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1. Introduction 
 

1.1. Problem 
 

Cardiovascular disease (CVD) is the leading cause of death worldwide, responsible for 

nearly 20 million deaths annually, about one in three deaths overall. A significant share 

of these fatalities occur without prior diagnosis: approximately 45% of sudden cardiac 

deaths happen in individuals with no previously recognized heart disease, while nearly 

20% of adults with hypertension and up to 23% of those with atrial fibrillation remain 

undiagnosed. These silent conditions, such as hypertension, arrhythmias, and sinus 

bradycardia risk factors, drive the majority of preventable CVDs. 

 

Current solutions remain fragmented, while comprehensive screening still requires 

multiple expensive clinical visits, such as blood pressure measurement, lipid panels, 

ECGs, and rhythm monitoring, creating barriers for uninsured or underserved 

populations. The impact is most severe in rural communities, where mortality rates are 

20% higher than in urban areas due to limited access to screening. Yet the challenge 

extends to cities as well, where preventive tests are often costly, not covered by 

insurance, and therefore underutilized. Consumer devices like blood pressure cuffs, 

smartwatches, and single-lead ECGs are disjointed, expensive, and difficult to interpret. 

Critically, there is no affordable, comprehensive, and user-friendly at-home screening 

solution that can detect CVD risks early. 

 

 

1.2. Solution 
​
We propose a low-cost at-home device that serves as a screening tool for three hidden 

but common drivers of cardiovascular disease: arrhythmias (like atrial fibrillation), 

hypertension, and sinus bradycardia. By making early checks simple and affordable, the 



 

device empowers people to detect risks before symptoms appear, reducing the 

likelihood of sudden, unexpected cardiac events. Unlike fragmented consumer devices 

or expensive clinical visits, this all-in-one tool allows anyone to perform a one-minute 

screening at home, with clear results that indicate whether a possible condition has 

been detected and if follow-up with a doctor is recommended. 

 

The system is designed for ease of use. A user places their fingers on PPG sensors 

and 3 patches on the chest for ECG measurement. These signals feed into a compact 

board with an Atmega microcontroller, which sends the data to a computer via USB. 

Machine learning algorithms analyze the data to classify hypertension, sinus 

bradycardia, or arrhythmias, with results shown on a simple dashboard. This keeps the 

device affordable, portable, and easy to use. 

 

 

1.3. Visual Aid (Insert Here) 

 

 
 
 



 

1.4. High-Level Requirements 

1.​ The machine learning pipeline must achieve a minimum classification accuracy 

of 90% when detecting atrial fibrillation, sinus bradycardia, and hypertension on 

certified validation datasets, with results reported only when model confidence 

exceeds 90%. 

2.​ The system must consistently reproduce the same classification result 

(arrhythmia, hypertension, or sinus bradycardia) in five consecutive trials on the 

same subject, demonstrating repeatability and reliability of the screening 

process. 

3.​ The device must capture ECG- and PPG-derived heart rate values that agree 

within ±5 beats per minute in at least 80% of measurement windows, ensuring 

physiological accuracy sufficient for reliable screening. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2. Design 
 

2.1 Block Diagram 

​

 

2.2 System 1: Data Acquisition System (DAS) 
The DAS captures ECG, PPG, and motion signals from the sensor pad and 

streams them to the host PC for analysis. It integrates the analog AD8232 ECG sensor, 

MAX30102 PPG sensor, and LIS3DH accelerometer, all managed by the ATmega328P 

microcontroller. The microcontroller samples the sensors, converts analog ECG to 

digital, packages the data, and transfers it over USB through a CH340G bridge to the 

host PC. This system is the hardware foundation of the entire pipeline and directly 

connects to the disease detection system.​

 

2.2.1 Subsystem 1: Sensing 
Overview: This block will have the analog ECG sensor (AD8232), the PPG module 

(MAX30102), and the 3-axis accelerometer (LIS3DH). The ECG outputs a formatted 

analog waveform to the ATmega’s ADC; the PPG and accelerometer communicate over 



 

I²C, and all three feed into the microcontroller for synced acquisition & streaming to the 

host. 

Requirements: The subsystem must deliver ECG suitable for 250–500 Hz sampling 

without clipping or baseline saturation, provide PPG frames at 100–200 Hz with LED 

currents set to avoid photodiode saturation, and supply accelerometer samples at 100 

Hz for motion gating. Interfaces must meet I²C timing, and the ECG analog output must 

remain within the MCU ADC input range with ≥9 ENOB preserved. 

​

2.2.2 Subsystem 2: Microcontroller (ATmega328P)​
Overview: The MCU schedules sampling, performs preprocessing (removal/scaling), 

timestamps all streams with a shared timer, applies band-pass filters to de-noise data, 

and prepares packetized data streams for output over UART. 

Requirements:  The MCU must maintain ECG readings at 250–500 Hz, PPG at 

100–200 Hz, and accelerometer data at 100 Hz with inter-sensor skew kept to a few 

milliseconds. Besides these rates, it must align samples with a shared timer, attach 

sequence numbers over USB so that the data arrives in near real-time. The ADC chain 

must also keep at least eight bits of res on ECG without clipping, and the firmware must 

recover automatically from sensor disconnects or pad to prevent data loss. 

 

2.2.3 Subsystem 3: Communication 
Overview: This block bridges the MCU UART to the host over USB and shares the 

same connector that powers the board. It carries newline-delimited CSV records and 

simple status messages to the laptop. In addition, the same USB connector provides 

the VBUS 5V line, which is connected to the Power Subsystem to generate the board’s 

supply rails. 

Requirements: The USB link must run at ≥ 230,400 bps (preferably 460,800 bps) to 

send ~22-6 kB/s of CSV data without buffer overflow, and deliver data within 150 ms of 

being generated. Also, the VBUS 5V supply must remain stable during USB 

enumeration, so the board doesn’t reset when the CH340G connects. 

 



 

2.2.4 Subsystem 4: Power 
Overview: A single laptop USB port powers the DAS and provides data. The 5 V input 

passes ESD, then generates 3.3 V for the MCU/ECG/ACC, 1.8 V for the MAX30102 

logic, and a switched 5 V “VLED” rail for PPG LED drivers, with grounding to keep LED 

return currents away from the ECG analog sensor. 

Requirements: The subsystem must continuously supply at least 500 mA at 5 V ±0.1 V 

to the board, keep 3.3 V and 1.8 V, and keep ripple on the ECG analog rail under 1 mV. 

 

2.2.5 Tolerance Analysis: ​
The main risk is keeping the ECG signal clean while the PPG LEDs pulse and the user 

moves. The AD8232 produces about 1 Vpp into the ATmega328P’s 10-bit ADC, so 

noise must stay under 1 mV RMS. The MAX30102 can draw up to 50 mA LED pulses, 

which may cause ground bounce. By isolating the LED, adding bulk and and tying 

grounds at a single point, the ripple should stay within a normal range even at high LED 

duty cycles so the ECG channel keeps its quality.​

​

ECG Path (AD8232): Output swing 0.1–3.2 V @ VS=3.3 V; mapped to ~1.0 Vpp at the 

ATmega328P 10-bit ADC ≈ 310 LSB per QRS. Noise must stay <1 mV RMS to preserve 

R-peak & PTT.​

​

PPG Path (MAX30102): LED pulses up to 50 mA on 3.1–5.0 V VLED rail; logic 1.7–2.0 

V. Using star-grounding and dedicated LED return limits ground bounce to ≈ 0.5 mV 

(V=LΔI/Δt, L=10 nH, ΔI=50 mA, Δt=1 µs).​

 

VLED Containment: A 47 µF bulk + 0.1 µF local cap per LED limits VLED drop to ~5 mV 

during 50 µs pulses, separate from the 3.3 V ECG rail.​

 

Feasibility: Even under the worst-case LED duty cycle and motion, ripple on the ECG 

analog rail remains <1 mV, so the ADC is stable and should meet pipeline targets. 

​

 



 

 

 

 

 

2.3 System 2: Disease Detection System 
The Disease Detection System is responsible for processing the incoming physiological 

data, extracting features, and running machine learning (ML) models to classify 

cardiovascular risk factors. It comprises two main subsystems: ML & Data Processing 

and the User Interface. 
 
2.3.1 Subsystem 1: ML & Data Processing​
 

Overview: The ML & Data Processing subsystem runs on the host PC and is 

responsible for ingesting the ECG, PPG, and accelerometer data streamed from the 

Data Acquisition System. It filters and synchronizes signals, extracts clinically relevant 

features such as heart rate variability (HRV), RR intervals, pulse transit time (PTT), and 

PPG morphology, and then applies machine learning models to classify arrhythmia, 

hypertension, and sinus bradycardia. This subsystem connects directly with the 

communication link from the microcontroller and provides structured JSON outputs to 

the User Interface subsystem for visualization. 

 

Requirements:  

●​ Arrhythmia and hypertension model classifiers must achieve ≥ 90% confidence 

before reporting results, and must achieve ≥ 90% accuracy on certified validation 

datasets 

●​ Sinus bradycardia detection must correctly flag mean heart rates <60 bpm with 

accuracy ≥95% across at least 80% of test windows. 

●​ JSON outputs for the User Interface subsystem must include 3 subfields, one for 

each disease including: condition labels, confidence scores, and timestamps 

each, and explanation of methods 



 

2.3.2 Subsystem 2: User Interface 

 

Overview: The User Interface subsystem provides the end user with a clear, real-time 

display of the screening results. Hosted on a laptop dashboard, it visualizes whether 

arrhythmia, hypertension, or sinus bradycardia has been detected, along with 

confidence scores, disclaimers, and explanations of methods for how results were 

achieved. It receives structured JSON messages from the ML & Data Processing 

subsystem and translates them into human-readable outputs. 

 

Requirements:  

●​ From ML JSON output receipt to on-screen update ≤500 ms for labels, metrics, 

and explanations 

●​ UI must suppress disease labels unless reported confidence ≥90% and display 

“insufficient confidence” otherwise. 

●​ For data privacy purposes, UI must store data locally only and all session data 

must be cleared from RAM either when a new ML output receipt is received or 

within 3 seconds of session end. 

 

2.3.3 Tolerance Analysis 
The main tolerance risk in the disease detection system is timing skew between ECG 

and PPG when calculating pulse transit time (PTT) for hypertension detection. At a 

nominal PTT of 200 ms, a 10 ms skew represents a 5% error. Literature shows Systolic 

Blood Pressure (SBP) estimates vary about 20–30 mmHg per log change in PTT, so 

this worst-case skew corresponds to only ~1–1.5 mmHg error—well below clinical 

thresholds such as the 10 mmHg increments used for diagnosis. 

 

Our design mitigates this further by sampling ECG at 250 Hz (4 ms resolution) and PPG 

at 100 Hz (10 ms resolution). With interpolation and shared-timer synchronization, the 

effective skew drops to ~5 ms, reducing the expected error to <1 mmHg. This 

demonstrates mathematically that even under worst-case timing misalignment, the 

hypertension detector remains accurate and feasible. 



 

3. Ethics and Safety 
 

3.1. Ethics 
Our project raises important ethical considerations as outlined by the IEEE and ACM 

Codes of Ethics, which emphasize honesty, safety, and fairness. Since the device is a 

screening tool rather than a diagnostic medical device, it is very crucial to communicate 

this distinction clearly to avoid misleading users. To reduce potential harm, the interface 

will display results as indicators with confidence levels and include disclaimers 

encouraging follow-up with medical professionals. Additionally, user privacy will be 

protected by limiting data storage to publicly available datasets. 

 

 

3.2. Safety 
From a safety perspective, the device presents minimal direct physical risks, as it 

operates at low voltage (<5V) and uses non-invasive sensors such as electrodes for 

ECGs and PPGs. However, there are indirect risks if results are misinterpreted. False 

negatives could lead to delayed care, while false positives could cause unnecessary 

anxiety. We will mitigate this through careful algorithm validation using certified datasets 

(e.g., MIT-BIH, PPG-DaLiA), consistency testing using the mentioned datasets, and 

clear transparency and honesty regarding system limitations. Having clear usage 

instructions, particularly for ECG electrode placement, will help further reduce the 

chances of accidental misuse. 
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