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1. Introduction 

1.1 Problem 
Controlling drones typically requires handheld remote controllers or smartphones, which can feel 
unintuitive and demand significant practice to master. This steep learning curve limits 
accessibility for new users and prevents drones from being seamlessly integrated into areas like 
training, entertainment, or assistive technology. Existing remote-control methods also provide 
little user feedback and lack robust safety mechanisms, increasing the risk of crashes or improper 
handling. 

1.2 Solution 
Our project proposes a wearable gesture-control glove that enables intuitive, ergonomic drone 
operation. The glove will incorporate IMU and gyroscope sensors to capture the orientation and 
motion of the user’s hand, translating gestures into commands such as forward, backward, strafe, 
yaw, and stop. An ESP32 microcontroller embedded in the glove will transmit these commands 
wirelessly to a drone equipped with an ESP32-based flight controller. 

To improve upon previous iterations of gesture-control systems, our design will: 

●​ Replace less precise flex sensors with IMUs for more accurate gesture tracking. 
●​ Include a gesture-based emergency shutoff for safety. 
●​ Optionally integrate haptic feedback to communicate drone status to the user (e.g., low 

battery, weak signal). 
●​ Optionally integrate an ESP32-CAM on the drone to provide basic video feedback, 

enhancing user situational awareness. 

The camera is not essential to the core glove-to-drone control system, but serves as a scalable 
feature that can expand the project’s applications if successfully integrated. 

1.3 Visual Aid 



 

Figure 1: General layout of glove. 

1.4 High-Level Requirements List 
To demonstrate success, our project must meet the following measurable requirements: 

1.​ The drone responds in real time to glove commands with minimal delay. 
2.​ The buttons make the drone hover or land within 15 seconds of being pressed. 
3.​ Directional commands (forward, back, left, right, up, down) work 80% of the time over 

20 trials. 
4.​ (Stretch goal) If the camera is integrated, the system should be able to store  

low-resolution images to the sd card. 
5.​ (Stretch goal) Haptic feedback provides clear communication of system status to the user. 

 



2. Design 

Block Diagram: 

 
Figure 2: High level Block Diagram 

 
 
 
 
 
 
 
 



Subsystem 1: Control Directions 

Inertial Measurement Unit (IMU) 
 
Model purchased: MPU-6050 6-DoF Accel 

 
Figure 4: MPU 6050 Physical Layout 

 

 
Figure 5: IMU Pinout in Circuit 

 
 

https://www.adafruit.com/product/3886?srsltid=AfmBOoqxlN9sKu_MoS4p3hMVOZCZ3168zAF_awwDEobgX3Hb1cPs_862


Features 
●​ Measures six independent axes: X, Y, Z acceleration and X, Y, Z angular velocity 
●​ Sampling rate: up to 1 kHz for both accel and gyro 
●​ Power: ~3.3V 

 
For the Glove: 

●​ ±2g acceleration → very sensitive to small tilts and shifts in hand position (good for 
mapping tilt to drone motion) 

●​ ±250 °/s gyroscope → very precise at slow/medium rotations (like turning your wrist to 
steer) 

 
Mapping strategy: 

●​ Definition: Think of the IMU as sitting flat on the back of your hand, with axes (also 
depicted in Figure 5): 

○​ X-axis → points forward (toward your fingers) 
○​ Y-axis → points left (toward your thumb if right hand) 
○​ Z-axis → points upward (out of the back of your hand) 

●​ For the purposes of our project, we will only be rotating around the the X and Y axes 

 
Figure 6: Visual of hand gesture orientation 

 
●​ This project will be limited to translating the drone along the Pitch and Roll axes (as 

shown in Figure 6) 
●​ Takeoff and landing (Thrust) will be handled by the buttons 



  
Figure 7: Visual of drone axes and movements 

 
●​ The mapping of hand gestures to drone movements will be as follows. Refer to Figure 5 

and 6 for reference 
 

Table 1: Direction Mapping for Glove 

Glove Movement Drone Movement 

Clockwise rotation around the glove’s Y-axis 
(flexion) 

Drone moves in the positive direction of the 
Roll axis (Y-axis) 

Counterclockwise rotation around the glove’s 
Y-axis (extension) 

Drone moves in negative direction of the Roll 
axis (Y-axis) 

Clockwise rotation around the glove’s X-axis Drone moves in the positive direction of the 
Pitch axis (X-axis) 

Counterclockwise rotation around the glove’s 
X-axis 

Drone moves in the negative direction of the 
Pitch axis (X-axis) 
 



ESP32 
 
Model purchased: 
https://www.digikey.com/en/products/detail/espressif-systems/ESP32-S3-WROOM-1-N16/1616
2647 
 

 
​       Figure 8: ESP32 pinout ​ ​                    Figure 9: ESP32 Physical Layout 

 
Figure 10: ESP32 Pinout in Circuit 

https://www.digikey.com/en/products/detail/espressif-systems/ESP32-S3-WROOM-1-N16/16162647
https://www.digikey.com/en/products/detail/espressif-systems/ESP32-S3-WROOM-1-N16/16162647


Features 
●​ Brain of the glove system to coordinate all operations between sensors and drone 
●​ Collects real-time motion data from the IMU over the I²C interface 
●​ Sends data to over WIFI to ESP32 on the drone 
●​ Programmed micropython through Thonny 
●​ Multiple GPIO pins allow integration of buttons for user interaction 

 
Milestones 

●​ I2C scan: Confirm ESP32 detects MPU-6050 at address 0x68 
●​ Raw Data Read: Use library MPU6050_tockn to print IMU values to Serial Monitor 
●​ Calibration: determine gyro offsets while sensor is still 
●​ Gesture Mapping: Map pitch and roll into commands 
●​ Communication to Drone: Send packets wirelessly via UDP 

2.2.3 Buttons 
Model purchased: 
https://www.digikey.com/en/products/detail/te-connectivity-alcoswitch-switches/1825910-6/163
2536 
 

      ​ ​ ​ ​ Figure 11: Button Physical Layout 
 

https://www.digikey.com/en/products/detail/te-connectivity-alcoswitch-switches/1825910-6/1632536
https://www.digikey.com/en/products/detail/te-connectivity-alcoswitch-switches/1825910-6/1632536


 
Figure 12: Debounced Buttons in Circuit 

 
Features 

●​ Simple pushdown button switch 
Purpose 

●​ Total of 3 buttons required for attaching onto the glove 
○​ 1 button for takeoff of the drone to make it hover 5 feet into the air 
○​ 1 button for landing of the drone to make it slowly descend and turn off the rotors 
○​ 1 button for taking pictures 

Wiring 
●​ These buttons will be wired to the GPIO pins of the ESP32 
●​ Configure the GPIO as INPUT_PULLUP 
●​ The ESP32 holds the pin at 3.3 V internally. 
●​ Pressing the button shorts the pin to GND, pulling it LOW and creating a clean digital 

signal. 
 

Table 2: Requirements and Verification for Control Directions 
Requirements Verification 

Press registers a single event with debounce 
≥10 ms 

Capture button waveform + firmware logs for 
20 different presses per button 



Buttons use INPUT_PULLUP; idle = HIGH 
(~3.3 V), pressed = LOW (≤0.4 V) 

Measure GPIO response using ESP32 output 
to confirm functionality 

Ensure it can tolerate multiple button presses 
simultaneously in case of accident 

Press multiple buttons at the same time and 
observe behavior (should do nothing) 

Subsystem 2: Drone + Flight Controller 
Model purchased: 
https://www.aliexpress.us/item/3256808919448022.html?gatewayAdapt=glo2usa4itemAdapt 

 

Figure 13: Pydrone Physical Layout 

Features: 

●​ Built on the ESP32-S3 platform, making it natively compatible with our glove’s ESP32 
transmitter. 

●​ Exposed pins allow potential wiring of an ESP32-CAM module or other sensors. 
●​ Actively maintained open-source codebase, which should simplify firmware edits for 

custom control schemes. 

Design Considerations: 

https://www.aliexpress.us/item/3256808919448022.html?gatewayAdapt=glo2usa4itemAdapt


●​ The PyDrone only supports MicroPython code. Tests have been conducted to ensure that 
MicroPython can be successfully flashed onto the ESP32 module in the glove, allowing it 
to later communicate with the drone 

●​ This drone is not meant to fly very far distances but rather respond to glove commands 
within a 50 meter radius 

Table 3: Requirements and Verification for Drone + Flight Controller 
Requirements Verification 

Must be configurable to receive data via 
WI-FI using onboard ESP32 

Verify that the drone can receive data via 
WI-FI from the ESP32 via debug logs from 
Pydrone 

Must support real-time command reception 
from the glove with latency <200 ms 

Measure command latency during test flights 
either visually or via program 

Must provide basic flight stabilization 
(hovering, pitch, roll, yaw, throttle) 

Validate that the drone can hover for at least 5 
minutes 

 

 

Subsystem 3: Communication 
The glove and drone will communicate directly over Wi-Fi, leveraging the built-in Wi-Fi 
functionality of the ESP32 modules used on both ends. This eliminates the need for an external 
RF transceiver and simplifies the hardware design. 

Purpose 

●​ Provides a dedicated Wi-Fi link between the glove’s ESP32 and the drone’s ESP32 flight 
controller. 

●​ Control commands will be sent as UDP packets for low-latency transmission. 
●​ Leaves GPIO pins available for additional peripherals such as buttons, haptic feedback, 

or the optional camera. 

Design Considerations 

●​ UDP will be chosen over TCP to minimize retransmission delays, though packet loss 
handling will be addressed in software. 

●​ Wi-Fi traffic will be limited to control packets only if the optional ESP32-CAM is 
integrated, to ensure flight commands remain responsive. 



●​ Both glove and drone ESP32 boards must be configured to connect on the same Wi-Fi 
network, or one can act as a soft access point (AP) while the other connects as a station. 

Table 4: Requirements and Verification for Communication 
Requirements Verification 

Frequency band: 2.4 GHz Wi-Fi (802.11 
b/g/n) 

Stress test by introducing background Wi-Fi 
traffic to ensure drone commands remain 
prioritized. 

Typical throughput: up to 65 Mbps, but only a 
few kbps required for control packets 

Verify, through a different receiver (windows 
machine), that the glove is correctly sending 
UDP packets to the correct socket, with the 
correct wifi network.  

Range: 30–50 m indoors, up to 100 m 
line-of-sight outdoors (depending on antenna 
quality and environment) 

Verify that we can reliably control the drone 
from 30-50 meters away.  

Interface: MicroPython socket libraries 
All of this must be done using libraries native 
to MicroPython, or lightweight programs that 
can be flashed to the ESP32.  

 



Subsystem 4: Power + DC-DC Regulator 

 

Figure 14: Power in Circuit 

Features:​
The glove needs a controlled 3.3 V supply to power the ESP32, IMU, and three buttons. We 
chose a single-cell 3.7 V, 1000 mAh Li-Po with a 3.7 V to 3.3 V converter (1 A). 

Key Requirements:​
Provide stable 3.3 V power; supply the expected continuous and burst currents; include Li-Po 
protection (overcharge/overdischarge/short). 

Components:​
Battery: 3.7 V, 1000 mAh Li-Po.​
Regulator: 3.7 V to 3.3 V converter, rated at 1 A. 

Calculations:​
Component current estimates (conservative):  

ESP32: active = 0.200 A (datasheet), peak 0.300 A​
IMU: 0.004 A​
Buttons: 0.001 A.​
Typical total current: 0.200 + 0.004 + 0.001 = 0.205 A.​
Worst continuous estimate (ESP32 peak): 0.300 + 0.004 + 0.001 = 0.315 A.​
Output power at 3.3 V: 3.3 V × 0.205 A = 0.6765 W. ​
P_worst = 3.3 V × 0.315 A = 1.0395 W.​



Battery energy: 3.7 V × 1.000 Ah = 3.7 Wh. ​
Efficiency = 0.90 (estimate)​
Typical battery draw: 0.6765 W / (3.7 V × 0.90) = 0.6765 / 3.33 = 0.2031 A.​
Worst battery draw: 1.4025 W / 3.33 = 0.312 A.​
Typical runtime = 1.000 / 0.2031 = 4.92 h.​
Worst runtime = 1.000 / 0.312 = 3.20 h.​
Apply conservative usable capacity (80%): typical = 3.93 h, worst = 2.56 h. These figures justify 
the 1000 mAh choice. Even under heavy continuous load the glove can still operate for almost 
two hours which will more than suffice.  

Table 5: Requirements and Verification for Power + DC-DC Regulator 
Requirements Verification 

The power system must provide a stable, 3.3V 
output to the entire circuit.  Verify 3.3 V under idle, typical, and peak 

loads using oscilloscope 

The power system must operate for more than 
an hour before needing to recharge.  Measure real-world runtime to ensure  >1 

hour per charge 

3. Tolerance Analysis 
The most critical and challenging component of our project is the communication subsystem 
between the ESP32 on the glove and the ESP32 on the drone. The system’s success relies heavily 
on the reliability and latency of this connection. If the communication link fails or experiences 
excessive delay, the glove’s control inputs will not translate accurately to the drone’s movements, 
rendering the design ineffective. To address this, we have proposed two possible forms of 
communication: (1) configuring the glove’s ESP32 as a Wi-Fi hotspot that the drone connects to 
directly, or (2) using an external hotspot that both devices connect through. The first option is 
simpler and requires no additional hardware, but the range and reliability may be limited by the 
ESP32’s onboard antenna. The second option offers potentially greater range and stability but 
adds complexity and more potential failure points due to the extra hardware. 

To determine whether either design can meet performance requirements, we analyzed the 
communication link mathematically. Using a free-space path loss (FSPL) model for 2.4 GHz 
Wi-Fi, the loss in dB is given by: 



 

where dkm is the distance in kilometers and fMHz is the operating frequency in megahertz [1]. 
For 2.4 GHz, this yields path losses of approximately 60 dB at 10 m, 74 dB at 50 m, and 80 dB at 
100 m. According to the datasheet, the ESP32 transmits at 20 dBm with 0 dBi antenna gain. The 
received power levels would be approximately -42 dBm at 10 m, -56 dBm at 50 m, and -62 dBm 
at 100 m. Since most Wi-Fi receivers on ESP32 modules can reliably decode signals down to 
around -72 dBm [2], the system should maintain a stable link out to roughly 150–200 meters in 
free space. In real-world conditions with body interference, drone orientation changes, and 
multipath reflections, we expect a practical range closer to 50–100 meters. Adding a 10–20 dB 
fade margin ensures reliable operation under realistic conditions [3]. 

Our analysis indicates that using the glove’s ESP32 as a hotspot will likely be sufficient for 
short-range, line-of-sight operation. However, the human body and environmental obstacles can 
significantly change the signal, particularly when the glove is turned away from the drone. 
Because of the level of uncertainty we have with the transmission of this signal, we have chosen 
it to be the subject of our tolerance analysis.  

4. Cost and Schedule 

4.1 Bill Of Materials 
 

Item / Description Qty Part # (or 
Model) 

Key Specs Vendor Link 

Programmable 
ESP32-S3 Drone 
(PyDrone) 

1 PyDrone ESP32-S3 
FC, exposed 
GPIO, 
open-source 

rcdrone.top https://rcdrone.top/prod
ucts/pydrone-python-pr
ogramming-drone?_pos
=1&_psq=pydr&_ss=e
&_v=1.0 

9 V Alkaline 
Battery 

1 – 9 V primary, 
bench-only 

Amazon link 

https://www.amazon.com/Duracell-Coppertop-Long-lasting-All-Purpose-Household/dp/B00000JHQG/ref=sr_1_5?crid=2TT5E3HTGQPEI&dib=eyJ2IjoiMSJ9.fzGNkVrSG9RHtJLbMGPpY6lS4G-BFrCKOkznOe7BbT1_FY5mgB7W3DD66xloeVFGSYNcKyqaVqnioksBp_93-y6qXaSxg48bBL3V4V82LZnI5snvFQb73hRoTaS7lJDj1sJM9UO7uva5D6ZTccsN9vywy98zcTyC3CXUpu5sLG18bqe6WYfNt1gMNLM8CB0su-QN7GCgwxyIK6lQ5nlaXHBLlqBTdK6fFPz35IJcMtxmylSj00FxpHj6Bjo3hn39f4105LR9Notjd5g4J3WNJdeF3KXzptatrPKQoXWMAkc.z1duWGs7ucWwMkq3_3PEuke5usT8TsJiMr05QcHDyA8&dib_tag=se&keywords=9v%2Bbattery&qid=1759371819&s=electronics&sprefix=9v%2Bbattery%2Celectronics%2C88&sr=1-5&th=1


ESP32 Module (for 
PCB) 

1 ESP32-WR
OOM-32E-
N4 

Dual-core, 4 
MB Flash, 
2.4 GHz 
Wi-Fi 

ECE Supply 
Center 

– 

ESP32 Dev Board 
(DevKitC/HiLetgo) 

1 DevKitC / 
ESP-WROO
M-32 Dev 

USB-UART 
onboard, 3.3 
V 

Amazon https://www.amazon.co
m/AITRIP-ESP-WROO
M-32-Development-Mi
crocontroller-Integrated/
dp/B0CR5Y2JVD 

IMU 1 GY-521 
(MPU-6050) 

6-DoF, I²C, 
3.3 V 

Amazon https://www.amazon.co
m/HiLetgo-MPU-6050-
Accelerometer-Gyrosco
pe-Converter/dp/B078S
S8NQV 

Momentary 
Pushbutton 

3 (+2 
spare) 

  ECE Supply 
Center 

– 

3.3 V Regulator 1 LP2950 3.3 V @ 1 A, 
Vin 4–11 V 

ECE Supply 
Center 

– 

USB-to-UART 
Adapter 

1  3.3 V logic, 
6-pin header 

ECE Supply 
Center 

– 

Debounce RC + 
Series + etc. 

per 
button 

10 kΩ, 0.1 
µF, 100 Ω 

Active-LOW 
pull-up + RC 

ECE Supply 
Center 

– 

 

4.2 Schedule 
Week of 9/23 Tasks 

●​ Zach: Finish KiCAD schematic of PCB. 
●​ Atsi: Order remaining breadboard + PCB components. 
●​ Aneesh: Set up initial ESP32 + IMU test code on breadboard. 

Week of 9/30 Tasks 

●​ All: Attend 10/3 PCB Review and log feedback. 



●​ Zach + Aneesh: Add buttons to breadboard and program a visual output 
●​ Atsi: Draft of Design Document sections 

Week of 10/7 Tasks 

●​ All: Submit teamwork evaluation + finalize PCB edits. 
●​ All: Oversee PCB order submission (10/6). 
●​ All: Prepare and run Breadboard Demo 1. 
●​ All: Complete Design Document 

Week of 10/14 Tasks 

●​ Zach: Integrate PCB edits into KiCAD for Round 2. 
●​ Atsi: Assemble and test the drone 
●​ Aneesh: Begin communication test between breadboard and drone. 

Week of 10/21 Tasks 

●​ Zach: Document results of drone communication tests. 
●​ Atsi + Aneesh: Update breadboard wiring based on Demo 1 feedback. 
●​ All: Prepare for Breadboard Demo 2 (10/28). 

Week of 10/28 Tasks 

●​ All: Start writing Final Paper introduction. 
●​ All: Begin creating Final Presentation slides. 
●​ All: Conduct Breadboard Demo 2 and log results. 

Week of 11/4 Tasks 

●​ All: Order PCB Round 3 if necessary after edits. 
●​ All: Continue debugging 
●​ All: Document debugging progress in lab notebook. 

Week of 11/11 Tasks 

●​ All: Order PCB Round 4 if necessary and check for design stability. 
●​ Atsi: Validate drone + glove communication on updated hardware. 
●​ All: Update final paper notes. 

Week of 11/18 Tasks 

●​ All: Run Mock Demo (11/18) and collect TA feedback. 
●​ All: Edit Final Presentation slides with demo results. 



●​ All: Continue expanding Final Paper draft. 

Week of 12/2 Tasks 

●​ All: Run Final Demo (12/1), Deliver Final Presentation (12/8), Submit Final Paper 
(12/10). 

●​ All: Submit Lab Notebook (12/11) 
5. Ethics and Safety 
Our project follows the IEEE and ACM Codes of Ethics, prioritizing safety, honesty, and 
responsible design. Drones raise ethical concerns related to misuse, privacy, and airspace 
regulations. To address this, we will limit our system to hobbyist-level drones, comply with FAA 
rules (flying under 400 ft in uncontrolled airspace), and obtain approval before campus test 
flights. 

Electrical Safety: All glove-mounted circuits will be insulated and tested to prevent shorts. Li-Po 
batteries will follow IEEE battery safety standards, using proper charging, protection circuitry, 
and enclosures to reduce risks of overheating or puncture. 

Mechanical Safety: Propellers will be guarded, and flights limited to controlled test areas. A 
gesture-based emergency shutoff ensures immediate motor disablement in unsafe conditions. 

Wireless Safety: ESP32 Wi-Fi communication will be tested for reliability. A fail-safe mode will 
cut motors if signals are lost. 

Lab Safety: Work will follow UIUC lab policies and OSHA guidelines, including PPE use, safe 
soldering practices, and risk assessments during flight tests. 
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