


	Abstract	

 This project presents a real-time driver monitoring system that detects both drowsiness and alcohol 
 impairment. The system integrates an ESP32 microcontroller, OV2640 camera module, and MQ-3 
 alcohol sensor to assess driver alertness and estimate blood alcohol concentration (BAC). The ESP32 
 streams video data to a Raspberry Pi, which uses a computer vision algorithm to detect eye blinks, 
 yawns, and head position changes. If signs of fatigue or BAC exceed safe thresholds, the system 
 triggers alerts via a buzzer, OLED display, and optional emergency contact notifications through a 
 mobile interface. The system operates over a dedicated 2.4GHz hotspot, ensuring low-latency 
 communication between modules. Power is supplied by a 5V 2.4A supply from the driver’s car, 
 enabling consistent performance under full load. Testing confirmed accurate detection of fatigue 
 indicators and BAC within ±5%, supporting the system’s reliability for real-world use. The modular 
 design allows for future enhancements, including AI-based risk prediction and BLE integration. 
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	1.	Introduction	

 Prolonged driving can lead to a variety of physiological and cognitive changes associated with fatigue, 
 including altered head position, increased blinking frequency, and yawning. If left unmonitored, 
 these drowsiness indicators can significantly increase the risk of accidents, endangering both the 
 driver and others on the road. In parallel, intoxicated driving remains a widespread issue, with no 
 standardized method to prevent a driver from operating a vehicle based on their blood alcohol 
 content (BAC). 

 This project presents a multifunctional driver fatigue and impairment detection system that leverages 
 real-time facial recognition, eye aspect ratio monitoring, and onboard camera streaming to assess 
 driver alertness. The system also incorporates an MQ3 alcohol sensor to estimate BAC and prohibit 
 further driving if dangerous levels are detected. Through WiFi communication with a companion app 
 or web interface, the system continuously logs drowsiness scores, triggers in-app fatigue alerts, and 
 can suggest nearby rest stops or notify emergency contacts if critical thresholds are exceeded. Locally, 
 an OLED screen displays fatigue and BAC scores, and an onboard buzzer provides immediate warnings 
 in high-risk scenarios. 

 The report begins by detailing the engineering problem and constraints, followed by the design 
 alternatives and final hardware/software architecture. It includes mathematical modeling, circuit 
 design, and power analysis. Subsequent chapters walk through the implementation, testing 
 procedures, and results. In the concluding section, we summarize the system’s effectiveness, discuss 
 the main limitations encountered—including I2C stability, analog/WiFi conflicts, and power supply 
 issues—and suggest areas for future improvement, such as BLE data transmission and AI-based risk 
 prediction. 
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	1.1	System	Design	

 The diagram above illustrates the full system integration of our driver fatigue and alcohol detection 
 platform, including power delivery, sensor interfacing, and wireless communication. At the core of 
 the system is the ESP32-S3, which manages real-time data acquisition, local feedback, and WiFi 
 communication with external processing units. The system is powered via a regulated 5V USB 
 connection from the vehicle's console, which is stepped down to 3.3V for sensor and module 
 compatibility. 

 The design is divided into two primary subsystems: 

 ●  Blood Alcohol Concentration (BAC) Subsystem: This includes a DFRobot Gravity MQ-3 sensor, 
 a 0.96" OLED display, and an LED indicator. The ESP32 samples analog data from the MQ-3 
 sensor, displays feedback on the OLED, and activates the LED or buzzer under hazardous 
 conditions. Data is transmitted over WiFi to a connected smartphone and Raspberry Pi. 

 ●  Camera and Motion Subsystem: Originally, this included a BNO055 IMU for head-tilt detection, 
 but the sensor was ultimately removed due to redundancy and integration issues. All key 
 fatigue indicators—such as blinks, yawns, and head positioning—are now handled through 
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 the OV2640 camera module and processed using computer vision algorithms on the 
 Raspberry Pi. 

 To minimize latency and ensure robust communication between modules, the system uses a 
 shared 2.4GHz hotspot (tethered from a mobile device) to host both the ESP32-CAM and the 
 Raspberry Pi on the same local network. Each device is automatically assigned a static IP by 
 the hotspot's internal DHCP service. The ESP32-CAM typically receives the IP address 
 192.168.1.3  , while the Raspberry Pi is assigned  192.168.1.4  , and the mobile phone 
 controlling the system operates on  192.168.1.5  . 

 The ESP32-CAM hosts a lightweight web server that handles camera streaming (via port 81), 
 flashlight control, and other operational endpoints such as  start_drive  for triggering 
 session events. The camera stream remains accessible through a routed endpoint while 
 simultaneously allowing POST requests and UI interactions. Meanwhile, the Raspberry Pi runs 
 a Flask-based web server that exposes endpoints for running fatigue detection models, 
 managing image processing, and relaying real-time feedback back to the user interface or 
 ESP32. 

 This dual-server approach enables distributed processing: the ESP32 handles front-end user 
 interaction and video output, while the Raspberry Pi handles back-end logic and 
 computational tasks. By connecting all three nodes—ESP32, Raspberry Pi, and mobile 
 interface—over a centralized 2.4GHz hotspot (SSID:  iPhone_hotspot  ), the system 
 achieves low-latency, high-reliability communication across all modules. 
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	2	Design	

 Originally, the camera module was connected to the ESP32-CAM using individual I2C-style Molex 
 connectors for the data and clock lines. While functional, this method introduced wiring complexity, 
 signal instability, and a risk of misalignment during insertion. To address these issues, we 
 transitioned to a flat camera strip connector, similar to the one used on AI Thinker ESP32-CAM boards. 
 This change offered several benefits, including mechanical reliability, consistent pin alignment, 
 reduced noise on high-speed signal lines, and ease of installation. The strip connector also simplified 
 integration with existing board layouts and eliminated the need for repeated manual pin-by-pin 
 rework. This hardware revision was crucial in achieving a stable camera feed with minimal 
 interference and improving the overall robustness of the system. The updated connector layout now 
 serves as the baseline for all further development and testing. 
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 To support multiple peripherals, including the MQ-3 alcohol sensor, an LED indicator, an OLED display, 
 a button interface, and the ESP32-CAM running a WiFi server and camera stream, we initially 
 powered the system with a 5V 1A supply. However, the system exhibited instability during peak load 
 conditions, particularly when both the WiFi module and camera were active, occasionally causing 
 brownouts and spontaneous resets. To address this, we upgraded to a 5V 2.4A regulated source. The 
 estimated current draw was calculated as follows: 

 Given these estimates, the original 1A source (5W) lacked sufficient headroom, especially during 
 transient spikes when the camera initialized or WiFi transmitted. The upgraded 5V 2.4A source 
 provided 12W of power, comfortably supporting all modules with additional thermal and electrical 
 margin for safe operation. This change was critical in achieving stable operation under full system 
 load. 
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	2.1	Blood	Alcohol	Concentration	System	
 The BAC system uses a DFRobot Gravity MQ-3 alcohol sensor to detect ethanol levels in a driver's 
 breath. The analog output of the sensor is read by the ESP32-S3, which estimates the BAC based on 
 calibrated voltage readings. The system includes a 0.96" OLED display for local BAC feedback, and an 
 LED indicator for real-time alerts. The ESP32 transmits BAC data over WiFi to a companion application, 
 which logs values and triggers further notifications. The sensor requires a warm-up time after 
 power-on, indicated by the LED. Power delivery is stabilized through voltage regulators to maintain 
 3.3V operation across components. 

	2.1.1	MQ-3	Sensor	and	Output	Interface	
 The MQ-3 sensor outputs an analog voltage proportional to the ethanol vapor concentration in the air. 
 To ensure accurate readings, the sensor was calibrated using controlled alcohol exposures and 
 validated against a certified breathalyzer. A 10-bit ADC on the ESP32 samples this analog output. A 
 thresholding function compares the resulting BAC estimate against preset safety limits. The OLED 
 screen shows real-time BAC values, and the LED illuminates to indicate sensor readiness or hazardous 
 levels. A buzzer complements the LED for audible alerts. 

	2.2	Camera	and	Motion	System	
 This subsystem is responsible for capturing the driver’s facial behavior and transmitting images for 
 drowsiness analysis. It originally included the BNO055 IMU sensor for head tilt detection, but this was 
 removed due to practicality in a driving setting. The OV2640 camera, connected to an ESP32-CAM, 
 streams video over WiFi using a lightweight HTTP server. The ESP32 handles front-end operations 
 while the Raspberry Pi receives and processes the stream using DLib and OpenCV. Key indicators such 
 as eye aspect ratio (EAR), blink duration, and yawning frequency are extracted to assess driver 
 alertness. The system maintains a resolution of 640x480 pixels at 30 fps and uses JPEG compression to 
 minimize latency during transfer. 

	2.2.1	OV2640	Camera	and	Streaming	Interface	
 The OV2640 is interfaced with the ESP32-CAM via a flat ribbon cable for improved electrical stability 
 and ease of integration. It supports JPEG output, allowing efficient image transfer over HTTP. The 
 ESP32 hosts an embedded web server on port 81, which streams the camera feed in real time and 
 provides endpoints for starting sessions and triggering events. The ESP32 and Raspberry Pi are placed 
 on a static local network via a mobile hotspot for consistent IP addressing and minimal transmission 
 delay. This allows for synchronized and efficient data processing between the capture unit and the 
 analysis server. 

	2.3	Algorithm	and	User	Interface	Subsystem	
 This subsystem processes incoming sensor data and provides real-time feedback to the user. The 
 Raspberry Pi runs Python-based scripts using DLib and OpenCV to process frames from the ESP32 
 camera. It calculates EAR/MAR values to detect blinking, long blinks, and yawns using landmark 
 tracking on facial features. Detected fatigue levels are converted into a composite drowsiness score, 
 which is logged and displayed through a Flask-based web app. The app also visualizes historical data 
 through a graph/plot and triggers emergency contact if thresholds are exceeded. 

 9 



	2.3.1	Flask	Server	and	Analytics	Dashboard	
 The Flask server runs on the Raspberry Pi and hosts a real-time dashboard accessible through a 
 smartphone browser. It receives image and sensor data via POST requests from the ESP32, processes 
 them using our fatigue detection model, and returns alerts and drowsiness scores. The UI is designed 
 for clarity and minimal distraction, adhering to NHTSA guidelines. Data transmission is optimized to 
 reduce latency, and all endpoints are secured through local-only access on the mobile hotspot 
 network. 
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	3.	Design	Verification	
 We verified the functionality and reliability of each subsystem through targeted testing procedures. 
 Verification included sensor calibration, voltage and signal integrity checks, network transmission 
 latency measurements, algorithm accuracy testing, and usability assessments. Each requirement was 
 tested based on predefined criteria documented in our Requirement and Verification (R&V) tables, 
 with results recorded accordingly. (View Appendix for Requirement and Verification (R&V) tables). 
 All the features of our device are also showcased in our short video here:  demo 

	3.1	Blood	Alcohol	Concentration	(BAC)	System	
 To verify the BAC subsystem, we calibrated the MQ-3 sensor using controlled ethanol exposures and 
 compared its readings with a certified breathalyzer. Our initial requirement of needing readings to 
 fall within ±0.01% BAC was a bit too ambitious. Due to the fact that we are comparing $100 
 breathalyzer devices to our $2 alcohol sensor, it was not realistic for our sensor to fall within ±0.01% 
 BAC. However, we were able to verify that our BAC readings fell between ±5%. The OLED screen 
 correctly displayed real-time BAC estimates, and the LED indicator reliably reflected the sensor’s 
 readiness and threshold status. Voltage stability during sensor operation was confirmed using a 
 digital multimeter. 

	3.1.1	MQ-3	Sensor	and	Output	Devices	
 We tested the analog output of the MQ-3 sensor using known alcohol concentrations (e.g., 
 mouthwash, sanitizing sprays/wipes) and measured the ESP32 ADC response. We then validated the 
 buzzer activation and OLED/LED status indicators under these conditions. The sensor warm-up time 
 was measured using a stopwatch and confirmed to match the datasheet (~15 seconds). Oscilloscope 
 testing confirmed that the analog signal remained stable during WiFi transmission once power 
 sequencing was managed properly. 

	3.2	Camera	and	Motion	System	
 The OV2640 camera module was tested for resolution, frame rate, and streaming reliability. We 
 captured sample video streams and validated image quality under varying lighting conditions. Using 
 controlled blink and yawn trials (e.g., 60-second intervals with timed user actions), we verified that 
 the system consistently detected fatigue indicators with >95% accuracy. The camera stream was 
 verified to run at 640x480 resolution and 30 fps. Latency tests using Wireshark confirmed a delay of 
 less than 250 ms between frame capture and Raspberry Pi receipt over WiFi. 
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	3.2.1	ESP32-CAM	and	Streaming	Pipeline	
 The ESP32-CAM’s embedded server was tested using web browser and REST-based client tools. The 
 /start_drive endpoint triggered session logging correctly, while the video stream remained 
 accessible and stable. We measured bandwidth usage and validated JPEG compression effectiveness 
 by analyzing frame sizes (~15–25 KB) during capture. A flat ribbon connector minimized EMI and signal 
 loss, confirmed via a comparative image clarity test and frame-rate drop testing. 

	3.3	Algorithm	and	User	Interface	Subsystem	
 We tested the fatigue detection algorithm using video samples of blinks, long blinks, and yawns. 
 Manual frame annotation was used to benchmark algorithm accuracy, and EAR thresholds were 
 adjusted to minimize false positives. Not only that, but live testing of our algorithm with subjects 
 from different sexes, ethnicities, and backgrounds was also implemented. The Flask-based web UI 
 was tested for responsiveness, correct display of fatigue scores, and reliable alert generation. Data 
 transmission was validated using network monitoring tools, and emergency contact integration was 
 successfully triggered when drowsiness scores exceeded threshold values. 
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	3.3.1	Flask	Server,	UI,	and	Alert	System	
 We conducted simulated driving conditions with both drowsy and alert states. The system 
 successfully detected long blinks (>500 ms), regular blinks, yawns, and low/high EAR/MAR scores. 
 Visual alerts were rendered on the Flask dashboard within 1 second of detection, and the system 
 correctly routed the users phone to an emergency contact with <1 second of delay. Usability tests 
 confirmed that the UI provided clear, actionable information with minimal latency or distraction, 
 fulfilling all interface-related requirements. 
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	4.	Costs	
 Note that we are considering the cost of the items with the retail price where we acquired the 
 part, excluding ECE discounts. Our actual cost is the item cost for retail items we purchased, 
 whether bulk or not. Free items are simple items like LEDs and the active buzzer, which were 
 found in the lab. 

	4.1	Parts	

 Part   Manufacturer  Quantity  Retail 
 Price ($) 

 Bulk Cost  ($)  Actual Cost  ($)  Subsystem 

 Raspberry Pi 4 
 Model B 2GB 

 Raspberry Pi 
 Ltd 

 1  53.99  53.99  53.99  Algorithm and 
 Interface 

 Micro-HDMI 
 Male to HDMI 
 Female Adapter 

 Microware  1  6.16  6.16  6.16  Algorithm and 
 Interface 

 32GB MicroSD 
 Card 

 Samsung  1  13.05  13.05  13.05  Algorithm and 
 Interface 

 ESP32-S3 
 Development 

 Board 

 HiLetgo  1  16.53  16.53  16.53  Algorithm and 
 Interface 

 OV2640 Camera 
 Module 

 STMicroelec 
 tronics 

 1  11.99  11.99  11.99  Camera and 
 Motion 

 Active Piezo 
 Buzzer Alarm 

 GFORTUN  1  0.89  4.00  Free  Camera and 
 Motion 

 MQ3 Alcohol 
 Sensor Module 

 Reland Sun  1  2.67  12.00  12.00  BAC 
 Concentration 

 0.96" SSD1306 

 OLED LCD 

 HiLetgo  1  6.99  6.99  6.99  BAC 
 Concentration 

 LED  HiLetgo  1  0.89  1.00  Free  BAC 
 Concentration 
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 LD117 Voltage 
 Regulator 

 STMicroelec 
 tronics 

 4  0.80  8.00  8.00  Power 
 Subsystem 

 Total  116.36  x  x 

	4.2	Labor	
 Our project has a heavy computation component relying on algorithm creation and data transfer via 
 WiFi. For this reason, many of the estimated labor hours involve client-server setup, so the ESP-32 
 and the Pi can efficiently and wirelessly communicate. The algorithms will require extensive image 
 processing, so searching and modifying a functional algorithm is one of the largest time sinks. 
 Assuming an hourly-paid entry-level engineer position, we take an hourly pay of $45. We can assume 
 the machine shop makes $30 an hour. We used the labor of one individual since our design was 
 simple and fit into a box. For this reason, cutouts and assembly took about three hours. A rough 
 estimate of 310 hours relays our engineering efforts based on the schedule and planning, and our 
 costs come out to. 

 Total Cost  : Engineer Labor Cost + Part Cost + Machine Labor =  ((310 hours)  x  ($45) ) +  $116.36 + ((3 
 hours) + ($45))  = $14,201.36 
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	5.	Conclusion	

	5.1	Accomplishments	
 We successfully made a driver fatigue system fully equipped for assessing blinks, long blinks, and 
 yawns, accompanied by a snappy, user-friendly UI with analytic, safety measures, and camera 
 adjustments. On top of this, we have a workable, calibrated BAC sensor. In essence, all of our sensors 
 work, and our PCB works flawlessly! Our enclosures as well ended up being very polished, and the 
 cutout approach is the ideal way for our functionality. 

	5.2	Uncertainties	
 We encountered a range of hardware and software challenges throughout development. Initially, our 
 ESP32-CAM arrived with inadequate documentation and missing XCLK support, which made I2C and 
 camera integration difficult. The OLED screen, connected via SDA on GPIO16, caused persistent boot 
 issues by glitching the I2C bus, resulting in reset loops—an issue we resolved with careful wiring and 
 boot sequencing. WiFi.h disabled several analog pins, so we implemented a physical button that 
 disables WiFi after use, allowing analog sensor readings before starting the camera server. We also 
 faced power instability on the PCB, especially during simultaneous streaming and peripheral use, 
 which led to crashes and forced us to optimize current distribution. Our original design relied on 
 POST requests for ESP feedback, but the camera server’s latency and network strain made it 
 unreliable under load. Finally, booting DLib on the Raspberry Pi presented resource constraints and 
 compatibility issues that required adjustments to library dependencies and runtime configuration. 

	5.3	Ethical	considerations	
 Our project's main ethical and safety concerns are privacy and data security. 
 The system collects sensitive biometric data, including facial recognition patterns, eye movement, 
 and breathalyzer readings. According to the ACM Code of Ethics (Principle 1.6: Respect Privacy), 
 developers must ensure that user data is stored securely and only accessed for its intended purpose. 
 To mitigate potential privacy concerns: 
 Data will be processed locally on the ESP32-S3 or Raspberry Pi, avoiding unnecessary cloud storage. 
 Encrypted communication protocols (e.g., HTTPS, TLS) will transmit data to the mobile application. 

 Another ethical concern highlighted by IEEE is Principle 2: Avoid Harm to Others, emphasizing that 
 systems must be designed to avoid discrimination or bias based on race, gender, or disability. We will 
 train our model on a diverse dataset to ensure fairness, including individuals of different ethnicities, 
 backgrounds, and facial features. Not only that, but the EAR threshold will also be adjustable for 
 individuals, allowing for an individualized experience. 

 Since our device also has a miniature built-in display, we have decided to keep it as minimal as 
 possible to uphold safety guidelines and maintain a safe driving experience. Alerts, buzzer warnings, 
 and the user interface must be designed to minimize distractions. 
 According to NHTSA guidelines, visual displays should be simple and non-intrusive. 
 Alerts should not require extended interaction from the driver while operating the vehicle. 
 The buzzer should produce audible but non-alarming signals to avoid panic responses. 
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	5.4	Future	work	
 ●  Further research electrical engineering concepts so that we can optimize power usage 
 ●  Customized encasing for our pcb 
 ●  Optimize pcb sizing and routing 
 ●  Improve UI/UX on our Flask application 
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	Appendix	A	 	Requirement	and	Verification	Table	

 Table 1 
 Blood Alcohol Concentration System  Requirements and Verifications 

 Requirement  Verification  Verification 
 status 

 (Y or N) 
 The device must measure BAC with an 
 accuracy of ±5% BAC within a detection 
 range of 0.00% - 0.20% BAC. 

 Perform calibration tests using known 
 alcohol concentrations and compare 
 readings with a certified breathalyzer. 

 Cross-checking each of the individual MQ-3 
 sensors since we ordered a few for 
 faultiness. 

 Y 

 The device must maintain a baud rate of 
 9600 for MQ-3 communication. 

 Monitor serial transmission using an 
 oscilloscope to verify correct baud rate 
 operation. 

 Y 

 The LED should accurately reflect the 
 readiness and warm-up time of the MQ-3. 

 Measure time from power-on to 
 ready-state using a stopwatch and validate 
 against the MQ-3 datasheet specifications. 

 Y 

 Table 2 
 Power System Requirements and Verifications 

 Requirement  Verification  Verification 
 status 

 (Y or N) 
 Maintain overall voltage stability within a 
 tolerance of ±0.1V. 

 Measure voltage fluctuations using a digital 
 multimeter (DMM) under different load 
 conditions. 

 Y 

 Ensure successful step-down conversion 
 to 3.3V for all necessary components. 

 Use a DMM to verify stable 3.3V output 
 under normal operating conditions. 

 Y 

 Provide a consistent and stable 5V output 
 for MQ-3 operation. 

 Test voltage stability under varying load 
 conditions and monitor power fluctuations 
 using an oscilloscope. 

 Y 
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 Table 3 
 Camera and Motion System Requirements and Verifications 
 Requirement  Verification  Verification 

 status 
 (Y or N) 

 Capture images with sufficient clarity to 
 detect blinks and yawns. 

 Evaluate image resolution and sharpness 
 using controlled lighting conditions. 

 Sample test of an individual blinking X 
 amount of times in a tets period 60 sec. 
 Compare results with algorithm testing. 

 Y 

 Camera must interface with ESP32 and 
 transmit data via WiFi with minimal 
 latency. 

 Measure transmission delay using a 
 network packet analyzer. 

 Compare the speed and algorithm running 
 process with I2C connection before testing 
 with WiFi. 

 Y 

 Support JPEG image compression for 
 efficient data transfer. 

 Verify image file sizes and compression 
 ratios using software analysis. 

 Y 

 Maintain a minimum resolution of 
 640x480 pixels and 30fps frame rate. 

 Capture and analyze sample frames to 
 confirm compliance with the required 
 resolution and frame rate. 

 Y 

 Buzzer should emit a non-intrusive alert 
 sound. 

 Measure buzzer sound levels in decibels 
 (dB) using a sound meter. Place the nozzle 
 of the sound meter above the encaving of 
 the active buzzer. 

 Most active buzzers can be lowered by 
 attaching a resistor using the correct 
 amount of resistance. Validate with a 1k, 
 10k, etc. for the optimal db count using a 
 sound meter. 

 Y 
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 Table 4 
 Algorithm and User Interface System Requirements and Verifications 

 Requirement  Verification  Verification 
 status 

 (Y or N) 
 Calculate a real-time drowsiness score 
 based on sensor inputs. 

 Validate computed scores against manually 
 analyzed fatigue behavior datasets. 

 For test subjects, we can have a 
 self-reported driving quiz where the user 
 assesses a level where they feel incapable 

 Y 

 ESP32 must transmit drowsiness data via 
 WiFi with a baud rate of at least 9600 bps. 

 Monitor WiFi transmission rates using a 
 network packet analyzer. 

 Y 

 Web app should provide real-time 
 feedback on drowsiness score and 
 analytics. 

 Conduct usability tests to ensure data is 
 displayed with minimal delay. 

 Users should be able to query into our 
 database to see the times a certain score of 
 their choosing is submitted during their 
 driving times. 

 Y 

 System should log drowsiness data and 
 send emergency alerts when a defined 
 threshold is exceeded. 

 Simulate drowsiness conditions and verify 
 proper alert generation and logging. 

 Use Twilio API and simulate a call to 
 ourselves via 

 Y 
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	Appendix	B	 	Abbreviations	

 ACM: Association for Computing Machinery 

 ADC: Analog-to-Digital Converter 

 AI: Artificial Intelligence 

 API: Application Programming Interface 

 BAC: Blood Alcohol Concentration 

 BLE: Bluetooth Low Energy 

 CAM: Camera Module (ESP32-CAM) 

 DHCP: Dynamic Host Configuration Protocol 

 DLib: Dlib C++ Library 

 EAR: Eye Aspect Ratio 

 ESP: Espressif Systems Processor (ESP32-S3 microcontroller) 

 ESP32: Espressif Systems ESP32 microcontroller 

 ESP32-S3: Espressif Systems ESP32-S3 microcontroller 

 GPIO: General Purpose Input/Output 

 HDMI: High-Definition Multimedia Interface 

 HTTP: Hypertext Transfer Protocol 

 HTTPS: HyperText Transfer Protocol Secure 

 I2C: Inter-Integrated Circuit 

 IEEE: Institute of Electrical and Electronics Engineers 

 IP: Internet Protocol 

 JPEG: Joint Photographic Experts Group 

 LCD: Liquid Crystal Display 

 LED: Light-Emitting Diode 

 MAR: Mouth Aspect Ratio 
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 MQ: Metal Oxide (e.g., MQ-3 alcohol sensor) 

 MQ3: MQ-3 Alcohol Sensor 

 NHTSA: National Highway Traffic Safety Administration 

 OLED: Organic Light-Emitting Diode 

 PCB: Printed Circuit Board 

 POST: Power-On Self Test or POST HTTP request 

 R&V: Requirement and Verification 

 REST: Representational State Transfer 

 SDA: Serial Data Line 

 TLS: Transport Layer Security 

 UI: User Interface 

 UI/UX: User Interface / User Experience 

 USB: Universal Serial Bus 

 WiFi: Wireless Fidelity 
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