

ECE 445
Spring 2025

Design Document

Project #1: Glove controlled quad-copter

Team Members: Atsi Gupta (atsig2), (aneeshn3), Zach Greening Aneesh Nagalkar
(zg29)

TA: Wenjing Song
Professor: Cunjiang Yu

mailto:aneeshn3@illinois.edu

1. Introduction..3
1.1 Problem... 3
1.2 Solution..3
1.3 Visual Aid...3
1.4 High-Level Requirements List..4

2. Design...5
Block Diagram:.. 5
Subsystem 1: Control Directions... 6

Inertial Measurement Unit (IMU)..6
ESP32..9
2.2.3 Buttons..10

Subsystem 2: Drone + Flight Controller...12
Subsystem 3: Communication... 13
Subsystem 4: Power + DC-DC Regulator..15

3. Tolerance Analysis.. 16
4. Cost and Schedule.. 17

4.1 Bill Of Materials..17
4.2 Schedule..18

5. Ethics and Safety...20
6. References... 20

1. Introduction

1.1 Problem
Controlling drones typically requires handheld remote controllers or smartphones, which can feel
unintuitive and demand significant practice to master. This steep learning curve limits
accessibility for new users and prevents drones from being seamlessly integrated into areas like
training, entertainment, or assistive technology. Existing remote-control methods also provide
little user feedback and lack robust safety mechanisms, increasing the risk of crashes or improper
handling.

1.2 Solution
Our project proposes a wearable gesture-control glove that enables intuitive, ergonomic drone
operation. The glove will incorporate IMU and gyroscope sensors to capture the orientation and
motion of the user’s hand, translating gestures into commands such as forward, backward, strafe,
yaw, and stop. An ESP32 microcontroller embedded in the glove will transmit these commands
wirelessly to a drone equipped with an ESP32-based flight controller.

To improve upon previous iterations of gesture-control systems, our design will:

●​ Replace less precise flex sensors with IMUs for more accurate gesture tracking.
●​ Include a gesture-based emergency shutoff for safety.
●​ Optionally integrate haptic feedback to communicate drone status to the user (e.g., low

battery, weak signal).
●​ Optionally integrate an ESP32-CAM on the drone to provide basic video feedback,

enhancing user situational awareness.

The camera is not essential to the core glove-to-drone control system, but serves as a scalable
feature that can expand the project’s applications if successfully integrated.

1.3 Visual Aid

Figure 1: General layout of glove.

1.4 High-Level Requirements List
To demonstrate success, our project must meet the following measurable requirements:

1.​ The drone responds in real time to glove commands with minimal delay.
2.​ The buttons make the drone hover or land within 15 seconds of being pressed.
3.​ Directional commands (forward, back, left, right, up, down) work 80% of the time over

20 trials.
4.​ (Stretch goal) If the camera is integrated, the system should be able to store

low-resolution images to the sd card.
5.​ (Stretch goal) Haptic feedback provides clear communication of system status to the user.

2. Design

Block Diagram:

Figure 2: High level Block Diagram

Subsystem 1: Control Directions

Inertial Measurement Unit (IMU)

Model purchased: MPU-6050 6-DoF Accel

Figure 4: MPU 6050 Physical Layout

Figure 5: IMU Pinout in Circuit

https://www.adafruit.com/product/3886?srsltid=AfmBOoqxlN9sKu_MoS4p3hMVOZCZ3168zAF_awwDEobgX3Hb1cPs_862

Features
●​ Measures six independent axes: X, Y, Z acceleration and X, Y, Z angular velocity
●​ Sampling rate: up to 1 kHz for both accel and gyro
●​ Power: ~3.3V

For the Glove:

●​ ±2g acceleration → very sensitive to small tilts and shifts in hand position (good for
mapping tilt to drone motion)

●​ ±250 °/s gyroscope → very precise at slow/medium rotations (like turning your wrist to
steer)

Mapping strategy:

●​ Definition: Think of the IMU as sitting flat on the back of your hand, with axes (also
depicted in Figure 5):

○​ X-axis → points forward (toward your fingers)
○​ Y-axis → points left (toward your thumb if right hand)
○​ Z-axis → points upward (out of the back of your hand)

●​ For the purposes of our project, we will only be rotating around the the X and Y axes

Figure 6: Visual of hand gesture orientation

●​ This project will be limited to translating the drone along the Pitch and Roll axes (as

shown in Figure 6)
●​ Takeoff and landing (Thrust) will be handled by the buttons

Figure 7: Visual of drone axes and movements

●​ The mapping of hand gestures to drone movements will be as follows. Refer to Figure 5

and 6 for reference

Table 1: Direction Mapping for Glove

Glove Movement Drone Movement

Clockwise rotation around the glove’s Y-axis
(flexion)

Drone moves in the positive direction of the
Roll axis (Y-axis)

Counterclockwise rotation around the glove’s
Y-axis (extension)

Drone moves in negative direction of the Roll
axis (Y-axis)

Clockwise rotation around the glove’s X-axis Drone moves in the positive direction of the
Pitch axis (X-axis)

Counterclockwise rotation around the glove’s
X-axis

Drone moves in the negative direction of the
Pitch axis (X-axis)

ESP32

Model purchased:
https://www.digikey.com/en/products/detail/espressif-systems/ESP32-S3-WROOM-1-N16/1616
2647

​ Figure 8: ESP32 pinout ​ ​ Figure 9: ESP32 Physical Layout

Figure 10: ESP32 Pinout in Circuit

https://www.digikey.com/en/products/detail/espressif-systems/ESP32-S3-WROOM-1-N16/16162647
https://www.digikey.com/en/products/detail/espressif-systems/ESP32-S3-WROOM-1-N16/16162647

Features
●​ Brain of the glove system to coordinate all operations between sensors and drone
●​ Collects real-time motion data from the IMU over the I²C interface
●​ Sends data to over WIFI to ESP32 on the drone
●​ Programmed micropython through Thonny
●​ Multiple GPIO pins allow integration of buttons for user interaction

Milestones

●​ I2C scan: Confirm ESP32 detects MPU-6050 at address 0x68
●​ Raw Data Read: Use library MPU6050_tockn to print IMU values to Serial Monitor
●​ Calibration: determine gyro offsets while sensor is still
●​ Gesture Mapping: Map pitch and roll into commands
●​ Communication to Drone: Send packets wirelessly via UDP

2.2.3 Buttons
Model purchased:
https://www.digikey.com/en/products/detail/te-connectivity-alcoswitch-switches/1825910-6/163
2536

 ​ ​ ​ ​ Figure 11: Button Physical Layout

https://www.digikey.com/en/products/detail/te-connectivity-alcoswitch-switches/1825910-6/1632536
https://www.digikey.com/en/products/detail/te-connectivity-alcoswitch-switches/1825910-6/1632536

Figure 12: Debounced Buttons in Circuit

Features

●​ Simple pushdown button switch
Purpose

●​ Total of 3 buttons required for attaching onto the glove
○​ 1 button for takeoff of the drone to make it hover 5 feet into the air
○​ 1 button for landing of the drone to make it slowly descend and turn off the rotors
○​ 1 button for taking pictures

Wiring
●​ These buttons will be wired to the GPIO pins of the ESP32
●​ Configure the GPIO as INPUT_PULLUP
●​ The ESP32 holds the pin at 3.3 V internally.
●​ Pressing the button shorts the pin to GND, pulling it LOW and creating a clean digital

signal.

Table 2: Requirements and Verification for Control Directions
Requirements Verification

Press registers a single event with debounce
≥10 ms

Capture button waveform + firmware logs for
20 different presses per button

Buttons use INPUT_PULLUP; idle = HIGH
(~3.3 V), pressed = LOW (≤0.4 V)

Measure GPIO response using ESP32 output
to confirm functionality

Ensure it can tolerate multiple button presses
simultaneously in case of accident

Press multiple buttons at the same time and
observe behavior (should do nothing)

Subsystem 2: Drone + Flight Controller
Model purchased:
https://www.aliexpress.us/item/3256808919448022.html?gatewayAdapt=glo2usa4itemAdapt

Figure 13: Pydrone Physical Layout

Features:

●​ Built on the ESP32-S3 platform, making it natively compatible with our glove’s ESP32
transmitter.

●​ Exposed pins allow potential wiring of an ESP32-CAM module or other sensors.
●​ Actively maintained open-source codebase, which should simplify firmware edits for

custom control schemes.

Design Considerations:

https://www.aliexpress.us/item/3256808919448022.html?gatewayAdapt=glo2usa4itemAdapt

●​ The PyDrone only supports MicroPython code. Tests have been conducted to ensure that
MicroPython can be successfully flashed onto the ESP32 module in the glove, allowing it
to later communicate with the drone

●​ This drone is not meant to fly very far distances but rather respond to glove commands
within a 50 meter radius

Table 3: Requirements and Verification for Drone + Flight Controller
Requirements Verification

Must be configurable to receive data via
WI-FI using onboard ESP32

Verify that the drone can receive data via
WI-FI from the ESP32 via debug logs from
Pydrone

Must support real-time command reception
from the glove with latency <200 ms

Measure command latency during test flights
either visually or via program

Must provide basic flight stabilization
(hovering, pitch, roll, yaw, throttle)

Validate that the drone can hover for at least 5
minutes

Subsystem 3: Communication
The glove and drone will communicate directly over Wi-Fi, leveraging the built-in Wi-Fi
functionality of the ESP32 modules used on both ends. This eliminates the need for an external
RF transceiver and simplifies the hardware design.

Purpose

●​ Provides a dedicated Wi-Fi link between the glove’s ESP32 and the drone’s ESP32 flight
controller.

●​ Control commands will be sent as UDP packets for low-latency transmission.
●​ Leaves GPIO pins available for additional peripherals such as buttons, haptic feedback,

or the optional camera.

Design Considerations

●​ UDP will be chosen over TCP to minimize retransmission delays, though packet loss
handling will be addressed in software.

●​ Wi-Fi traffic will be limited to control packets only if the optional ESP32-CAM is
integrated, to ensure flight commands remain responsive.

●​ Both glove and drone ESP32 boards must be configured to connect on the same Wi-Fi
network, or one can act as a soft access point (AP) while the other connects as a station.

Table 4: Requirements and Verification for Communication
Requirements Verification

Frequency band: 2.4 GHz Wi-Fi (802.11
b/g/n)

Stress test by introducing background Wi-Fi
traffic to ensure drone commands remain
prioritized.

Typical throughput: up to 65 Mbps, but only a
few kbps required for control packets

Verify, through a different receiver (windows
machine), that the glove is correctly sending
UDP packets to the correct socket, with the
correct wifi network.

Range: 30–50 m indoors, up to 100 m
line-of-sight outdoors (depending on antenna
quality and environment)

Verify that we can reliably control the drone
from 30-50 meters away.

Interface: MicroPython socket libraries
All of this must be done using libraries native
to MicroPython, or lightweight programs that
can be flashed to the ESP32.

Subsystem 4: Power + DC-DC Regulator

Figure 14: Power in Circuit

Features:​
The glove needs a controlled 3.3 V supply to power the ESP32, IMU, and three buttons. We
chose a single-cell 3.7 V, 1000 mAh Li-Po with a 3.7 V to 3.3 V converter (1 A).

Key Requirements:​
Provide stable 3.3 V power; supply the expected continuous and burst currents; include Li-Po
protection (overcharge/overdischarge/short).

Components:​
Battery: 3.7 V, 1000 mAh Li-Po.​
Regulator: 3.7 V to 3.3 V converter, rated at 1 A.

Calculations:​
Component current estimates (conservative):

ESP32: active = 0.200 A (datasheet), peak 0.300 A​
IMU: 0.004 A​
Buttons: 0.001 A.​
Typical total current: 0.200 + 0.004 + 0.001 = 0.205 A.​
Worst continuous estimate (ESP32 peak): 0.300 + 0.004 + 0.001 = 0.315 A.​
Output power at 3.3 V: 3.3 V × 0.205 A = 0.6765 W. ​
P_worst = 3.3 V × 0.315 A = 1.0395 W.​

Battery energy: 3.7 V × 1.000 Ah = 3.7 Wh. ​
Efficiency = 0.90 (estimate)​
Typical battery draw: 0.6765 W / (3.7 V × 0.90) = 0.6765 / 3.33 = 0.2031 A.​
Worst battery draw: 1.4025 W / 3.33 = 0.312 A.​
Typical runtime = 1.000 / 0.2031 = 4.92 h.​
Worst runtime = 1.000 / 0.312 = 3.20 h.​
Apply conservative usable capacity (80%): typical = 3.93 h, worst = 2.56 h. These figures justify
the 1000 mAh choice. Even under heavy continuous load the glove can still operate for almost
two hours which will more than suffice.

Table 5: Requirements and Verification for Power + DC-DC Regulator
Requirements Verification

The power system must provide a stable, 3.3V
output to the entire circuit. Verify 3.3 V under idle, typical, and peak

loads using oscilloscope

The power system must operate for more than
an hour before needing to recharge. Measure real-world runtime to ensure >1

hour per charge

3. Tolerance Analysis
The most critical and challenging component of our project is the communication subsystem
between the ESP32 on the glove and the ESP32 on the drone. The system’s success relies heavily
on the reliability and latency of this connection. If the communication link fails or experiences
excessive delay, the glove’s control inputs will not translate accurately to the drone’s movements,
rendering the design ineffective. To address this, we have proposed two possible forms of
communication: (1) configuring the glove’s ESP32 as a Wi-Fi hotspot that the drone connects to
directly, or (2) using an external hotspot that both devices connect through. The first option is
simpler and requires no additional hardware, but the range and reliability may be limited by the
ESP32’s onboard antenna. The second option offers potentially greater range and stability but
adds complexity and more potential failure points due to the extra hardware.

To determine whether either design can meet performance requirements, we analyzed the
communication link mathematically. Using a free-space path loss (FSPL) model for 2.4 GHz
Wi-Fi, the loss in dB is given by:

where dkm is the distance in kilometers and fMHz is the operating frequency in megahertz [1].
For 2.4 GHz, this yields path losses of approximately 60 dB at 10 m, 74 dB at 50 m, and 80 dB at
100 m. According to the datasheet, the ESP32 transmits at 20 dBm with 0 dBi antenna gain. The
received power levels would be approximately -42 dBm at 10 m, -56 dBm at 50 m, and -62 dBm
at 100 m. Since most Wi-Fi receivers on ESP32 modules can reliably decode signals down to
around -72 dBm [2], the system should maintain a stable link out to roughly 150–200 meters in
free space. In real-world conditions with body interference, drone orientation changes, and
multipath reflections, we expect a practical range closer to 50–100 meters. Adding a 10–20 dB
fade margin ensures reliable operation under realistic conditions [3].

Our analysis indicates that using the glove’s ESP32 as a hotspot will likely be sufficient for
short-range, line-of-sight operation. However, the human body and environmental obstacles can
significantly change the signal, particularly when the glove is turned away from the drone.
Because of the level of uncertainty we have with the transmission of this signal, we have chosen
it to be the subject of our tolerance analysis.

4. Cost and Schedule

4.1 Bill Of Materials

Item / Description Qty Part # (or
Model)

Key Specs Vendor Link

Programmable
ESP32-S3 Drone
(PyDrone)

1 PyDrone ESP32-S3
FC, exposed
GPIO,
open-source

rcdrone.top https://rcdrone.top/prod
ucts/pydrone-python-pr
ogramming-drone?_pos
=1&_psq=pydr&_ss=e
&_v=1.0

9 V Alkaline
Battery

1 – 9 V primary,
bench-only

Amazon link

https://www.amazon.com/Duracell-Coppertop-Long-lasting-All-Purpose-Household/dp/B00000JHQG/ref=sr_1_5?crid=2TT5E3HTGQPEI&dib=eyJ2IjoiMSJ9.fzGNkVrSG9RHtJLbMGPpY6lS4G-BFrCKOkznOe7BbT1_FY5mgB7W3DD66xloeVFGSYNcKyqaVqnioksBp_93-y6qXaSxg48bBL3V4V82LZnI5snvFQb73hRoTaS7lJDj1sJM9UO7uva5D6ZTccsN9vywy98zcTyC3CXUpu5sLG18bqe6WYfNt1gMNLM8CB0su-QN7GCgwxyIK6lQ5nlaXHBLlqBTdK6fFPz35IJcMtxmylSj00FxpHj6Bjo3hn39f4105LR9Notjd5g4J3WNJdeF3KXzptatrPKQoXWMAkc.z1duWGs7ucWwMkq3_3PEuke5usT8TsJiMr05QcHDyA8&dib_tag=se&keywords=9v%2Bbattery&qid=1759371819&s=electronics&sprefix=9v%2Bbattery%2Celectronics%2C88&sr=1-5&th=1

ESP32 Module (for
PCB)

1 ESP32-WR
OOM-32E-
N4

Dual-core, 4
MB Flash,
2.4 GHz
Wi-Fi

ECE Supply
Center

–

ESP32 Dev Board
(DevKitC/HiLetgo)

1 DevKitC /
ESP-WROO
M-32 Dev

USB-UART
onboard, 3.3
V

Amazon https://www.amazon.co
m/AITRIP-ESP-WROO
M-32-Development-Mi
crocontroller-Integrated/
dp/B0CR5Y2JVD

IMU 1 GY-521
(MPU-6050)

6-DoF, I²C,
3.3 V

Amazon https://www.amazon.co
m/HiLetgo-MPU-6050-
Accelerometer-Gyrosco
pe-Converter/dp/B078S
S8NQV

Momentary
Pushbutton

3 (+2
spare)

 ECE Supply
Center

–

3.3 V Regulator 1 LP2950 3.3 V @ 1 A,
Vin 4–11 V

ECE Supply
Center

–

USB-to-UART
Adapter

1 3.3 V logic,
6-pin header

ECE Supply
Center

–

Debounce RC +
Series + etc.

per
button

10 kΩ, 0.1
µF, 100 Ω

Active-LOW
pull-up + RC

ECE Supply
Center

–

4.2 Schedule
Week of 9/23 Tasks

●​ Zach: Finish KiCAD schematic of PCB.
●​ Atsi: Order remaining breadboard + PCB components.
●​ Aneesh: Set up initial ESP32 + IMU test code on breadboard.

Week of 9/30 Tasks

●​ All: Attend 10/3 PCB Review and log feedback.

●​ Zach + Aneesh: Add buttons to breadboard and program a visual output
●​ Atsi: Draft of Design Document sections

Week of 10/7 Tasks

●​ All: Submit teamwork evaluation + finalize PCB edits.
●​ All: Oversee PCB order submission (10/6).
●​ All: Prepare and run Breadboard Demo 1.
●​ All: Complete Design Document

Week of 10/14 Tasks

●​ Zach: Integrate PCB edits into KiCAD for Round 2.
●​ Atsi: Assemble and test the drone
●​ Aneesh: Begin communication test between breadboard and drone.

Week of 10/21 Tasks

●​ Zach: Document results of drone communication tests.
●​ Atsi + Aneesh: Update breadboard wiring based on Demo 1 feedback.
●​ All: Prepare for Breadboard Demo 2 (10/28).

Week of 10/28 Tasks

●​ All: Start writing Final Paper introduction.
●​ All: Begin creating Final Presentation slides.
●​ All: Conduct Breadboard Demo 2 and log results.

Week of 11/4 Tasks

●​ All: Order PCB Round 3 if necessary after edits.
●​ All: Continue debugging
●​ All: Document debugging progress in lab notebook.

Week of 11/11 Tasks

●​ All: Order PCB Round 4 if necessary and check for design stability.
●​ Atsi: Validate drone + glove communication on updated hardware.
●​ All: Update final paper notes.

Week of 11/18 Tasks

●​ All: Run Mock Demo (11/18) and collect TA feedback.
●​ All: Edit Final Presentation slides with demo results.

●​ All: Continue expanding Final Paper draft.

Week of 12/2 Tasks

●​ All: Run Final Demo (12/1), Deliver Final Presentation (12/8), Submit Final Paper
(12/10).

●​ All: Submit Lab Notebook (12/11)
5. Ethics and Safety
Our project follows the IEEE and ACM Codes of Ethics, prioritizing safety, honesty, and
responsible design. Drones raise ethical concerns related to misuse, privacy, and airspace
regulations. To address this, we will limit our system to hobbyist-level drones, comply with FAA
rules (flying under 400 ft in uncontrolled airspace), and obtain approval before campus test
flights.

Electrical Safety: All glove-mounted circuits will be insulated and tested to prevent shorts. Li-Po
batteries will follow IEEE battery safety standards, using proper charging, protection circuitry,
and enclosures to reduce risks of overheating or puncture.

Mechanical Safety: Propellers will be guarded, and flights limited to controlled test areas. A
gesture-based emergency shutoff ensures immediate motor disablement in unsafe conditions.

Wireless Safety: ESP32 Wi-Fi communication will be tested for reliability. A fail-safe mode will
cut motors if signals are lost.

Lab Safety: Work will follow UIUC lab policies and OSHA guidelines, including PPE use, safe
soldering practices, and risk assessments during flight tests.

6. References
[1] T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed. Upper Saddle
River, NJ, USA: Prentice Hall, 2002.
[2] Espressif Systems, “ESP32 Series Datasheet,” Version 3.9, 2024. [Online]. Available:
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
[3] M. A. Khan and S. W. Kim, “Performance analysis of 2.4 GHz wireless communication
under varying environmental conditions,” IEEE Access, vol. 9, pp. 14201–14210, 2021.
[4] IEEE Std 802.11-2020, IEEE Standard for Information Technology—Telecommunications
and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific
Requirements, IEEE, 2020.

[5] D. Halperin, B. Greenstein, A. Sheth, and D. Wetherall, “Demystifying 802.11n power
consumption,” in Proc. USENIX HotPower Workshop, Berkeley, CA, USA, 2010.
[6] Espressif Systems, “ESP-NOW: Low Power Wireless Communication Protocol,” Technical
Documentation, 2023. [Online]. Available:
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html
[7] IEEE. "IEEE Code of Ethics." 2023.
https://www.ieee.org/about/corporate/governance/p7-8.html
[8] ACM. "ACM Code of Ethics and Professional Conduct." 2023.
https://www.acm.org/code-of-ethics
[9] OSHA. "Occupational Safety and Health Administration Regulations." 2023.
https://www.osha.gov/
[10] NFPA. "National Fire Protection Association Electrical Safety Standards." 2023.
https://www.nfpa.org/ University of Illinois.
[11] Division of Research Safety." 2023. https://www.drs.illinois.edu/
[12] “ESP32-S3-WROOM-1 ESP32-S3-WROOM-1U Datasheet 2.4 GHz Wi-Fi (802.11 b/g/n)
and Bluetooth ® 5 (LE) module Built around ESP32-S3 series of SoCs, Xtensa ® dual-core
32-bit LX7 microprocessor Flash up to 16 MB, PSRAM up to 8 MB 36 GPIOs, rich set of
peripherals On-board PCB antenna.” Available:
https://www.espressif.com/sites/default/files/documentation/esp32-s3-wroom-1_wroom-1u_datas
heet_en.pdf

‌

https://www.drs.illinois.edu/

	
	1. Introduction
	1.1 Problem
	1.2 Solution
	1.3 Visual Aid
	1.4 High-Level Requirements List

	2. Design
	Block Diagram:
	Subsystem 1: Control Directions
	Inertial Measurement Unit (IMU)
	ESP32
	2.2.3 Buttons

	Subsystem 2: Drone + Flight Controller
	Subsystem 3: Communication
	Subsystem 4: Power + DC-DC Regulator

	3. Tolerance Analysis
	4. Cost and Schedule
	4.1 Bill Of Materials
	4.2 Schedule

	5. Ethics and Safety
	6. References

