

	Abstract	

 This project presents a real-time driver monitoring system that detects both drowsiness and alcohol
 impairment. The system integrates an ESP32 microcontroller, OV2640 camera module, and MQ-3
 alcohol sensor to assess driver alertness and estimate blood alcohol concentration (BAC). The ESP32
 streams video data to a Raspberry Pi, which uses a computer vision algorithm to detect eye blinks,
 yawns, and head position changes. If signs of fatigue or BAC exceed safe thresholds, the system
 triggers alerts via a buzzer, OLED display, and optional emergency contact notifications through a
 mobile interface. The system operates over a dedicated 2.4GHz hotspot, ensuring low-latency
 communication between modules. Power is supplied by a 5V 2.4A supply from the driver’s car,
 enabling consistent performance under full load. Testing confirmed accurate detection of fatigue
 indicators and BAC within ±5%, supporting the system’s reliability for real-world use. The modular
 design allows for future enhancements, including AI-based risk prediction and BLE integration.

 2

	Contents	
 1. Introduction ... 4

 1.1 System Design .. 5
 2 Design ... 7

 2.1 Blood Alcohol Concentration System ... 9
 2.1.1 MQ-3 Sensor and Output Interface ... 9

 2.2 Camera and Motion System ... 9
 2.2.1 OV2640 Camera and Streaming Interface .. 9

 2.3 Algorithm and User Interface Subsystem ... 9
 2.3.1 Flask Server and Analytics Dashboard ... 10

 3. Design Verification .. 11
 3.1 Blood Alcohol Concentration (BAC) System ... 11

 3.1.1 MQ-3 Sensor and Output Devices ... 11
 3.2 Camera and Motion System ... 11

 3.2.1 ESP32-CAM and Streaming Pipeline .. 12
 3.3 Algorithm and User Interface Subsystem ... 12

 3.3.1 Flask Server, UI, and Alert System ... 13
 4. Costs .. 14

 4.1 Parts ... 14
 4.2 Labor .. 15

 5. Conclusion .. 16
 5.1 Accomplishments ... 16
 5.2 Uncertainties .. 16
 5.3 Ethical considerations ... 16
 5.4 Future work .. 17

 References ... 17
 Appendix A Requirement and Verification Table ... 18
 Appendix B Abbreviations .. 21

 3

	1.	Introduction	

 Prolonged driving can lead to a variety of physiological and cognitive changes associated with fatigue,
 including altered head position, increased blinking frequency, and yawning. If left unmonitored,
 these drowsiness indicators can significantly increase the risk of accidents, endangering both the
 driver and others on the road. In parallel, intoxicated driving remains a widespread issue, with no
 standardized method to prevent a driver from operating a vehicle based on their blood alcohol
 content (BAC).

 This project presents a multifunctional driver fatigue and impairment detection system that leverages
 real-time facial recognition, eye aspect ratio monitoring, and onboard camera streaming to assess
 driver alertness. The system also incorporates an MQ3 alcohol sensor to estimate BAC and prohibit
 further driving if dangerous levels are detected. Through WiFi communication with a companion app
 or web interface, the system continuously logs drowsiness scores, triggers in-app fatigue alerts, and
 can suggest nearby rest stops or notify emergency contacts if critical thresholds are exceeded. Locally,
 an OLED screen displays fatigue and BAC scores, and an onboard buzzer provides immediate warnings
 in high-risk scenarios.

 The report begins by detailing the engineering problem and constraints, followed by the design
 alternatives and final hardware/software architecture. It includes mathematical modeling, circuit
 design, and power analysis. Subsequent chapters walk through the implementation, testing
 procedures, and results. In the concluding section, we summarize the system’s effectiveness, discuss
 the main limitations encountered—including I2C stability, analog/WiFi conflicts, and power supply
 issues—and suggest areas for future improvement, such as BLE data transmission and AI-based risk
 prediction.

 4

	1.1	System	Design	

 The diagram above illustrates the full system integration of our driver fatigue and alcohol detection
 platform, including power delivery, sensor interfacing, and wireless communication. At the core of
 the system is the ESP32-S3, which manages real-time data acquisition, local feedback, and WiFi
 communication with external processing units. The system is powered via a regulated 5V USB
 connection from the vehicle's console, which is stepped down to 3.3V for sensor and module
 compatibility.

 The design is divided into two primary subsystems:

 ● Blood Alcohol Concentration (BAC) Subsystem: This includes a DFRobot Gravity MQ-3 sensor,
 a 0.96" OLED display, and an LED indicator. The ESP32 samples analog data from the MQ-3
 sensor, displays feedback on the OLED, and activates the LED or buzzer under hazardous
 conditions. Data is transmitted over WiFi to a connected smartphone and Raspberry Pi.

 ● Camera and Motion Subsystem: Originally, this included a BNO055 IMU for head-tilt detection,
 but the sensor was ultimately removed due to redundancy and integration issues. All key
 fatigue indicators—such as blinks, yawns, and head positioning—are now handled through

 5

 the OV2640 camera module and processed using computer vision algorithms on the
 Raspberry Pi.

 To minimize latency and ensure robust communication between modules, the system uses a
 shared 2.4GHz hotspot (tethered from a mobile device) to host both the ESP32-CAM and the
 Raspberry Pi on the same local network. Each device is automatically assigned a static IP by
 the hotspot's internal DHCP service. The ESP32-CAM typically receives the IP address
 192.168.1.3 , while the Raspberry Pi is assigned 192.168.1.4 , and the mobile phone
 controlling the system operates on 192.168.1.5 .

 The ESP32-CAM hosts a lightweight web server that handles camera streaming (via port 81),
 flashlight control, and other operational endpoints such as start_drive for triggering
 session events. The camera stream remains accessible through a routed endpoint while
 simultaneously allowing POST requests and UI interactions. Meanwhile, the Raspberry Pi runs
 a Flask-based web server that exposes endpoints for running fatigue detection models,
 managing image processing, and relaying real-time feedback back to the user interface or
 ESP32.

 This dual-server approach enables distributed processing: the ESP32 handles front-end user
 interaction and video output, while the Raspberry Pi handles back-end logic and
 computational tasks. By connecting all three nodes—ESP32, Raspberry Pi, and mobile
 interface—over a centralized 2.4GHz hotspot (SSID: iPhone_hotspot), the system
 achieves low-latency, high-reliability communication across all modules.

 6

	2	Design	

 Originally, the camera module was connected to the ESP32-CAM using individual I2C-style Molex
 connectors for the data and clock lines. While functional, this method introduced wiring complexity,
 signal instability, and a risk of misalignment during insertion. To address these issues, we
 transitioned to a flat camera strip connector, similar to the one used on AI Thinker ESP32-CAM boards.
 This change offered several benefits, including mechanical reliability, consistent pin alignment,
 reduced noise on high-speed signal lines, and ease of installation. The strip connector also simplified
 integration with existing board layouts and eliminated the need for repeated manual pin-by-pin
 rework. This hardware revision was crucial in achieving a stable camera feed with minimal
 interference and improving the overall robustness of the system. The updated connector layout now
 serves as the baseline for all further development and testing.

 7

 To support multiple peripherals, including the MQ-3 alcohol sensor, an LED indicator, an OLED display,
 a button interface, and the ESP32-CAM running a WiFi server and camera stream, we initially
 powered the system with a 5V 1A supply. However, the system exhibited instability during peak load
 conditions, particularly when both the WiFi module and camera were active, occasionally causing
 brownouts and spontaneous resets. To address this, we upgraded to a 5V 2.4A regulated source. The
 estimated current draw was calculated as follows:

 Given these estimates, the original 1A source (5W) lacked sufficient headroom, especially during
 transient spikes when the camera initialized or WiFi transmitted. The upgraded 5V 2.4A source
 provided 12W of power, comfortably supporting all modules with additional thermal and electrical
 margin for safe operation. This change was critical in achieving stable operation under full system
 load.

 8

	2.1	Blood	Alcohol	Concentration	System	
 The BAC system uses a DFRobot Gravity MQ-3 alcohol sensor to detect ethanol levels in a driver's
 breath. The analog output of the sensor is read by the ESP32-S3, which estimates the BAC based on
 calibrated voltage readings. The system includes a 0.96" OLED display for local BAC feedback, and an
 LED indicator for real-time alerts. The ESP32 transmits BAC data over WiFi to a companion application,
 which logs values and triggers further notifications. The sensor requires a warm-up time after
 power-on, indicated by the LED. Power delivery is stabilized through voltage regulators to maintain
 3.3V operation across components.

	2.1.1	MQ-3	Sensor	and	Output	Interface	
 The MQ-3 sensor outputs an analog voltage proportional to the ethanol vapor concentration in the air.
 To ensure accurate readings, the sensor was calibrated using controlled alcohol exposures and
 validated against a certified breathalyzer. A 10-bit ADC on the ESP32 samples this analog output. A
 thresholding function compares the resulting BAC estimate against preset safety limits. The OLED
 screen shows real-time BAC values, and the LED illuminates to indicate sensor readiness or hazardous
 levels. A buzzer complements the LED for audible alerts.

	2.2	Camera	and	Motion	System	
 This subsystem is responsible for capturing the driver’s facial behavior and transmitting images for
 drowsiness analysis. It originally included the BNO055 IMU sensor for head tilt detection, but this was
 removed due to practicality in a driving setting. The OV2640 camera, connected to an ESP32-CAM,
 streams video over WiFi using a lightweight HTTP server. The ESP32 handles front-end operations
 while the Raspberry Pi receives and processes the stream using DLib and OpenCV. Key indicators such
 as eye aspect ratio (EAR), blink duration, and yawning frequency are extracted to assess driver
 alertness. The system maintains a resolution of 640x480 pixels at 30 fps and uses JPEG compression to
 minimize latency during transfer.

	2.2.1	OV2640	Camera	and	Streaming	Interface	
 The OV2640 is interfaced with the ESP32-CAM via a flat ribbon cable for improved electrical stability
 and ease of integration. It supports JPEG output, allowing efficient image transfer over HTTP. The
 ESP32 hosts an embedded web server on port 81, which streams the camera feed in real time and
 provides endpoints for starting sessions and triggering events. The ESP32 and Raspberry Pi are placed
 on a static local network via a mobile hotspot for consistent IP addressing and minimal transmission
 delay. This allows for synchronized and efficient data processing between the capture unit and the
 analysis server.

	2.3	Algorithm	and	User	Interface	Subsystem	
 This subsystem processes incoming sensor data and provides real-time feedback to the user. The
 Raspberry Pi runs Python-based scripts using DLib and OpenCV to process frames from the ESP32
 camera. It calculates EAR/MAR values to detect blinking, long blinks, and yawns using landmark
 tracking on facial features. Detected fatigue levels are converted into a composite drowsiness score,
 which is logged and displayed through a Flask-based web app. The app also visualizes historical data
 through a graph/plot and triggers emergency contact if thresholds are exceeded.

 9

	2.3.1	Flask	Server	and	Analytics	Dashboard	
 The Flask server runs on the Raspberry Pi and hosts a real-time dashboard accessible through a
 smartphone browser. It receives image and sensor data via POST requests from the ESP32, processes
 them using our fatigue detection model, and returns alerts and drowsiness scores. The UI is designed
 for clarity and minimal distraction, adhering to NHTSA guidelines. Data transmission is optimized to
 reduce latency, and all endpoints are secured through local-only access on the mobile hotspot
 network.

 10

	3.	Design	Verification	
 We verified the functionality and reliability of each subsystem through targeted testing procedures.
 Verification included sensor calibration, voltage and signal integrity checks, network transmission
 latency measurements, algorithm accuracy testing, and usability assessments. Each requirement was
 tested based on predefined criteria documented in our Requirement and Verification (R&V) tables,
 with results recorded accordingly. (View Appendix for Requirement and Verification (R&V) tables).
 All the features of our device are also showcased in our short video here: demo

	3.1	Blood	Alcohol	Concentration	(BAC)	System	
 To verify the BAC subsystem, we calibrated the MQ-3 sensor using controlled ethanol exposures and
 compared its readings with a certified breathalyzer. Our initial requirement of needing readings to
 fall within ±0.01% BAC was a bit too ambitious. Due to the fact that we are comparing $100
 breathalyzer devices to our $2 alcohol sensor, it was not realistic for our sensor to fall within ±0.01%
 BAC. However, we were able to verify that our BAC readings fell between ±5%. The OLED screen
 correctly displayed real-time BAC estimates, and the LED indicator reliably reflected the sensor’s
 readiness and threshold status. Voltage stability during sensor operation was confirmed using a
 digital multimeter.

	3.1.1	MQ-3	Sensor	and	Output	Devices	
 We tested the analog output of the MQ-3 sensor using known alcohol concentrations (e.g.,
 mouthwash, sanitizing sprays/wipes) and measured the ESP32 ADC response. We then validated the
 buzzer activation and OLED/LED status indicators under these conditions. The sensor warm-up time
 was measured using a stopwatch and confirmed to match the datasheet (~15 seconds). Oscilloscope
 testing confirmed that the analog signal remained stable during WiFi transmission once power
 sequencing was managed properly.

	3.2	Camera	and	Motion	System	
 The OV2640 camera module was tested for resolution, frame rate, and streaming reliability. We
 captured sample video streams and validated image quality under varying lighting conditions. Using
 controlled blink and yawn trials (e.g., 60-second intervals with timed user actions), we verified that
 the system consistently detected fatigue indicators with >95% accuracy. The camera stream was
 verified to run at 640x480 resolution and 30 fps. Latency tests using Wireshark confirmed a delay of
 less than 250 ms between frame capture and Raspberry Pi receipt over WiFi.

 11

https://youtu.be/2N-qOQKrn80

	3.2.1	ESP32-CAM	and	Streaming	Pipeline	
 The ESP32-CAM’s embedded server was tested using web browser and REST-based client tools. The
 /start_drive endpoint triggered session logging correctly, while the video stream remained
 accessible and stable. We measured bandwidth usage and validated JPEG compression effectiveness
 by analyzing frame sizes (~15–25 KB) during capture. A flat ribbon connector minimized EMI and signal
 loss, confirmed via a comparative image clarity test and frame-rate drop testing.

	3.3	Algorithm	and	User	Interface	Subsystem	
 We tested the fatigue detection algorithm using video samples of blinks, long blinks, and yawns.
 Manual frame annotation was used to benchmark algorithm accuracy, and EAR thresholds were
 adjusted to minimize false positives. Not only that, but live testing of our algorithm with subjects
 from different sexes, ethnicities, and backgrounds was also implemented. The Flask-based web UI
 was tested for responsiveness, correct display of fatigue scores, and reliable alert generation. Data
 transmission was validated using network monitoring tools, and emergency contact integration was
 successfully triggered when drowsiness scores exceeded threshold values.

 12

	3.3.1	Flask	Server,	UI,	and	Alert	System	
 We conducted simulated driving conditions with both drowsy and alert states. The system
 successfully detected long blinks (>500 ms), regular blinks, yawns, and low/high EAR/MAR scores.
 Visual alerts were rendered on the Flask dashboard within 1 second of detection, and the system
 correctly routed the users phone to an emergency contact with <1 second of delay. Usability tests
 confirmed that the UI provided clear, actionable information with minimal latency or distraction,
 fulfilling all interface-related requirements.

 13

	4.	Costs	
 Note that we are considering the cost of the items with the retail price where we acquired the
 part, excluding ECE discounts. Our actual cost is the item cost for retail items we purchased,
 whether bulk or not. Free items are simple items like LEDs and the active buzzer, which were
 found in the lab.

	4.1	Parts	

 Part Manufacturer Quantity Retail
 Price ($)

 Bulk Cost ($) Actual Cost ($) Subsystem

 Raspberry Pi 4
 Model B 2GB

 Raspberry Pi
 Ltd

 1 53.99 53.99 53.99 Algorithm and
 Interface

 Micro-HDMI
 Male to HDMI
 Female Adapter

 Microware 1 6.16 6.16 6.16 Algorithm and
 Interface

 32GB MicroSD
 Card

 Samsung 1 13.05 13.05 13.05 Algorithm and
 Interface

 ESP32-S3
 Development

 Board

 HiLetgo 1 16.53 16.53 16.53 Algorithm and
 Interface

 OV2640 Camera
 Module

 STMicroelec
 tronics

 1 11.99 11.99 11.99 Camera and
 Motion

 Active Piezo
 Buzzer Alarm

 GFORTUN 1 0.89 4.00 Free Camera and
 Motion

 MQ3 Alcohol
 Sensor Module

 Reland Sun 1 2.67 12.00 12.00 BAC
 Concentration

 0.96" SSD1306

 OLED LCD

 HiLetgo 1 6.99 6.99 6.99 BAC
 Concentration

 LED HiLetgo 1 0.89 1.00 Free BAC
 Concentration

 14

 LD117 Voltage
 Regulator

 STMicroelec
 tronics

 4 0.80 8.00 8.00 Power
 Subsystem

 Total 116.36 x x

	4.2	Labor	
 Our project has a heavy computation component relying on algorithm creation and data transfer via
 WiFi. For this reason, many of the estimated labor hours involve client-server setup, so the ESP-32
 and the Pi can efficiently and wirelessly communicate. The algorithms will require extensive image
 processing, so searching and modifying a functional algorithm is one of the largest time sinks.
 Assuming an hourly-paid entry-level engineer position, we take an hourly pay of $45. We can assume
 the machine shop makes $30 an hour. We used the labor of one individual since our design was
 simple and fit into a box. For this reason, cutouts and assembly took about three hours. A rough
 estimate of 310 hours relays our engineering efforts based on the schedule and planning, and our
 costs come out to.

 Total Cost : Engineer Labor Cost + Part Cost + Machine Labor = ((310 hours) x ($45)) + $116.36 + ((3
 hours) + ($45)) = $14,201.36

 15

	5.	Conclusion	

	5.1	Accomplishments	
 We successfully made a driver fatigue system fully equipped for assessing blinks, long blinks, and
 yawns, accompanied by a snappy, user-friendly UI with analytic, safety measures, and camera
 adjustments. On top of this, we have a workable, calibrated BAC sensor. In essence, all of our sensors
 work, and our PCB works flawlessly! Our enclosures as well ended up being very polished, and the
 cutout approach is the ideal way for our functionality.

	5.2	Uncertainties	
 We encountered a range of hardware and software challenges throughout development. Initially, our
 ESP32-CAM arrived with inadequate documentation and missing XCLK support, which made I2C and
 camera integration difficult. The OLED screen, connected via SDA on GPIO16, caused persistent boot
 issues by glitching the I2C bus, resulting in reset loops—an issue we resolved with careful wiring and
 boot sequencing. WiFi.h disabled several analog pins, so we implemented a physical button that
 disables WiFi after use, allowing analog sensor readings before starting the camera server. We also
 faced power instability on the PCB, especially during simultaneous streaming and peripheral use,
 which led to crashes and forced us to optimize current distribution. Our original design relied on
 POST requests for ESP feedback, but the camera server’s latency and network strain made it
 unreliable under load. Finally, booting DLib on the Raspberry Pi presented resource constraints and
 compatibility issues that required adjustments to library dependencies and runtime configuration.

	5.3	Ethical	considerations	
 Our project's main ethical and safety concerns are privacy and data security.
 The system collects sensitive biometric data, including facial recognition patterns, eye movement,
 and breathalyzer readings. According to the ACM Code of Ethics (Principle 1.6: Respect Privacy),
 developers must ensure that user data is stored securely and only accessed for its intended purpose.
 To mitigate potential privacy concerns:
 Data will be processed locally on the ESP32-S3 or Raspberry Pi, avoiding unnecessary cloud storage.
 Encrypted communication protocols (e.g., HTTPS, TLS) will transmit data to the mobile application.

 Another ethical concern highlighted by IEEE is Principle 2: Avoid Harm to Others, emphasizing that
 systems must be designed to avoid discrimination or bias based on race, gender, or disability. We will
 train our model on a diverse dataset to ensure fairness, including individuals of different ethnicities,
 backgrounds, and facial features. Not only that, but the EAR threshold will also be adjustable for
 individuals, allowing for an individualized experience.

 Since our device also has a miniature built-in display, we have decided to keep it as minimal as
 possible to uphold safety guidelines and maintain a safe driving experience. Alerts, buzzer warnings,
 and the user interface must be designed to minimize distractions.
 According to NHTSA guidelines, visual displays should be simple and non-intrusive.
 Alerts should not require extended interaction from the driver while operating the vehicle.
 The buzzer should produce audible but non-alarming signals to avoid panic responses.

 16

	5.4	Future	work	
 ● Further research electrical engineering concepts so that we can optimize power usage
 ● Customized encasing for our pcb
 ● Optimize pcb sizing and routing
 ● Improve UI/UX on our Flask application

	References	

 Dewi, C., Chen, R.-C., Jiang, X., & Yu, H. (2022, April 18). Adjusting eye aspect ratio for strong eye blink
 detection based on facial landmarks. PeerJ. Computer science.
 https://pmc.ncbi.nlm.nih.gov/articles/PMC9044337/

 Pandey, D. (2021, April 21). Eye aspect ratio(ear) and drowsiness detector using dlib. Medium.
 https://medium.com/analytics-vidhya/eye-aspect-ratio-ear-and-drowsiness-detector-using-dlib
 -a0b2c292d706

 Raspberry pi documentation - getting started. Raspberry pi documentation. (n.d.).
 https://www.raspberrypi.com/documentation/computers/getting-started.html

 Shekari Soleimanloo, S., Wilkinson, V. E., Cori, J. M., Westlake, J., Stevens, B., Downey, L. A., Shiferaw,
 B. A., Rajaratnam, S. M. W., & Howard, M. E. (2019, September 15). Eye-blink parameters detect
 on-road track-driving impairment following severe sleep deprivation. Journal of clinical sleep
 medicine : JCSM : official publication of the American Academy of Sleep Medicine.
 https://pmc.ncbi.nlm.nih.gov/articles/PMC6760410/

 Ucl. (2022, May 6). Blink and you miss it!. UCL News.
 https://www.ucl.ac.uk/news/2005/jul/blink-and-you-miss-it

 17

https://pmc.ncbi.nlm.nih.gov/articles/PMC9044337/
https://medium.com/analytics-vidhya/eye-aspect-ratio-ear-and-drowsiness-detector-using-dlib-a0b2c292d706
https://medium.com/analytics-vidhya/eye-aspect-ratio-ear-and-drowsiness-detector-using-dlib-a0b2c292d706
https://www.raspberrypi.com/documentation/computers/getting-started.html
https://pmc.ncbi.nlm.nih.gov/articles/PMC6760410/
https://www.ucl.ac.uk/news/2005/jul/blink-and-you-miss-it

	Appendix	A	 	Requirement	and	Verification	Table	

 Table 1
 Blood Alcohol Concentration System Requirements and Verifications

 Requirement Verification Verification
 status

 (Y or N)
 The device must measure BAC with an
 accuracy of ±5% BAC within a detection
 range of 0.00% - 0.20% BAC.

 Perform calibration tests using known
 alcohol concentrations and compare
 readings with a certified breathalyzer.

 Cross-checking each of the individual MQ-3
 sensors since we ordered a few for
 faultiness.

 Y

 The device must maintain a baud rate of
 9600 for MQ-3 communication.

 Monitor serial transmission using an
 oscilloscope to verify correct baud rate
 operation.

 Y

 The LED should accurately reflect the
 readiness and warm-up time of the MQ-3.

 Measure time from power-on to
 ready-state using a stopwatch and validate
 against the MQ-3 datasheet specifications.

 Y

 Table 2
 Power System Requirements and Verifications

 Requirement Verification Verification
 status

 (Y or N)
 Maintain overall voltage stability within a
 tolerance of ±0.1V.

 Measure voltage fluctuations using a digital
 multimeter (DMM) under different load
 conditions.

 Y

 Ensure successful step-down conversion
 to 3.3V for all necessary components.

 Use a DMM to verify stable 3.3V output
 under normal operating conditions.

 Y

 Provide a consistent and stable 5V output
 for MQ-3 operation.

 Test voltage stability under varying load
 conditions and monitor power fluctuations
 using an oscilloscope.

 Y

 18

 Table 3
 Camera and Motion System Requirements and Verifications
 Requirement Verification Verification

 status
 (Y or N)

 Capture images with sufficient clarity to
 detect blinks and yawns.

 Evaluate image resolution and sharpness
 using controlled lighting conditions.

 Sample test of an individual blinking X
 amount of times in a tets period 60 sec.
 Compare results with algorithm testing.

 Y

 Camera must interface with ESP32 and
 transmit data via WiFi with minimal
 latency.

 Measure transmission delay using a
 network packet analyzer.

 Compare the speed and algorithm running
 process with I2C connection before testing
 with WiFi.

 Y

 Support JPEG image compression for
 efficient data transfer.

 Verify image file sizes and compression
 ratios using software analysis.

 Y

 Maintain a minimum resolution of
 640x480 pixels and 30fps frame rate.

 Capture and analyze sample frames to
 confirm compliance with the required
 resolution and frame rate.

 Y

 Buzzer should emit a non-intrusive alert
 sound.

 Measure buzzer sound levels in decibels
 (dB) using a sound meter. Place the nozzle
 of the sound meter above the encaving of
 the active buzzer.

 Most active buzzers can be lowered by
 attaching a resistor using the correct
 amount of resistance. Validate with a 1k,
 10k, etc. for the optimal db count using a
 sound meter.

 Y

 19

 Table 4
 Algorithm and User Interface System Requirements and Verifications

 Requirement Verification Verification
 status

 (Y or N)
 Calculate a real-time drowsiness score
 based on sensor inputs.

 Validate computed scores against manually
 analyzed fatigue behavior datasets.

 For test subjects, we can have a
 self-reported driving quiz where the user
 assesses a level where they feel incapable

 Y

 ESP32 must transmit drowsiness data via
 WiFi with a baud rate of at least 9600 bps.

 Monitor WiFi transmission rates using a
 network packet analyzer.

 Y

 Web app should provide real-time
 feedback on drowsiness score and
 analytics.

 Conduct usability tests to ensure data is
 displayed with minimal delay.

 Users should be able to query into our
 database to see the times a certain score of
 their choosing is submitted during their
 driving times.

 Y

 System should log drowsiness data and
 send emergency alerts when a defined
 threshold is exceeded.

 Simulate drowsiness conditions and verify
 proper alert generation and logging.

 Use Twilio API and simulate a call to
 ourselves via

 Y

 20

	Appendix	B	 	Abbreviations	

 ACM: Association for Computing Machinery

 ADC: Analog-to-Digital Converter

 AI: Artificial Intelligence

 API: Application Programming Interface

 BAC: Blood Alcohol Concentration

 BLE: Bluetooth Low Energy

 CAM: Camera Module (ESP32-CAM)

 DHCP: Dynamic Host Configuration Protocol

 DLib: Dlib C++ Library

 EAR: Eye Aspect Ratio

 ESP: Espressif Systems Processor (ESP32-S3 microcontroller)

 ESP32: Espressif Systems ESP32 microcontroller

 ESP32-S3: Espressif Systems ESP32-S3 microcontroller

 GPIO: General Purpose Input/Output

 HDMI: High-Definition Multimedia Interface

 HTTP: Hypertext Transfer Protocol

 HTTPS: HyperText Transfer Protocol Secure

 I2C: Inter-Integrated Circuit

 IEEE: Institute of Electrical and Electronics Engineers

 IP: Internet Protocol

 JPEG: Joint Photographic Experts Group

 LCD: Liquid Crystal Display

 LED: Light-Emitting Diode

 MAR: Mouth Aspect Ratio

 21

 MQ: Metal Oxide (e.g., MQ-3 alcohol sensor)

 MQ3: MQ-3 Alcohol Sensor

 NHTSA: National Highway Traffic Safety Administration

 OLED: Organic Light-Emitting Diode

 PCB: Printed Circuit Board

 POST: Power-On Self Test or POST HTTP request

 R&V: Requirement and Verification

 REST: Representational State Transfer

 SDA: Serial Data Line

 TLS: Transport Layer Security

 UI: User Interface

 UI/UX: User Interface / User Experience

 USB: Universal Serial Bus

 WiFi: Wireless Fidelity

 22

