronics. A voltage regulator provided 3.3V to the ESP32. The chassis and
weapon components were 3D printed in PLA to reduce weight and allow for accurate modeling.
Although we encountered design limitations, particularly with our PCB and motor selection, we
successfully implemented a functioning battlebot that satisfied key safety, communication, and
modular design requirements.

High-level requirements list

● The battle bot must not exceed 2 lbs with all required components for proper
functionality. This includes motors, wheels, chassis, weapons, and onboard electronics.

● A strong wifi connection between -50 dBm to -60 dBm must be established, allowing for
consistent and responsive movements from the input device.

● Competent movement with
○ Velocity of 4.5 feet/s
○ Wheel RPM of 900 revolutions per minute
○ Independent bidirectional wheel movement

5

Figure 1: Battlebot Diagram

Figure 2: Battlebot final design

6

Design
For our battle bot to be competent in competition, creating a strong defense would be more
important than having a glass cannon. Therefore, for our design, we decided upon a
wedge-shaped bot that is as low to the ground as possible to ensure it can't be flipped over. For
our weapon, we designed a spinning blade on the back of the chassis that will damage anything
that gets on top of it. The battlebot is controlled by a PC that communicates with the ESP32 over
wifi. We designed the chassis, wheels, and axles using 3D modeling software and 3D printed
them using PLA filament. To move our battle bot, a pair of brushed DC motors is driven using a
half-bridge L298n Motor driver, which is controlled by the ESP32. All of this is powered by 2
7.4V LiPO batteries, with one of them stepped down to 3.3V using an LDO voltage regulator for
the control subsystem. The LDO was soldered onto our custom PCB, and this is also where both
manual disconnects for the batteries are located.

Chassis

Figure 3: Battlebot 3D Model

Design Procedure
Our chassis had to be 3D printed as it is required by the Antweight BattleBot competition rules.
Among several filament options like PETG, ABS, and PLA+, we selected PLA due to its
availability in the lab, low cost, high dimensional accuracy, and sufficient strength for
prototyping. It was also ideal for our need to create precise fits for mounting internal
components. Our primary goals for the chassis were to make it strong enough to survive
collisions, ensure it could house all electrical components, and meet the 2-pound weight limit.
One key design feature we originally aimed for was a 30-degree front wedge, intended to allow

7

our bot to deflect or slide under opponents. The model was created using Blender, a free and
open-source 3D modeling tool, and was used to render the designs, as shown in Figure 3.
Additionally, we had to account for the 225 mm × 225 mm × 225 mm build volume of the
Bambu Lab X1 printer, which limited the maximum size of each printed part. This constraint
influenced how we split the chassis into multiple pieces.

Design Details
The final chassis consists of two separate PLA-printed pieces: a top shell and a bottom shell that
are connected at one edge with a hinge mechanism to allow internal access. The outer
dimensions of the chassis are 22 cm × 21.5 cm × 7.5 cm, sized to comfortably fit all major
components, including an ESP32 Dev Kit, L298N motor driver, two 7.4V 500 mAh LiPo
batteries, and our custom PCB power distribution board. It also accommodates the drive and
weapon motors. The design includes a steep front wedge, which was originally planned to be 30
degrees, but due to geometry constraints in the final version, the actual angle became 57.43
degrees, as verified through measurement. The rear wheels and axles were printed as separate
components and attached using hot glue to allow free spinning. The wheels were chosen to be
41mm in diameter as we needed room for 4 wheels and did not want the wheels to have too
much mass. The axles passed through pre-modeled slots in the chassis base to ensure alignment.
All fit tolerances were maintained within ±0.5 mm to ensure proper assembly without
post-processing. The selection of PLA and the design's segmented structure provided the
durability needed to withstand battle impacts while staying under the competition’s weight and
size constraints.

Drivetrain

Design Procedure
The drivetrain subsystem was designed to meet four main performance criteria: achieve 900
RPM motor speed, avoid voltage spikes from the power source, bidirectional wheel movement,
allow the motors to brake and change direction effectively, be able to do a minimum of 4.5 ft/s
and be initializable via I2C using SCL and SDA signals. Initially, we planned to use brushless
motors controlled by the MCF8316A driver, as these offered higher efficiency, smoother
rotation, and I2C compatibility. However, due to challenges in designing a reliable custom PCB
for this driver, we switched to a simpler and more robust solution. We chose the L298N motor
driver, shown in Figure 4, because it is capable of driving two DC motors bidirectionally,
supports up to 2A output current, and requires only digital input signals, avoiding the need for
complex I2C initialization. This decision prioritized ease of integration, reliability, and
compatibility with our limited motor power requirements.

8

Figure 4: Motor Driver Circuit Diagram

Design Details
The final drivetrain configuration used two N20 brushed DC motors rated for 6V and 1000 RPM
with no load. Estimating that the motors would spin at a reasonable 800 rpm with a load, it was
calculated, as shown in Figure 5, that the 41mm wheels would allow the car to move at a speed
of 5.633 feet per second. This would be 1.133 feet per second above our high-level requirement
of 4.5 feet per second, and therefore made the N20 motors appear like a viable option for this
project. The motors were controlled by a single L298N dual H-bridge motor driver. We chose
this motor driver because it could be activated with a minimum of 2.3V, which was less than the
3.3V the ESP32 could output. Each motor was connected to its respective output channel, and
digital input pins from the ESP32 controlled direction and speed via pulse-width modulation
(PWM). We originally intended to use I2C to initialize the motor driver, but this requirement
became irrelevant due to the L298N using standard logic-level inputs.

 𝑊ℎ𝑒𝑒𝑙 𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = π * 𝑊ℎ𝑒𝑒𝑙 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = π * 41𝑚𝑚 = 0. 1288𝑚
 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑎𝑟 𝑆𝑝𝑒𝑒𝑑 = 𝑅𝑃𝑀 * 𝑊ℎ𝑒𝑒𝑙 𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 * 3.28

60 = 5. 633 𝑓𝑒𝑒𝑡/𝑠

Figure 5: Estimated Car Speed

Power

9

Design Procedure
The power subsystem was conceived at the very beginning of our design choices. Due to the bot
having to be completely wireless, we had to be able to power every other subsystem on board.
Because of this, we had to be able to meet all the current and voltage requirements of the
components of our other subsystems. To achieve a complete wireless design, we designed a PCB
that pinned out the batteries onto 3 rails. For 2 out of the 3 rails, we simply kept the voltage at
7.4V. The third rail had a voltage of 3.3V with the help of an LM1117MP-3.3 voltage regulator.
The control subsystem, which is made up of the ESP32, needed the 3.3V found on this rail to
power on. The rest of our subsystems were powered using the other two rails at the full 7.4V.
These subsystems were able to run at 7.4V as they were using motors that were rated for 6V. Due
to voltage drops across the motor drivers and MOSFETs used to control these motors, the
slightly higher input voltage was beneficial for running these motors at their rated voltages.

Figure 6: Voltage Regulator Circuit Diagram

Design Details

To power all the motors and the L298n motor driver, we are using a 7.4V 2s LiPO battery with a
capacity of 500mAh. Our ESP32-WROOM-1 microcontroller requires a voltage of 3.3V and a
minimum operating current of 80mA to 90mA. We use a second 7.4V 2S LiPo battery, which
needs to be stepped down to 3.3V. Therefore, the voltage regulator we chose was the
LM1117MP-3.3, as it has a max input voltage of 15V, which is almost twice our battery voltage
to allow some overhead when the battery is at full charge. We also chose it as it can output a max
current of 800mA, which is much higher than required for ESP32 operation.

 𝑀𝑎𝑥 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑃𝑒𝑟 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 = 𝐶
𝑟𝑎𝑡𝑒

* 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 30𝐶 * 500𝑚𝐴ℎ = 15𝐴

Figure 7: Maximum Current Per Battery

10

Figure 8: Final PCB Design

Control

Design Procedure
For this subsystem, our main concern was ensuring that the connection strength between our
microcontroller and the laptop sending movement inputs was stable. Our high-level Requirement
of Wifi connection strength between -50 dBm and -60 dBm was the main influence for this
subsystem. Initially, we were going to use an ESP32 S3 standalone microcontroller that would be
soldered onto our custom PCB. Due to the issues we ran into with our onboard programming
circuit, we had to ultimately use an ESP32-S3-DevKitC-1-N8R8 Development Board to handle
our control subsystem. This dev kit was powered by the 3.3V rail from our power subsystem.
The other half of this subsystem was software-based and split into two parts: one being the
Arduino code flashed onto the dev kit and the other being the Python code to communicate with
the microcontroller over the same wifi network. This code established a shared wifi network that
the PC and microcontroller could communicate across, and also sent the key inputs from our
keyboard to the microcontroller. Each key sets a different pair of pins from the microcontroller to
be 3.3V to control which motor should spin and in which direction. The weapon subsystem was
also controlled through this code.

11

Figure 9: ESP32-S3-DevKitC-1

Design Details
Due to the control subsystem using an ESP32-S3-DevKitC-1, most of the design details are
determined by the specifications of the manufacturer of this dev kit. This dev board, like any
ESP32, still required 3.3V to power on and was provided by our power subsystem. To flash this
device, the onboard USB to UART programming chip allowed us to connect this to a computer
over micro USB and write the used Arduino code to its memory cache. To control the motors for
our drivetrain subsystem and the weapon subsystem, wires were connected to the pins on the dev
kit and then to the correct location in each of the two subsystems. The pins we used were chosen
in our code, but in total, 5 pins were used. Two were used to control our left wheel, and two more
were used to control the right wheel in both directions. The final pin was tied to the signal
needed to activate our weapon using the gate of the MOSFET in that subsystem. Finally, the
onboard antenna found on the specific ESP32-S3-WROOM-1 that is on this dev kit allowed us to
communicate over wifi seamlessly.

Weapon

Design Procedure
Since our weapon only needed to spin in one direction, the main influence on this subsystem’s
design was ensuring that we could turn the motor on and off with a signal from the control
subsystem. We used another N20 brushed motor to spin our weapon; however, this motor was
only rated for 600 RPM, which we chose on purpose as the lower RPM rating ensured a higher
torque. The way we ensured that the motor was getting powered only when an on signal was sent
from the ESP32 was by using an N-channel MOSFET. This MOSFET would allow the 7.4V

12

battery to directly power the motor only when the gate received a signal from the ESP32, as the
3.3V signal was higher than the required 2.5V gate voltage. The weapon was designed to be
mounted to the top of our car and intended to damage opponents that found themselves victims
of the sloped sides of our BattleBot.

Figure 10: Weapon Wiring Diagram

Design Details
We used a FQP30N06L N-Channel MOSFET due to its low 2.5V gate turn-on voltage as well as
its 60V max voltage and 32A max current. We allowed a lot of overhead for this subsystem
component as we were connecting the N20 motor directly to the battery, apart from the 10K
pull-down resistor between the gate and the source. We also chose this specific MOSFET as it
had a fast switching time, and also a drain-source diode that protects the ESP32 from back
current spikes caused by the motor. The spinning blade was designed using Blender and 3D
printed using PLA plastic. The blade spins at roughly 400 RPM with a diameter of 38mm.

Verification

Chassis

The chassis subsystem was tested against four key requirements: a total weight under 2 pounds,
structural durability, compatibility with the custom PCB, and inclusion of a front wedge with at
least a 30-degree slope. Weight verification was performed using a digital scale. The fully
assembled chassis, including wheels and axles, weighed 472.95 grams, leaving sufficient
headroom within the 2-pound (907g) total limit to accommodate the remaining subsystems. To
evaluate structural durability, we performed a repeated drop test from a height of 0.5 meters onto
a hard surface. After ten consecutive drops, the chassis showed no fractures, cracks, or loosening
of structural connections. All mounting points remained aligned, and the hinge mechanism

13

continued to operate without issue. These results indicate that the chassis was structurally sound
and able to withstand impacts typical in battle conditions. Fit verification with the PCB was
conducted by placing the custom board inside the chassis. All standoff holes aligned correctly
with the board, and there was adequate clearance around components and wiring. This confirmed
that the chassis met the requirement of being able to securely house the PCB without
modification.

The only requirement not fulfilled was for the front wedge of the robot to have a minimum slope
of 30 degrees. As shown in Figure 11, the final design resulted in a calculated slope of 57.43
degrees. This exceeded the requirement due to the front wheels in our design being pushed to be
more forward. This, however, did not limit the battlebot's movement and still allowed for cars to
potentially get about ours to interact with our top-mounted weapon.

 𝐹𝑟𝑜𝑛𝑡 𝑆𝑙𝑜𝑝𝑒 𝐴𝑛𝑔𝑙𝑒 = 𝑎𝑟𝑐𝑡𝑎𝑛(ℎ𝑒𝑖𝑔ℎ𝑡
𝑠𝑙𝑜𝑝𝑒 𝑝𝑟𝑜𝑡𝑟𝑢𝑠𝑖𝑜𝑛) = 𝑎𝑟𝑐𝑡𝑎𝑛(72𝑚𝑚

46𝑚𝑚) = 57. 4259𝑜

Figure 11: Front Slope Angle Calculation

Drivetrain

The drivetrain subsystem was evaluated based on motor speed, voltage stability, braking
performance, direction control, and motor driver communication. Some aspects of the system
functioned as intended and were successfully verified. The L298N motor driver operated reliably
with the 7.4V battery. During extended operation, neither the battery nor the driver experienced
significant heating, and no voltage spikes were observed. This confirmed that the motor driver
maintained voltage stability and did not draw damaging transient currents. The robot also
demonstrated consistent forward motion. When measured over a 4.5-foot distance, the robot
achieved a velocity of 3.3 feet per second. Based on the wheel diameter of 41 millimeters, the
calculated motor speed was approximately 469 revolutions per minute, as calculated in Figure
12. While this was below the original goal of 900 revolutions per minute, it was sufficient to
confirm forward movement and basic functionality.

 𝑅𝑃𝑀 = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦
𝑊ℎ𝑒𝑒𝑙 𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 * 60 = 1.006𝑚/𝑠

0.1288𝑚 * 60 = 468. 634 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑚𝑖𝑛𝑢𝑡𝑒

Figure 12: Final Wheel RPM Calculations

However, not all drivetrain requirements were met. The N20 brushed DC motors, which each
drew approximately 35 milliamps under normal conditions, did not produce enough torque to
support effective turning or directional changes. The robot was unable to pivot or rotate while

14

stationary and required forward momentum to turn. This significantly limited maneuverability
and made it difficult to control the bot during matches. Additionally, the braking requirement,
which specified stopping within 1 foot when moving at 4 feet per second, was not achieved.
Without active braking, the bot coasted to a stop over a longer distance. These limitations
indicate the need for more powerful motors and enhanced control strategies in future designs.
The original design also included a requirement for motor driver initialization using I2C via SCL
and SDA signals. This requirement became irrelevant after switching from the initially planned
brushless motor drivers to the L298N, which uses basic digital inputs instead of I2C
communication. As a result, this requirement did not apply to the final implementation.

Power

The power subsystem was designed to provide stable and sufficient voltage and current to the
ESP32 microcontroller, drivetrain motors, and weapon motor, while also meeting the safety
requirements of the competition. Each battery and voltage regulation component was tested
against performance specifications to verify functionality.

The LM1117MP-3.3 voltage regulator successfully stepped down the 7.4V input from Battery 1
to a stable 3.3V output, satisfying the requirement for a constant regulated voltage to power the
ESP32. The regulator was rated to supply up to 800 milliamps, and our measurements showed
the ESP32 only drew a maximum of approximately 120 milliamps during peak wireless activity,
as reflected in Figure 13 in the section labeled "ESP32 + WiFi + Signals." Therefore, the first
three power requirements, constant 3.3V output, voltage step-down, and up to 0.8A supply, were
fully satisfied.

Figure 13: Current Usage in Battery 1

15

The maximum current draw per battery was calculated in Figure 7 as 15A, confirming that each
battery was capable of supporting significantly more current than was required. However, our
final configuration did not come close to this draw. As shown in Figure 14, the drive motors
drew 90 mA sustained, spiking to 111 mA, while the weapon motor drew 32 mA sustained,
occasionally spiking to 60 mA. Combined, the maximum current draw was 122 mA sustained
and 171 mA at peak. This is well below the L298N motor driver's 2A capacity and far below the
battery’s 15A discharge capability.

Figure 14: Current Usage in Battery 2

Using the actual current values, we also calculated the maximum run time for each battery. For
Battery 1 powering the ESP32, the expected runtime was 2.882 hours, calculated in Figure 15,
and for Battery 2 powering both the drivetrain and weapon, the runtime was 4.141 hours,
calculated in Figure 16. Given that matches in the competition can only last up to 3 minutes,
these results confirmed that power availability was more than sufficient, and the system was
capable of running for extended durations without the need for recharging. This further
highlighted that our motor selection was overly conservative, and that stronger motors could
have been used without exceeding power constraints.

 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 1 𝑅𝑢𝑛𝑡𝑖𝑚𝑒 = 𝐸𝑛𝑒𝑟𝑔𝑦
𝑃𝑜𝑤𝑒𝑟 = 7.4𝑉*500𝑚𝐴ℎ

4.1𝑉*120𝑚𝐴+3.3𝑉*120𝑚𝐴ℎ = 2. 882 ℎ𝑜𝑢𝑟𝑠

Figure 15: Battery 1 Runtime Calculations

16

 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 2 𝑅𝑢𝑛𝑡𝑖𝑚𝑒 = 𝐸𝑛𝑒𝑟𝑔𝑦
𝑃𝑜𝑤𝑒𝑟 = 7.4𝑉*500𝑚𝐴ℎ

7.4𝑉*90𝑚𝐴+6.5𝑉*35𝑚𝐴 = 4. 141 ℎ𝑜𝑢𝑟𝑠

Figure 16: Battery 2 Runtime Calculations

Both batteries included manual disconnect switches, complying with competition safety rules.
Each battery operated at 7.4V, which is well below the 16V maximum competition limit.
Additionally, multiple runs showed that disconnecting either battery left only minimal residual
current, which safely dissipated without damaging any components or causing unexpected
behavior.

Control

The control subsystem was evaluated based on wireless communication reliability,
microcontroller stability, signal transmission, input lag, and voltage behavior under load. The
ESP32 successfully connected to the laptop over WiFi and maintained communication
throughout all trials. The connection remains active during long periods of operation, with no
observed disconnections, resets, or reboots. This confirms that the ESP32 did not reset or fail
under multitasking conditions, satisfying our requirement. The voltage levels at the output pins
of the ESP32 were measured at a consistent 3.3V, which was sufficient to drive both the motor
drivers and the MOSFET controlling the weapon subsystem. These outputs remained stable
during all tests, confirming that no significant voltage spikes occurred under heavy load.

The laptop was able to communicate wirelessly with the ESP32, receiving data and sending
control signals to the motors and weapon. The graph in Figure 17, labeled Connection Strength
(dBm) vs. Time (s), shows that the signal strength remained between -50 dBm and -60 dBm,
which met our high-level requirement for maintaining strong wireless communication over a
typical 10-foot range. These connection numbers were recorded by making the PC print out the
dBm signal strength to the terminal every 10 seconds. This range provided a stable connection
without delay or signal loss. Input commands from the PC were also processed with minimal
latency, and the system consistently responded with less than 0.5 seconds of lag between user
input and bot movement. This was confirmed through real-time testing of the bot's driving and
weapon activation, which consistently responded immediately to PC input.

17

Figure 17: Connection Strength over Time

Weapon

The weapon subsystem was tested to verify activation timing, mechanical alignment, structural
integrity, thermal behavior, and safe operating voltage. All electrical and performance-based
requirements were satisfied during testing, though one mechanical constraint was altered due to
design changes.

The weapon motor, controlled through a MOSFET switch activated by the ESP32, consistently
responded to input in under 0.5 seconds. The ESP32 outputs a stable 3.3V control signal to the
MOSFET gate, allowing the weapon motor to turn on and off quickly and reliably. During
operation, the weapon system was able to maintain over 400 revolutions per minute, significantly
exceeding the original requirement of 100 RPM. It remained stable at this speed for more than 3
continuous minutes, which is longer than any single match duration, confirming its durability.
The voltage supplied to the weapon motor was also only 7.4 volts, directly from the second
battery. This value matched the rated input for the N20 motor used and did not exceed its voltage
tolerance. No signs of motor damage or electrical stress were observed during repeated activation
cycles. Thermal performance was also within acceptable limits. As mentioned in the power
subsystem verification, the weapon motor only drew a maximum of 60 milliamps during peak
operation, which contributed to the battery and MOSFET remaining cool throughout extended
use. There was no observed overheating, and no performance degradation was noted during
testing.

18

The mechanical drawback we had was that although the original mechanical requirement
specified that the weapon must sit flush with the top of the chassis and extend no more than 0.5
centimeters, a design change introduced a top-mounted spinning blade. As a result, this
requirement was no longer applicable in its original form. The new design allows the weapon to
extend above the car to optimize offensive capability, and the blade remains securely fastened
and balanced during use.

Cost
Below is a cost breakdown of all the components we used for our project. We have also included
a breakdown of manufacturing costs for our project.

Parts cost:
1x 2 pack 1000RPM 6V N20 Brushed Motors - $9.99
1x 2 pack 600RPM 6V N20 Brushed Motors - $9.99
1x L298n motor driver module - $6.99
1x ESP32-S3-DevKitC-1-N8R8 Development Board - $15.99
1x LM1117MPX-3.3 - $1.01
6x CONN HEADER VERT 2POS 2.54MM - $0.16
6x WR-PHD 2.54 MM SOCKET HEADER 4 P - $0.40
3D Printing Cost:
Base price: $4.00
Price per gram of PLA: $0.10
Total cost to print for 472.95 = $51.295

Total cost: $102.62

Labor cost:
Average electrical engineer salary per hour in Chicago: $55.02
Estimated time to complete: 10 hours per week, totaling 70 hours
Total cost of labor is $3850.40

Conclusion

Our team successfully designed and implemented a functional Antweight BattleBot that met all
critical competition requirements. The final robot was fully wireless, under the 2-pound weight
limit, and featured independent mobility and a high-speed weapon system. Despite constraints

19

related to motor power and PCB complexity, the design demonstrated reliable performance,
modularity, and compliance with safety and ethical guidelines.

Throughout the semester, we achieved key milestones: a stable WiFi-controlled system using the
ESP32, a durable PLA-printed chassis capable of housing all components, and a spinning
weapon that performed consistently above our minimum RPM threshold. Our power system
remained cool and efficient during operation, and manual disconnects ensured safe handling of
all electrical components. We also confirmed that our weapon and drivetrain subsystems
operated reliably, although we recognized that our motor selection limited turning performance
and braking ability. Upgrading to higher torque motors in the future would improve agility and
directional control. Additionally, a fully functional custom PCB remains an area for future
development.

In a broader context, this project demonstrates how accessible engineering tools like 3D printing,
open-source software, and low-cost microcontrollers can empower students to build real-world
embedded systems. Environmentally, we minimized waste by using PLA, a biodegradable
material, and designing a chassis that could be reprinted and reused. Societally, the project
encourages teamwork, problem-solving, and hands-on technical skills that directly apply to
careers in robotics, automation, and embedded systems development.

Ethics

Our BattleBot project raises several ethical considerations that we have addressed by the IEEE
Code of Ethics. We prioritized the safety and well-being of ourselves and those around us by
carefully designing a robot that operates safely in an indoor environment while minimizing
environmental impact. We remained honest about our technical limitations, especially in areas
such as motor control and PCB design, and sought help and conducted research where necessary.
Throughout the project, we welcomed constructive feedback from peers and instructors and
made design adjustments accordingly. We ensured that every decision we made was grounded in
practical testing and clear engineering rationale.

Safety

Safety was a central focus throughout the development of our BattleBot, especially given the
risks associated with LiPo batteries, high-speed motors, and rotating weapon systems. We used
two 7.4V 500 mAh LiPo batteries, each well below the competition's 16V maximum voltage
limit, to ensure safe operating conditions. To comply with safety requirements and minimize the
risk of short circuits or overheating, each battery included a manual disconnect switch that
allowed for immediate shutdown in case of malfunction. The voltage regulator and motor driver
were monitored during extended operation and did not reach unsafe temperatures, in part due to

20

the low current draw of our motors and weapon system. Our weapon motor, spinning a
top-mounted blade at over 600 RPM, was secured to the chassis and tested in a safe, enclosed
environment to prevent injury or damage in case of detachment or imbalance. We avoided the
use of hazardous chemicals or biological materials entirely, limiting all safety concerns to
electrical and mechanical domains. All testing was conducted under supervision, and charging
procedures were followed with care to prevent fire hazards, aligning with best practices for LiPo
battery safety.

References
[1] Espressif Systems, ESP32 Series Datasheet, Espressif Systems, 2023. [Online]. Available:
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf. [Accessed:
10-Feb-2025].

[2] IEEE, "IEEE SA - IEEE Code of Ethics," IEEE, 2024. [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 8-Feb-2025].

[3] Texas Instruments, MCF8316D 4.5-V to 60-V sensorless FOC brushless motor driver with
integrated MOSFETs, Texas Instruments, Dec. 2023. [Online]. Available:
https://www.ti.com/lit/ds/symlink/mcf8316d.pdf. [Accessed: 9-March-2025].

[4] Handson Technology, L298N Motor Driver Module Datasheet. [Online]. Available:
https://www.handsontec.com/dataspecs/L298N%20Motor%20Driver.pdf. [Accessed:
16-March-2025].

[5] Handson Technology, GA12-N20 Micro DC Motor Datasheet. [Online]. Available:
https://www.handsontec.com/dataspecs/GA12-N20.pdf. [Accessed: 20-March-2025].

	Abstract
	Introduction
	High-level requirements list

	Design
	Chassis
	Design Procedure
	
	Design Details

	Drivetrain
	Design Procedure
	Design Details

	Power
	Design Procedure
	Design Details

	Control
	Design Procedure
	Design Details

	Weapon
	Design Procedure
	Design Details

	Verification
	Chassis
	Drivetrain
	Power
	Control
	Weapon

	Cost
	Conclusion
	Ethics
	Safety

	References

